Crystalline Boron-linked Tetraaminoethylene Radical Cations

Yuanting Su Yongxin Li, Rakesh Ganguly, and Rei Kinjo

Table of Contents

- 1. Synthesis, physical and spectroscopic data for all new compounds
- 2. Crystal structural parameters and solid structures
- 3. UV-Vis absorption and photoluminescence spectroscopies
- 4. Cyclic voltammograms
- 5. EPR spectra
- 6. Theoretical calculations
- 7. References

1. Synthesis, physical and spectroscopic data for all new compounds

General Procedures. All experiments were carried out under an argon or nitrogen atmosphere using standard Schlenk or dry glovebox techniques. Solvents were dried over Na metal, K metal, or CaH₂, and were distilled under nitrogen prior to use. Reagents were of analytical grade, obtained from commercial suppliers and used without further purification. ¹H, 11 B, 13 C and 19 F NMR were obtained with a Bruker AVIII 400 MHz BBFO1 spectrometer at 298 K unless otherwise stated. Chemical shifts (δ) are given in p.p.m. Coupling constants J are given in Hz. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, m =multiplet, br = broad signal. Most of signals for the quaternary carbon atoms bonding to boron atom could not be detected, presumably due to coupling with the boron atom. Electrospray ionization (ESI) mass spectra were obtained at the Mass Spectrometry Laboratory at the Division of Chemistry and Biological Chemistry, Nanyang Technological University. Melting points were measured with an OpticMelt (Stanford Research System). UV-Vis absorption and fluorescence emission spectra were carried out with Cary 300 UV-Vis and Cary Eclipse spectrometer, respectively. Cyclic voltammetry (CV) was performed on a Biologic SP-50 electrochemical analyzer in anhydrous dichloromethane containing recrystallized tetra-n-butyl-ammoniumhexafluorophosphate (TBAPF₆, 0.1M) as supporting electrolyte at 298 K. A conventional three electrode cell was used with a glassy carbon electrode as the auxiliary electrode, silver/silver nitrate as the reference electrode, and a platinum wire as the working electrode. All electrochemical measurements were carried out under an atmospheric pressure of nitrogen. Continuous wave X-band electron paramagnetic resonance (EPR) spectra were Dibromophenylborane,^{S1} recorded on a Bruker ELEXSYS E500 EPR spectrometer. 4-fluoro-dibromophenylborane,^{S2} 4-tert-butyl-dibromophenylborane,^{S3} and Dimesityloxaldiimidoyl dichloride^{S4} were prepared according to the literature procedures.

Synthesis of compound 1: To a solution of dimesityloxalimidoyl dichloride (36.13 g, 100 mmol) in toluene (600 ml), 2,4,6-trimethylaniline (81.12 g, 600 mmol) was added at room temperature. The mixture was heated under reflux for two days. After cooling down and filtration, the solvent was concentrated in vacuo. The addition of hexane resulted in the formation of a yellow precipitate. The precipitate was separated by filtration and then washed three times with hexane (3×50 ml) to give **1** as a white solid (50.85 g, 91%). **M.p.**: 246 °C ; ¹**H NMR** (CDCl₃, 400 MHz, 298 K): δ 6.60 (s, 8H, Ar-CH), 2.15 (s, 12H, *p*-CH₃), 2.10 (s, 24H, *o*-CH₃); ¹³C{¹H} **NMR** (CDCl₃, 100 MHz, 298 K): δ 128.2 (Ar-CH), 20.7 (CH₃), 18.8 (CH₃); **HRMS** (ESI): m/z calcd for C₃₈H₄₇N₄: 559.3801 [(*M*+H)]⁺; found : 559.3802.

Synthesis of compound 2a: A solution of dibromophenylborane (4.95 g, 20 mmol) in toluene (50 ml) was added dropwise to a chilled solution (0 $^{\circ}$ C) of diisopropylethylamine (5.17 g, 40 mmol) in toluene (50 ml) whereby colorless solids precitipated. After the mixture was warmed to room temperature, the suspension of compound **1** (11.18 g, 20 mmol) in toluene (40 ml) was added and the resulting mixture was heated under reflux overnight. After cooling down to room temperature and filtration, the solvent was removed under vacuum and the solid residue was washed with hexane (3×10 ml) and dried under vacuum to afford **2a** as a yellow solid (10.04 g, 78%). Single crystals suitable for X-ray diffraction studies were grown from a saturated hexane

solution at room temperature. **M.p.**: 240 °C; ¹**H NMR** (C₆D₆, 400 MHz, 298 K): δ 7.22 (d, J = 8.0 Hz, 2H. o-CH), 6.87-6.79 (m, 3H, *m*-CH and *p*-CH), 6.66 (s, 4H, Ar-H), 6.49 (s, 4H, Ar-H), 2.32 (s, 12H, *m*-CH₃), 2.15 (s, 12H, *m*-CH₃), 2.07 (s, 6H, *p*-CH₃), 2.05 (s, 6H, *p*-CH₃); ¹³**C NMR** (C₆D₆, 100 MHz, 298 K): δ 136.7 (Ar-C), 135.4 (Ar-C), 135.1 (Ar-C), 133.7 (Ar-CH), 131.1 (Ar-CH), 130.5 (Ar-C), 129.4 (Ar-CH), 128.2 (Ar-CH), 128.1 (Ar-CH), 125.0 (Ar-C), 21.0 (Ar-CH₃), 20.1 (Ar-CH₃), 19.4 (Ar-CH₃), 19.1 (Ar-CH₃); ¹¹**B NMR** (C₆D₆, 128.3 MHz): δ 36.4 (br); **HRMS** (ESI): m/z calcd for C₄₄H₅₀BN₄: 645.4129 [(*M*+*H*)]⁺; found : 645.4138.

Compound 2b: yellow powder (74 %), **M.p.**: 220 °C; ¹**H NMR** (C₆D₆, 400 MHz, 298 K): δ 7.10-7.06 (m, 2H. Ar-*CH*), 6.68 (s, 4H, Ar-*CH*), 6.49 (s, 4H, Ar-*H*), 6.40 (t, *J* = 8.0 Hz, 2H, Ar-*H*), 2.29 (s, 12H, Ar-*CH*₃), 2.14 (s, 12H, Ar-*CH*₃), 2.08 (s, 6H, Ar-*CH*₃), 2.06 (s, 6H, Ar-*CH*₃); ¹³C{¹H} **NMR** (C₆D₆, 100 MHz, 298 K): δ 162.7 (d, ¹*J*_{CF} = 245 Hz, Ar-*C*F), 158.5 (NCN), 137.5 (Ar-*C*), 134.6 (d, ³*J*_{CF} = 7 Hz, Ar-*C*CCF), 133.0 (Ar-*C*), 130.0 (Ar-*C*H), 113.7 (d, ²*J*_{CF} = 20 Hz, Ar-*C*CF), 20.7 (Ar-*C*H₃); ¹¹B **NMR** (C₆D₆, 128.3 MHz): δ 36.1 (br); ¹⁹F{¹H} **NMR** (C₆D₆, 376 MHz): δ -115.0; **HRMS** (ESI): m/z calcd for C₄₄H₄₉BN₄F: 663.4034 [(*M*+*H*)]⁺; found : 663.4042.

Compound 2c: yellow powder (69 %), **M.p.**: 258 °C; ¹**H NMR** (C_6D_6 , 400 MHz, 298 K): δ 7.25 (d, J = 8.0 Hz, 2H. Ar-CH), 6.94 (d, J = 8.0Hz, 2H, Ar-CH), 6.69 (s, 4H, Ar-H), 6.50 (s, 4H, Ar-H), 2.36 (s, 12H, Ar-CH₃), 2.16 (s, 12H, Ar-CH₃), 2.09 (s, 6H, Ar-CH₃), 2.06 (s, 6H, Ar-CH₃), 0.89 (s, 9H, C(CH₃)₃); ¹³C{¹H} NMR (C_6D_6 , 100 MHz, 298 K): δ 154.3 (NCN), 136.7 (Ar-C), 135.5 (Ar-C), 134.1 (Ar-CH), 130.4 (Ar-C), 129.5 (Ar-CH), 128.2 (Ar-CH), 125.3 (Ar-CH), 125.0 (Ar-C), 34.6 (C(CH₃)₃, 30.9 (C(CH₃)₃, 21.0 (Ar-CH₃), 20.8 (Ar-CH₃), 19.5 (Ar-CH₃), 19.2 (Ar-CH₃); ¹¹B NMR (CDCl₃, 128.3 MHz): δ 37.2 (br); HRMS (ESI): m/z calcd for: $C_{48}H_{58}BN_4$: 701.4755 [(*M*+H)]⁺; found : 701.4762.

Synthesis of compound 3a: A toluene (10 ml) solution of dibromophenylborane (2.48 g, 10 mmol) was added dropwise to a toluene (50 ml) solution of **2a** (6.41 g, 9.94 mmol) at -30°C. The resulting mixture was warmed to room temperature and stirred overnight. The precipitate was separated by filtration and then washed with hexane (3×5 ml) to give **3a** as a white solid (6.67g, 75%). Single crystals suitable for X-ray diffraction studies were grown from a saturated chloroform solution at room temperature. **M.p.**: 209 °C (dec.); ¹H **NMR** (CDCl₃, 400 MHz, 298 K): δ 7.63-7.60 (m, 4H, *o*-CH), 7.20-7.16 (m, 6H, *m*-CH and *p*-CH), 6.71 (s, 4H, *m*-CH), 6.13 (s, 4H, *m*-CH), 2.80 (s, 12H, *m*-CH₃), 2.04 (s, 12H, *m*-CH₃), 1.26 (s, 12H, *p*-CH₃); ¹³C{¹H} **NMR** (CDCl₃, 100 MHz, 298 K): δ 154.9 (NCN), 135.6 (Ar-C), 133.6 (Ar-C), 133.4 (Ar-CH), 128.9 (Ar-CH), 128.8 (Ar-CH), 127.2 (Ar-CH), 126.8 (Ar-CH), 22.2 (Ar-CH₃), 20.6 (Ar-CH₃), 19.8 (Ar-CH₃); ¹¹B **NMR** (C₆D₆, 128.3 MHz): δ 9.8 (s); **HRMS** (ESI): m/z calcd for C₅₀H₅₅¹⁰B¹¹B⁸¹Br₂N₄: 894.2975 [(*M*+*H*)]⁺; found : 894.2956.

Compound 3b: white powder (69%). **M.p.**: 256 °C (dec.); ¹**H NMR** (CDCl₃, 400 MHz, 298 K): δ 7.20 (t, *J* = 8.0 Hz, 4H. Ar-C*H*), 6.68 (t, *J* = 8.0 Hz, 4H, Ar-C*H*), 6.55 (s, 8H, Ar-*H*), 2.15-2.11(m, 36H, Ar-C*H*₃); ¹³C{¹H} **NMR** (CDCl₃, 100 MHz, 298 K): δ 164.8 (d, ¹*J*_{CF} = 250 Hz, Ar-CF), 136.8 (Ar-C), 136.2 (d, ³*J*_{CF} = 8 Hz, Ar-CCCF), 136.1 (Ar-CH), 135.3 (Ar-C), 135.0 (Ar-C), 130.6 (Ar-C), 129.5 (Ar-C), 128.2 (Ar-CH), 125.0 (Ar-C), 115.3 (d, ²*J*_{CF} = 20 Hz, Ar-CCF), 21.0 (Ar-CH₃), 20.8 (Ar-CH₃), 19.4 (Ar-CH₃), 19.0 (Ar-CH₃); ¹¹B **NMR** (CDCl₃, 128.3 MHz): δ 35.1 (br); ¹⁹F{¹H} NMR (C₆D₆, 376 MHz): δ -115.0; **HRMS** (ESI): m/z calcd for C₅₀H₅₃B₂N₄⁷⁹Br⁸¹BrF₂: 929.2771 [(*M*+*H*)]⁺; found : 929.2787.

Compound 3c: white powder (81%). **M.p.**: 222 °C (dec.); ¹**H NMR** (CDCl₃, 400 MHz, 298 K): δ 7.15 (d, *J* = 8.0 Hz, 2H, Ar-C*H*), 6.98 (d, *J* = 8.0 Hz, 2H, Ar-C*H*), 6.53 (s, 8H, Ar-C*H*), 2.16 (s, 12H, Ar-C*H*₃), 2.14 (s, 24H, Ar-C*H*₃), 1.20 (s, 18H, C(C*H*₃)₃); ¹³C{¹H} **NMR** (CDCl₃, 100 MHz, 298 K): δ 158.3 (NCN), 150.3 (Ar-*C*), 137.2 (Ar-*C*), 135.5 (Ar-*C*), 133.2 (Ar-*C*), 132.5 (Ar-*C*H), 129.5 (Ar-CH), 123.6 (Ar-CH), 34.4 (*C*(CH₃)₃), 31.4 (C(CH₃)₃), 22.2 (Ar-CH₃), 20.7 (Ar-CH₃); ¹¹B **NMR** (C₆D₆, 128.3 MHz): δ 10.8 (br); **HRMS** (ESI): m/z calcd for C₅₈H₇₁B₂N₄⁷⁹Br⁸¹Br:1005.4211 [(*M*+*H*)]⁺; found : 1005.4236.

Synthesis of compound 4a: Potassium graphite (0.54 g, 4.0 mmol) was slowly added to a toluene (40 ml) suspension of **3a** (1.79 g, 2.0 mmol) and stirred overnight at room temperature. After filtration, the solid residue was extracted with warm (80 °C)) toluene (50 ml). The combined solvent was removed under vacuum and the residue was washed with hexane (3×5 ml) to afford **4a** as yellow-green solid (0.80 g, 54%). Single crystals suitable for X-ray diffraction studies were grown from a saturated toluene solution at room temperature. **M.p.**: 339 °C; ¹**H NMR** (C₆D₆, 400 MHz, 298 K): δ 7.28-7.26 (m, 4H, *o*-C*H*), 6.91-6.84 (m, 6H, *m*-C*H* and *p*-C*H*), 6.52 (s, 8H, *m*-C*H*), 2.22 (s, 24H, *m*-C*H*₃), 2.07 (s, 12H, *p*-C*H*₃); ¹³C{¹H} **NMR** (CDCl₃, 100 MHz, 298 K): δ 136.0 (Ar-C), 135.5 (Ar-C), 135.2 (Ar-C), 132.3 (Ar-CH), 128.2 (Ar-CH), 127.5 (Ar-CH), 127.4 (Ar-CH), 122.9 (Ar-C), 21.0 (Ar-CH₃), 18.7 (Ar-CH₃); ¹¹B **NMR** (CDCl₃, 128.3 MHz): δ 25.4 (br); **UV-Vis** (CH₂Cl₂): λ = 374 nm (9290); **Fluorescence** (CH₂Cl₂): λ = 492 nm; **HRMS** (ESI): m/z calcd for C₅₀H₅₅B₂N₄: 733.4613 [(*M*+*H*)]⁺; found : 733.4629.

Compound 4b: yellow-green powder (76 %). **M.p.**: 298 °C; ¹**H NMR** (C₆D₆, 400 MHz, 298 K): δ 7.12-7.09 (m, 4H, Ar-C*H*), 6.54 (s, 8H, Ar-C*H*), 6.51-6.48 (m, 4H, Ar-C*H*), 2.18 (s, 24H, Ar-C*H*₃), 2.08 (s, 12H, Ar-C*H*₃); ¹³C{¹H} **NMR** (C₆D₆, 100 MHz, 298 K): δ 163.3 (d, ¹J_{CF} = 246 Hz, Ar-CF), 136.2 (Ar-C), 135.7 (Ar-C), 134.5 (d, ³J_{CF} = 7 Hz, Ar-CCCF), 128.8 (Ar-CH), 123.3 (Ar-C), 115.0 (d, ²J_{CF} = 20 Hz, Ar-CCF), 21.0 (Ar-CH₃), 18.8 (Ar-CH₃); ¹¹B **NMR** (C₆D₆, 128.3 MHz): δ 26.4 (br); ¹⁹F{¹H} **NMR** (C₆D₆, 376 MHz): δ -112.6; **UV-Vis** (CH₂Cl₂): λ = 364 nm (7023); **Fluorescence** (CH₂Cl₂): λ = 487 nm; **HRMS** (ESI): m/z calcd for C₅₀H₅₃B₂N₄F₂: 769.4424 [(*M*+*H*)]⁺; found : 769.4445.

Compound 4c: yellow-green powder (64%). **M.p.**: 382 °C; ¹**H NMR** (C₆D₆, 400 MHz, 298 K): δ 7.26 (d, *J* = 8.0 Hz, 4H, Ar-C*H*), 6.96 (d, *J* = 8.0 Hz, 4H, Ar-C*H*), 6.56 (s, 8H, Ar-C*H*), 2.36 (s, 24H, Ar-C*H*₃), 2.11 (s, 12H, Ar-C*H*₃), 0.96 (s, 18H, C(C*H*₃)₃); ¹³C{¹H} **NMR** (C₆D₆, 100 MHz, 298 K): δ 150.51 (NCN), 136.9 (Ar-C), 136.0 (Ar-C), 135.4 (Ar-C), 132.5 (Ar-CH), 128.8 (Ar-CH), 125.0 (Ar-CH), 123.6 (Ar-C), 34.38 (*C*(CH₃)₃), 31.1 (C(*C*H₃)₃), 21.0 (Ar-*C*H₃), 19.0 (Ar-*C*H₃); ¹¹B **NMR** (C₆D₆, 128.3 MHz): δ 26.1 (br); **UV-Vis** (CH₂Cl₂): λ = 369 nm (6316); **Fluorescence** (CH₂Cl₂): λ = 490 nm; **HRMS** (ESI): m/z calcd for C₅₈H₇₁B₂N₄: 845.5865 [(*M*+*H*)]⁺; found : 845.5886.

Synthesis of compound 4a⁺⁺•[B(C₆F₅)₄][•]: A solution of [Ph₃C][B(C₆F₅)₄] (0.46 g, 0.50mmol) in CH₂Cl₂ (15 mL) was added dropwise to a CH₂Cl₂ solution of **4a** (0.37 g, 0.50 mmol) (10 ml) at -60 °C. The resultant intensely red solution was slowly warmed to room temperature and stirred overnight. After removal of the solvent, the residue was washed with hexane and dried under vacuum to afford **4a**⁺⁺•[**B**(**C**₆**F**₅)₄]⁻ as a deep red powder (0.59g, 84%). Single crystals suitable for X-ray diffraction studies were grown from a saturated CH₂Cl₂ and toluene solution at room temperature. **M. p.**: 212 °C (dec.); **UV-Vis** (CH₂Cl₂): 458 nm (ε = 1691 M⁻¹cm⁻¹), 368 nm (ε = 16430 M⁻¹cm⁻¹); **HRMS** (ESI): m/z calcd for C₅₀H₅₅B₂N₄: 733.4613 [(*M*+*H*)]⁺; found :733.4631.

Compound 4b^{•+}•[**B**(**C**₆**F**₅)₄]⁻: reddish brown powder (87%). **M. p.**: 199 ^oC (dec); **UV-Vis** (CH₂Cl₂): 455 nm (ε = 2317 M⁻¹cm⁻¹), 368 nm (ε = 15980 M⁻¹cm⁻¹); **HRMS** (ESI): m/z calcd for C₅₀H₅₃B₂N₄F₂: 769.4424 [(*M*+*H*)]⁺; found :769.4432.

Synthesis of compound 5a: HOTf (0.06 ml, 0.68 mmol) was added to a toluene solution (30 ml) of **4a** (498 mg, 0.68 mmol) at room temperature and the resulting mixture was stirred for 30mins. After removal of the solvent, the solid residue was washed with hexane and dried under vacuum to afford a white solid of **5a** (510 mg, 85%). Single crystals suitable for X-ray diffraction studies were grown from a saturated chloroform solution at room temperature. **M. p.**: 100.1 °C (dec); ¹**H NMR** (CDCl₃, 400 MHz, 298 K): *δ* 7.71 (s, 1H, NCHN), 7.26 (t, *J* = 7.6 Hz, 2H, Ar-*H*), 7.00 (t, *J* = 7.6 Hz, 4H, Ar-*H*), 6.84 (d, *J* = 8.0 Hz, 4H, Ar-*H*), 6.69 (s, 2H, Ar-*H*), 6.62 (s, 2H, Ar-*H*), 6.61 (s, 2H, Ar-*H*), 6.59 (s, 2H, Ar-*H*), 2.33 (s, 6H, Ar-CH₃), 2.20 (s, 6H, Ar-CH₃), 2.18 (s, 6H, Ar-CH₃), 2.17 (s, 6H, Ar-CH₃), 2.11 (s, 6H, Ar-CH₃), 2.06 (s, 6H, Ar-CH₃); ¹³C{¹H} **NMR** (CDCl₃, 100 MHz, 298 K): *δ* 187.4 (NCN), 139.4 (Ar-*C*), 137.3 (Ar-*C*), 135.4 (Ar-*C*), 134.4 (Ar-*C*), 133.4 (Ar-*C*), 133.1 (Ar-CH), 132.4 (Ar-*C*), 132.3 (Ar-CH), 129.8 (Ar-CH), 129.7 (Ar-*C*), 129.6 (Ar-CH₃), 19.5 (Ar-CH₃), 19.2 (Ar-CH₃), 19.2 (Ar-CH₃), 19.0 (Ar-CH₃); ¹¹B NMR (CDCl₃, 128.3 MHz): *δ* 38.1 (br); ¹⁹F{¹H} NMR (CDCl₃, 376 MHz): *δ* -78.0 (C*F*₃); **HRMS** (ESI): m/z calcd for C₅₀H₅₅B₂N₄: 733.4613 [(*M*-OTf)]⁺; found : 733.4623.

Compound 5b: white powder (89%). **M. p.**: 95.0 °C (dec); ¹**H NMR** (CDCl₃, 400 MHz, 298 K): δ 7.70 (s, 1H, NCHN), 6.86-6.83 (m, 4H, Ar-*H*), 6.73-6.69 (m, 6H, Ar-*H*), 6.63 (s, 4H, Ar-*H*), 6.60 (s, 2H, Ar-*H*), 2.32 (s, 6H, Ar-C*H*₃), 2.18 (s, 18H, Ar-C*H*₃), 2.09 (s, 6H, Ar-C*H*₃), 2.05 (s, 6H, Ar-C*H*₃); ¹³C{¹H} **NMR** (CDCl₃, 100 MHz, 298 K): δ 187.6 (NCN), 165.2 (d, ¹ J_{CF} = 254 Hz, Ar-CF), 139.6 (Ar-C), 137.6 (Ar-C), 135.8 (d, ³ J_{CF} = 9 Hz, Ar-CCCF), 135.4 (Ar-C), 134.6 (Ar-C), 133.6 (Ar-C), 133.0 (Ar-C), 132.3 (Ar-C), 130.0 (Ar-C), 129.8 (Ar-CH), 129.6 (Ar-C), 129.2 (Ar-CH), 129.1 (Ar-CH), 115.9 (d, ² J_{CF} = 21 Hz, Ar-CCF), 82.5 (NCHN), 20.9 (Ar-CH₃), 20.8 (Ar-CH₃), 19.9 (Ar-CH₃), 19.5 (Ar-CH₃), 19.2 (Ar-CH₃), 19.0 (Ar-CH₃); ¹¹B NMR (CDCl₃, 128.3 MHz): δ 39.3 (br); ¹⁹F{¹H} NMR (CDCl₃, 376 MHz): δ -78.1 (CF₃), -104.5 (Ar-*F*); HRMS (ESI): m/z calcd for C₅₀H₅₃B₂N₄F₂: 769.4424 [(*M*-OT*f*)]⁺; found: 769.4441.

Compound 5c: white powder (92%). **M. p.**: 97.6 °C (dec); ¹**H NMR** (CDCl₃, 400 MHz, 298 K): δ 7.47 (s, 1H, NCHN), 7.01 (d, *J* = 8.0 Hz, 4H, Ar-*H*), 6.77 (d, *J* = 8.0 Hz, 4H, Ar-*H*), 6.74 (s, 2H, Ar-*H*), 6.67 (s, 2H, Ar-*H*), 6.65 (s, 2H, Ar-*H*), 6.63(s, 2H, Ar-*H*), 2.32 (s, 6H, Ar-CH₃), 2.22 (s, 6H, Ar-CH₃), 2.21 (s, 6H, Ar-CH₃), 2.16 (s, 12H, Ar-CH₃), 2.07 (s, 6H, Ar-CH₃), 1.14 (s, 18H, C(CH₃)₃); ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): δ 187.1 (NCN), 156.2 (Ar-*C*), 139.5 (Ar-*C*), 137.4 (Ar-*C*), 135.7 (Ar-*C*), 134.2 (Ar-*C*), 133.5 (Ar-*C*), 133.3 (Ar-CH), 133.1 (Ar-*C*), 132.6 (Ar-*C*), 130.1 (Ar-*C*), 130.0 (Ar-CH), 129.7 (Ar-CH), 129.3(Ar-CH), 125.5 (Ar-CH), 81.9 (NCHN), 35.0 (*C*(CH₃)₃), 30.9 (C(CH₃)₃), 20.94 (Ar-CH₃), 20.88 (Ar-CH₃), 19.8 (Ar-CH₃), 19.6 (Ar-CH₃), 19.3 (Ar-CH₃), 19.0(Ar-CH₃); ¹¹B NMR (CDCl₃, 128.3 MHz): δ 29.0 (br); ¹⁹F{¹H} NMR (CDCl₃, 376 MHz): δ -78.1 (CF₃); HRMS (ESI): m/z calcd for C₅₈H₇₁B₂N₄: 845.5865 [(*M*-OTf)]⁺; found : 845.5877.

Figure S2. ¹¹B NMR spectrum of 2a in C_6D_6 .

Figure S4. 13 C (DEPT135) NMR spectrum of **2a** in C₆D₆.

Figure S6. ¹¹B NMR spectrum of **2b** in C_6D_6 .

Figure S8. ¹³C (DEPT135) NMR spectrum of **2b** in C₆D₆.

Figure S10. ¹H NMR spectrum of 2c in C_6D_6 .

Figure S12. $^{13}C{^{1}H}$ NMR spectrum of 2c in C₆D₆.

Figure S14. ¹H NMR spectrum of 3a in CDCl₃.

Figure S16. $^{13}C{^{1}H}$ NMR spectrum of **3a** in CDCl₃.

Figure S18. ¹H NMR spectrum of **3b** in CDCl₃.

Figure S20. $^{13}C{^{1}H}$ NMR spectrum of **3b** in CDCl₃.

Figure S22. ${}^{19}F{}^{1}H{}$ NMR spectrum of **3b** in CDCl₃.

Figure S24. ¹¹B NMR spectrum of 3c in CDCl₃.

Figure S26. ¹³C (DEPT135) NMR spectrum of 3c in CDCl₃.

Figure S28. ¹¹B NMR spectrum of 4a in CDCl₃.

Figure S30. ¹³C (DEPT135) NMR spectrum of 4a in CDCl₃.

Figure S32. ¹¹B NMR spectrum of 4b in C₆D₆.

Figure S34. ¹³C (DEPT135) NMR spectrum of 4b in C₆D₆.

Figure S36. ¹H NMR spectrum of 4c in C_6D_6 .

Figure S38. $^{13}C{^{1}H}$ NMR spectrum of 4c in C_6D_6 .

Figure S40. ¹H NMR spectrum of 5a in CDCl₃.

Figure S42. ¹³C{¹H} NMR spectrum of 5a in CDCl₃.

Figure S44. ¹⁹F{¹H} NMR spectrum of **5a** in CDCl₃.

Figure S46. ¹¹B NMR spectrum of 5b in CDCl₃.

Figure S48. ¹³C (DEPT135) NMR spectrum of 5b in CDCl₃.

Figure S50. ¹H NMR spectrum of 5c in CDCl₃.

Figure S52. $^{13}C{^{1}H}$ NMR spectrum of 5c in CDCl₃.

Figure S54. $^{19}F{}^{1}H$ NMR spectrum of 5c in CDCl₃.

Figure S55. HRMS spectrum of 1.

Figure S56. HRMS spectrum of 2a.

Figure S58. HRMS spectrum of 2c.

Figure S65. HRMS spectrum of 4a^{•+}.

Figure S67. HRMS spectrum of 5a.

Figure S68. HRMS spectrum of 5b.

Figure S69. HRMS spectrum of 5c.

2. Crystal structural parameters and solid structures

Intensity data for compounds **2a**, **3a**, **4a**, **4b**, **[4a^{•+}]•[B(C₆F₅)₄], [4b^{•+}]•[B(C₆F₅)₄]**, and **5a** were collected using a Bruker APEX II diffractometer. The structure was solved by direct phase determination (SHELX-2013) and refined for all data by full-matrix least squares methods on *F2*.^[S5] All non-hydrogen atoms were subjected to anisotropic refinement. The hydrogen atoms were generated geometrically and allowed to ride in their respective parent atoms; they were assigned appropriate isotropic thermal parameters and included in the structure factor calculations. CCDC: 1548460-1548466 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallography Data Center via www.ccdc.cam.ac.uk/data request/cif.

Compounds	2a	3a∙(CHCl₃)₂	4a	$[4a^{*+}] \bullet [B(C_6F_5)_4] \bullet toluene$
Formula	$C_{44}H_{49}BN_4$	$C_{52}H_{56}B_2Br_2Cl_6N_4$	$C_{50}H_{54}B_2N_4$	$C_{81}H_{62}B_3F_{20}N_4$
Fw	644.68	1131.14	732.59	1503.77
Crystal syst	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	C 1 c 1	P-1	C 1 2/c 1	P 1 21/n 1
Size, mm ³	0.240 x 0.390	0.100 x 0.280	0.100 x 0.120	0.200 x 0.300
	x 0.400	x 0.400	x 0.220	x 0.360
Т, К	103(2)	103(2)	103(2)	143(2)
<i>a,</i> Å	21.931(3)	9.2160(12)	15.662(3)	17.0654(2)
<i>b,</i> Å	12.2382(17)	10.4837(15)	17.724(3)	18.7504(2)
<i>c,</i> Å	14.940(2)	14.3635(19)	16.037(3)	22.9274(3)
α, deg	90	81.176(4)	90	90
β, deg	108.564(4)	78.995(4)	109.914(5)	97.0523(5)
γ, deg	90	73.107(4)	90	90
V, Å ³	3801.2(9)	1296.4(3)	4185.6(12)	7280.88(15)
Z	4	1	4	4
$d_{calcd}, g \bullet cm^{-1}$	1.127	1.449	1.163	1.372
μ , mm ⁻¹	0.065	1.912	0.067	0.994
Refl collected	30037	27435	17039	74879
T _{min} /T _{max}	0.9740/0.9840	0.5150/0.8320	0.9850/0.9930	0.8260/0.7160
N _{measd}	11929	6956	3677	12735
[R _{int}]	0.0571	0.0963	0.1729	0.0555
R[I>2sigma(I)]	0.0601	0.0500	0.0782	0.0532
Rw[I>2sigma(I)]	0.1148	0.0908	0.1357	0.1588
GOF	1.009	0.999	1.006	1.085
Largest diff.				
Peak/hole, e∙Å ⁻³	0.277/-0.302	0.913/-0.722	0.323/-0.268	0.439/-0.423

Table S1. Summary of Data Collection and Structure Refinement.

Compounds	4b	[4b ^{•+}]•[B(C ₆ F ₅) ₄] ⁻ •toluene	5a•(CH ₂ Cl ₂) ₂
Formula	$C_{53}H_{59}B_2N_4Cl_4F_3SO_3$	$C_{81}H_{62}B_3F_{20}N_4$	$C_{53}H_{59}B_2N_4Cl_4F_3SO_3\\$
Fw	1052.52	1503.77	1052.52
Crystal syst	Monoclinic	Monoclinic	Monoclinic
Space group	C 1 c 1	P 1 21/n 1	C 1 c 1
Size, mm ³	0.390 x 0.400	0.200 x 0.300	0.390 x 0.400
	x 0.420	x 0.360	x 0.420
Т, К	153(2)	143(2)	153(2)
<i>a,</i> Å	21.6523(7)	17.0654(2)	21.6523(7)
<i>b,</i> Å	12.0310(4)	18.7504(2)	12.0310(4)
<i>c,</i> Å	22.3972(7)	22.9274(3)	22.3972(7)
α, deg	90	90	90
β, deg	117.8819(13)	97.0523(5)	117.8819(13)
γ, deg	90	90	90
V, Å ³	5157.1(3)	7280.88(15)	5157.1(3)
Z	4	4	4
$d_{calcd}, g \bullet cm^{-1}$	1.356	1.372	1.356
μ , mm ⁻¹	0.328	0.994	0.328
Refl collected	62211	74879	62211
T _{min} /T _{max}	0.8830/0.8740	0.8260/0.7160	0.8830/0.8740
N _{measd}	14845	12735	14845
[R _{int}]	0.0627	0.0555	0.0627
R[I>2sigma(I)]	0.0628	0.0532	0.0628
Rw[I>2sigma(I)]	0.1553	0.1588	0.1553
GOF	1.019	1.085	1.019
Largest diff.			
Peak/hole, e∙Å⁻³	0.813/-0.631	0.439/-0.423	0.813/-0.631

Figure S70. Solid structures of **2a** (hydrogen atoms are omitted for clarity). Thermal ellipsoids are set at the 50% probability. Selected bond lengths (Å) and angles (°): B1–N1 1.433(4), B1–N2 1.449(4), B1–C1 1.558(4), N1–C35 1.398(3), N2–C34 1.411(3), N3–C34 1.267(3), N4–C35 1.270(3), C34–C35 1.516(4), N1–B1–N2 107.2(2), N1–B1–C1 127.3(3), N2–B1–C1 125.4(2).

Figure S71. Solid structures of **3a** (hydrogen atoms are omitted for clarity). Thermal ellipsoids are set at the 50% probability. Selected bond lengths (Å) and angles (°): B1–N1 1.581(4), B1–N2 1.585(4), B1–C19 1.597(4), B1–Br1 2.109(3), N1–C26 1.327(4), N2–C26' 1.320(3), C26–C26' 1.466(5), N1–B1–N2 99.8(2), N1–B1–C19 120.5(3), N2–B1–C19 119.2(3), N1–B1–Br1 105.35(19), N2–B1–Br1 106.11(19), C19–B1–Br1 104.4(2).

Figure S72. Solid structures of **4b** (hydrogen atoms are omitted for clarity). Thermal ellipsoids are set at the 50% probability. Selected bond lengths (Å) and angles (°): B1–N1 1.446(3), B1–N2 1.446(3), B1–C6 1.558(3), N1–C16 1.398(2), N2–C17 1.395(2), C16–C17 1.332(5), N1–B1–N2 106.9(2), N1–B1–C6 126.6(2), N2–B1–C6 126.5(2).

Figure S73. Solid structures of **4b**^{•+} (hydrogen atoms are omitted for clarity). Thermal ellipsoids are set at the 50% probability. y. Selected bond lengths (Å) and angles (°): B1–N1 1.458(6), B1–N2 1.473(6), B1–C1 1.539(6), B2–N3 1.473(6), B2–N4 1.468(5), B2–C44 1.537(6), N1–C15 1.362(5), N2–C16 1.361(5), N3–C16 1.360(5), N4–C15 1.371(5), C15–C16 1.395(5), N1–B1–N2 106.5(3), N1–B1–C1 128.1(4), N2–B1–C1 125.4(4), N3–B2–N4 106.0(3), N3–B2–C44 126.4(4), N4–B2–C44 127.5(4).

3. UV-vis absorption and photoluminescence spectroscopies

Figure S74. The normalized absorption (red line) and fluorescence (cyan line) spectra of 4a in CH_2Cl_2 .

Figure S75. The normalized absorption (green line) and fluorescence (cyan line) spectra of 4b in CH_2Cl_2 .

Figure S76. The normalized absorption (blue line) and fluorescence (cyan line) spectra of 4c in CH_2Cl_2 .

Figure S77 The absorption spectrum of $[4a^{*+}] \bullet [B(C_6F_5)_4]^-$ (a). Pictures of CH_2Cl_2 solutions of $[4a^{*+}] \bullet [B(C_6F_5)_4]^- [1 \times 10^{-4} \text{ M (b) } 1 \times 10^{-3} \text{ M (c)}, 1 \times 10^{-2} \text{ M (d)}.$ Crystals of $[4a^{*+}] \bullet [B(C_6F_5)_4]^-$ (e).

Figure S78. a) The absorption spectrum of $[4b^{*+}] \cdot [B(C_6F_5)_4]^{-1}$ in CH_2CI_2 .

4. Cyclic voltammograms

Figure S79. Cyclic voltammogram of **4a** in $CH_2Cl_2/0.1$ M [nBu₄N][PF₆] at room temperature. Scan rate: 100 mVs⁻¹.

Figure S80. Cyclic voltammogram of **4b** in $CH_2Cl_2/0.1 \text{ M} [nBu_4N][PF_6]$ at room temperature. Scan rate: 100 mVs⁻¹.

Figure S81. Cyclic voltammogram of **4c** in $CH_2Cl_2/0.1$ M [nBu₄N][PF₆] at room temperature. Scan rate: 100 mVs⁻¹.

5. EPR spectra

Figure S82. Experimental (top, black) EPR spectrum of $[4b^{\bullet+}] \bullet [B(C_6F_5)_4]^{-}$ in fluorobenzene at 298 K; simulated (bottom, red) EPR spectrum obtained using g = 2.0051, a(¹¹B) = 1.77 G, a(¹⁰B) = 1.02 G, a(¹⁴N) = 0.78 G, a (¹H) = 1.29 G.

6. Theoretical calculations

Gaussian 09 was used for all density functional theory (DFT) calculations including geometry optimization, frequency calculations, Natural bond orbital (NBO) analysis, nucleus-independent chemical-shift (NICS) calculations.^[S6] Optimization, frequency calculations, NBO analysis were performed at the M062X/6-31G(d,p) level of theory. NICS calculations were performed at the M062X/6-311+G(d,p) level of theory. The UV-vis absorption spectrum was calculated for **4a** and **4a**^{•+} using time-dependent DFT (TD-DFT) method at (U)M062x/6-31G(d, p) level of theory.

Figure S83. The plot of the SOMO of 4a^{•+}.

Figure S84. The plot of the HOMO-14 of 4a.

Table S2: Calculated NICS(0) and NICS(1) values for **4'** and other related compounds at the M062X/6-311+G(d,p) level of theory.

Figure S85. Calculated UV-Vis spectrum of 4a⁺⁺ by TDDFT.

Molecular	Energy (ev)	Wavelength (nm)	Oscillator strength	Contributions
			(†)	
4a	3.8330	323.5	0.6560	HOMO→LUMO (69.4%)
4a**	2.9033	427.05	0.0246	194(β)→196(β) (97.8%)
	3.3717	367.73	0.1187	196(α)→197(α) (-24.0%)
				188(β)→196(β) (87.0%)
				184(β)→197(β) (15.7%)
	3.6597	338.78	0.0435	196(α)→197(α) (53.5%)
				188(β)→196(β) (35.3%)
				185(α)→198(α) (-15.8%)
				184(α)→197(α) (-11.5%)
	3.7976	326.48	0.6236	196(α)→197(α) (72.5%)
				196(α)→211(α) (14.9%)

Table S3: TD-DFT vertical one-electron excitations calculated for 4a and 4a**.

Figure S86. The Wiberg bond index values of **4a** (a) and 1,3-dimesityl-1,3,2-diazaborole (c) calculated at at the M062X/6-31G(d,p) level. The plots of the HOMO of **4a** (b) and 1,3-dimesityl-1,3,2-diazaborole (d) (H atoms are omitted for clarity).

 Table S4: Optimized structures of 4a and
 4a⁺⁺ (atom, x-, y-, z- positions in Å).

Zero-point correction =	0.932520 (Hartree/Particle)
Thermal correction to Energy =	0.987400
Thermal correction to Enthalpy =	0.988344
Thermal correction to Gibbs Free Energy =	0.840378
Sum of electronic and zero-point Energies =	-2204.986008
Sum of electronic and thermal Energies =	-2204.986008
Sum of electronic and thermal Enthalpies =	-2204.930184
Sum of electronic and thermal Free Energies =	-2205.078150

В	0.037281	-2.164439	-0.230534
С	0.033009	-3.717924	-0.37713
С	-1.039755	-4.374898	-1.00396
н	-1.866789	-3.791464	-1.401068
С	-1.066969	-5.759933	-1.128717
Н	-1.90715	-6.24244	-1.618702
С	-0.016462	-6.526257	-0.629479
н	-0.035741	-7.607502	-0.726086
С	1.059252	-5.897773	-0.008037
Н	1.881956	-6.488403	0.383478
С	1.082001	-4.511423	0.115848
Н	1.929922	-4.039173	0.605343
С	-2.52863	-1.610593	-0.104506
С	-3.069661	-2.23954	1.026287
С	-2.188355	-2.756063	2.13309
Н	-1.73206	-3.710443	1.846815
Н	-2.767138	-2.913463	3.046281
Н	-1.369977	-2.064586	2.351042
С	-4.454937	-2.387313	1.097554
Н	-4.886802	-2.855162	1.980084
С	-5.29841	-1.931336	0.085277
С	-6.795207	-2.008986	0.239472
Н	-7.098233	-2.926118	0.751361
Н	-7.297831	-1.975137	-0.730489
Н	-7.163216	-1.163904	0.83299
С	-4.723176	-1.371572	-1.053792
Н	-5.363081	-1.035525	-1.867448
С	-3.343978	-1.217066	-1.175502
С	-2.744227	-0.686458	-2.451105
Н	-3.469518	-0.07748	-2.996203
Н	-2.440293	-1.518276	-3.097692
Н	-1.853698	-0.082375	-2.267573
С	-0.650539	-0.000031	0.000571
С	0.694771	0.000222	0.000902
С	2.56348	-1.565951	0.185368
С	2.910073	-1.597445	1.544331
С	1.830123	-1.543276	2.593951
Н	1.192359	-0.659549	2.474645
Н	2.261631	-1.528269	3.597559
Н	1.177969	-2.422123	2.513865
С	4.255466	-1.711503	1.885848
Н	4.535894	-1.717334	2.93739
С	5.24769	-1.812485	0.909723

С	6.704701	-1.846416	1.291563
Н	7.107951	-0.829027	1.349634
Н	7.297129	-2.394896	0.555022
Н	6.8515	-2.31477	2.268019
С	4.859853	-1.86184	-0.427638
Н	5.618073	-1.985302	-1.198437
С	3.524234	-1.745715	-0.814354
С	3.133529	-1.816947	-2.265607
Н	3.000498	-0.815149	-2.684833
Н	2.194521	-2.360607	-2.393557
Н	3.911785	-2.320231	-2.843793
Ν	-1.133093	-1.306953	-0.144444
Ν	1.199181	-1.291703	-0.146644
В	0.036372	2.164898	0.229713
С	0.031352	3.718481	0.375208
С	-1.041639	4.375503	1.001588
Н	-1.868357	3.79205	1.399324
С	-1.069493	5.760638	1.125087
Н	-1.909845	6.243186	1.61474
С	-0.019417	6.527012	0.625018
Н	-0.039218	7.608337	0.720625
С	1.056529	5.898478	0.004031
Н	1.878898	6.489142	-0.388136
С	1.079914	4.512026	-0.118585
Н	1.927995	4.039714	-0.607751
С	-2.52924	1.609971	0.104212
С	-3.070979	2.238513	-1.026089
С	-2.190762	2.755467	-2.133556
Н	-1.737398	3.71177	-1.849004
Н	-2.769653	2.909419	-3.047281
Н	-1.370271	2.066001	-2.349855
С	-4.456673	2.385729	-1.096681
Н	-4.889064	2.853281	-1.979064
С	-5.299224	1.929717	-0.084089
С	-6.796326	2.004301	-0.236093
Н	-7.098064	2.891642	-0.798417
Н	-7.294982	2.028079	0.736292
Н	-7.170041	1.127675	-0.778135
С	-4.723001	1.37051	1.055126
Н	-5.362413	1.034959	1.869427
С	-3.344031	1.216364	1.176016
С	-2.743201	0.686607	2.451477
н	-3.467861	0.077522	2.997295

Н	-2.439224	1.518854	3.097485
Н	-1.852494	0.082868	2.267684
С	2.562967	1.566875	-0.184505
С	2.909804	1.598275	-1.543418
С	1.830005	1.544037	-2.593202
Н	1.191425	0.661003	-2.473112
Н	2.261682	1.527629	-3.596716
Н	1.178659	2.42358	-2.514146
С	4.255239	1.712335	-1.884718
Н	4.535855	1.718098	-2.936209
С	5.247296	1.813374	-0.908412
С	6.704372	1.847341	-1.289996

н	7.107642	0.829959	-1.348044
Н	7.296658	2.395794	-0.553321
Н	6.851337	2.315748	-2.266402
С	4.859237	1.86273	0.428873
Н	5.61733	1.986198	1.199799
С	3.523545	1.746613	0.815376
С	3.132729	1.817715	2.266608
Н	3.002016	0.815808	2.686313
Н	2.192526	2.359316	2.394375
н	3.909909	2.322994	2.844504
Ν	-1.133606	1.306881	0.14374
Ν	1.198624	1.292524	0.147175

Zero-point correction = Thermal correction to Energy = Thermal correction to Enthalpy = Thermal correction to Gibbs Free Energy = Sum of electronic and zero-point Energies = Sum of electronic and thermal Energies = Sum of electronic and thermal Enthalpies = Sum of electronic and thermal Free Energies =

В	0.019325	-2.160702	-0.00485
В	-0.019351	2.160733	-0.004635
С	0.033163	-3.699654	-0.008957
С	-1.045179	-4.432622	0.518532
Н	-1.902197	-3.911707	0.937261
С	-1.030759	-5.822366	0.518882
н	-1.867464	-6.372495	0.936481
С	0.058697	-6.506785	-0.01606
Н	0.068635	-7.591965	-0.018749
С	1.13526	-5.799924	-0.547839
н	1.981559	-6.332597	-0.968695
С	1.124437	-4.410188	-0.540576
Н	1.971231	-3.871626	-0.957757

0.932874 (Hartree/Particle) 0.986078 0.987022 0.843998 -2204.796429 -2204.743226 -2204.742281 -2204.885305

С	-2.566312	-1.610934	-0.082234
С	-3.079802	-2.092447	-1.29117
С	-2.190791	-2.450818	-2.454238
Н	-1.785559	-3.460161	-2.324176
Н	-1.338651	-1.772643	-2.555668
Н	-2.753923	-2.43101	-3.389376
С	-4.461203	-2.269125	-1.380581
Н	-4.881247	-2.629379	-2.316733
С	-5.312117	-1.98821	-0.312554
С	-6.805803	-2.099926	-0.463731
Н	-7.280339	-2.390723	0.476236
Н	-7.076968	-2.83161	-1.227682
Н	-7.228906	-1.134669	-0.763573

С	-4.748584	-1.576168	0.896358
Н	-5.394619	-1.386607	1.750648
С	-3.376323	-1.394315	1.040233
С	-2.784395	-1.033336	2.376991
H	-2.383404	-1.92722	2.86924
Н	-3.54393	-0.600092	3.030734
н	-1.965369	-0.316125	2.29347
С	-0.705917	-0.006342	-0.001915
С	0.705908	0.006371	-0.001959
С	2.594111	-1.569652	0.081454
С	3.104555	-2.05567	1.292019
С	2.211583	-2.43226	2.446661
Н	1.342745	-1.774155	2.538802
Н	2.764767	-2.397824	3.387313
Н	1.83076	-3.450795	2.31423
С	4.485193	-2.222394	1.390005
Н	4.901379	-2.587308	2.326194
С	5.342595	-1.929574	0.328776
С	6.834747	-2.048132	0.492947
Н	7.100647	-2.915212	1.101947
Н	7.236219	-1.160228	0.99333
Н	7.335088	-2.140908	-0.47335
С	4.785066	-1.508229	-0.877873
Н	5.434953	-1.304554	-1.725984
С	3.410977	-1.335002	-1.031024
С	2.836945	-0.961694	-2.372748
Н	1.945193	-0.337653	-2.28935
Н	2.553257	-1.86277	-2.928436
Н	3.573108	-0.415564	-2.966764
С	-2.594153	1.5696	0.081633
С	-3.41098	1.335036	-1.030872
С	-2.836982	0.961746	-2.372618
Н	-3.573002	0.415236	-2.966458
Н	-1.944958	0.338085	-2.289247
Η	-2.553758	1.86286	-2.928486
С	-4.785091	1.508345	-0.877761
Н	-5.434951	1.304727	-1.7259
С	-5.342639	1.929637	0.328868
С	-6.83476	2.048546	0.493099
Н	-7.100507	2.917238	1.099879
Н	-7.236083	1.162003	0.996
Н	-7.335392	2.138795	-0.473287
С	-4.485253	2.222282	1.390193

Н	-4.901466	2.58712	2.326402
С	-3.104643	2.055522	1.292239
С	-2.211642	2.431939	2.446912
Н	-1.343292	1.773251	2.539478
Н	-2.765043	2.398264	3.387457
Н	-1.830074	3.450153	2.314157
С	-0.033173	3.699686	-0.008804
С	-1.124426	4.410195	-0.540509
Н	-1.971274	3.871613	-0.957551
С	-1.135156	5.799929	-0.548033
Н	-1.981443	6.332576	-0.968949
С	-0.058523	6.506824	-0.016444
Н	-0.068385	7.592005	-0.019358
С	1.030905	5.822434	0.518592
Н	1.867668	6.372586	0.936046
С	1.045231	4.432689	0.51851
Н	1.90223	3.91181	0.937318
С	2.566314	1.610933	-0.082093
С	3.376229	1.394238	1.040412
С	2.784132	1.033267	2.377096
Н	1.965739	0.315324	2.293549
Н	2.382196	1.926988	2.868864
Н	3.543798	0.600901	3.031259
С	4.748524	1.575997	0.896629
Н	5.394496	1.386382	1.750949
С	5.312152	1.988032	-0.312232
С	6.805839	2.099678	-0.463466
Н	7.280854	2.386615	0.477442
Н	7.07705	2.834213	-1.224676
Н	7.228419	1.135432	-0.767282
С	4.461312	2.269057	-1.380307
Н	4.88143	2.629349	-2.316413
С	3.079903	2.092486	-1.29098
С	2.190931	2.451083	-2.454006
Н	1.338817	1.772898	-2.555627
Н	2.754102	2.431519	-3.389124
Н	1.785639	3.460375	-2.323717
Ν	-1.165701	-1.282291	-0.000261
Ν	1.188869	-1.260988	-0.006163
Ν	-1.188889	1.261006	-0.005889
Ν	1.165683	1.282332	-0.000208

Atom No		Natural	Natural Population				
Atom	NO	Charge	Core	Valence	Rydberg	Total	
В	1	0.9455	1.99892	2.03836	0.01723	4.0545	
С	2	-0.38892	1.99892	4.37442	0.01558	6.38892	
С	3	-0.21039	1.99913	4.19825	0.01302	6.21039	
н	4	0.24516	0	0.7533	0.00154	0.75484	
С	5	-0.24614	1.99912	4.23318	0.01385	6.24614	
н	6	0.24426	0	0.75448	0.00125	0.75574	
С	7	-0.2408	1.99912	4.22828	0.01339	6.2408	
н	8	0.24293	0	0.75585	0.00122	0.75707	
С	9	-0.24565	1.99912	4.23265	0.01388	6.24565	
н	10	0.24404	0	0.75471	0.00125	0.75596	
С	11	-0.21197	1.99912	4.20008	0.01277	6.21197	
н	12	0.24558	0	0.75278	0.00164	0.75442	
С	13	0.14963	1.99883	3.83396	0.01759	5.85037	
С	14	-0.02084	1.99898	4.00739	0.01447	6.02084	
С	15	-0.70968	1.99941	4.70289	0.00737	6.70968	
Н	16	0.26567	0	0.73295	0.00138	0.73433	
Н	17	0.24471	0	0.75418	0.00111	0.75529	
Н	18	0.24615	0	0.75263	0.00123	0.75385	
С	19	-0.24127	1.99898	4.23038	0.0119	6.24127	
Н	20	0.23829	0	0.76024	0.00147	0.76171	
С	21	-0.02353	1.99905	4.01025	0.01423	6.02353	
С	22	-0.70792	1.99942	4.70146	0.00704	6.70792	
Н	23	0.24822	0	0.75059	0.00118	0.75178	
Н	24	0.24428	0	0.75456	0.00116	0.75572	
Н	25	0.24872	0	0.74991	0.00137	0.75128	
С	26	-0.23527	1.99898	4.22388	0.01241	6.23527	
н	27	0.23868	0	0.75984	0.00148	0.76132	
С	28	-0.01681	1.99898	4.00342	0.01441	6.01681	
С	29	-0.70446	1.99941	4.69738	0.00767	6.70446	
н	30	0.24746	0	0.75133	0.00121	0.75254	
н	31	0.25538	0	0.74339	0.00123	0.74462	
н	32	0.24708	0	0.75149	0.00144	0.75292	
С	33	0.29658	1.99859	3.68616	0.01866	5.70342	
С	34	0.30764	1.99863	3.67435	0.01937	5.69236	
С	35	0.1509	1.99882	3.83219	0.01809	5.8491	
С	36	-0.02944	1.99898	4.01696	0.0135	6.02944	
С	37	-0.71556	1.99942	4.70842	0.00773	6.71556	
н	38	0.25482	0	0.74375	0.00143	0.74518	

Table S5. The NPA charges of 4a calculated at M062X/6-31G(d,p) level of theory

Н	39	0.24723	0	0.75174	0.00103	0.75277
Н	40	0.25608	0	0.74259	0.00134	0.74392
С	41	-0.24355	1.99898	4.23248	0.01209	6.24355
Н	42	0.23909	0	0.75944	0.00147	0.76091
С	43	-0.02227	1.99906	4.00904	0.01417	6.02227
С	44	-0.708	1.99942	4.70159	0.00698	6.708
Н	45	0.25074	0	0.7479	0.00136	0.74926
Н	46	0.24565	0	0.75318	0.00116	0.75435
Н	47	0.2462	0	0.75263	0.00117	0.7538
С	48	-0.23489	1.99899	4.22405	0.01185	6.23489
Н	49	0.23789	0	0.76064	0.00147	0.76211
С	50	-0.00839	1.99897	3.99509	0.01434	6.00839
С	51	-0.70393	1.99941	4.69726	0.00726	6.70393
Н	52	0.24807	0	0.75001	0.00192	0.75193
Н	53	0.25964	0	0.73914	0.00123	0.74036
Н	54	0.24522	0	0.75369	0.00109	0.75478
Ν	55	-0.6764	1.99919	5.66549	0.01172	7.6764
Ν	56	-0.67926	1.9992	5.66805	0.01201	7.67926
В	57	0.94546	1.99892	2.0384	0.01723	4.05454
С	58	-0.38885	1.99892	4.37436	0.01558	6.38885
С	59	-0.2104	1.99913	4.19825	0.01302	6.2104
Н	60	0.24516	0	0.7533	0.00154	0.75484
С	61	-0.24615	1.99912	4.23318	0.01385	6.24615
Н	62	0.24426	0	0.75448	0.00125	0.75574
С	63	-0.24081	1.99912	4.22829	0.01339	6.24081
Н	64	0.24293	0	0.75585	0.00122	0.75707
С	65	-0.24566	1.99912	4.23266	0.01388	6.24566
Н	66	0.24403	0	0.75471	0.00125	0.75597
С	67	-0.21196	1.99912	4.20007	0.01277	6.21196
Н	68	0.24554	0	0.75281	0.00164	0.75446
С	69	0.1496	1.99883	3.83398	0.01759	5.8504
С	70	-0.02089	1.99898	4.00744	0.01447	6.02089
С	71	-0.70971	1.99941	4.70292	0.00738	6.70971
Н	72	0.26567	0	0.73295	0.00138	0.73433
Н	73	0.2447	0	0.75419	0.00111	0.7553
Н	74	0.24617	0	0.7526	0.00123	0.75383
С	75	-0.24139	1.99898	4.2305	0.0119	6.24139
Н	76	0.2383	0	0.76023	0.00147	0.7617
С	77	-0.02347	1.99905	4.01018	0.01423	6.02347
С	78	-0.70766	1.99942	4.7012	0.00704	6.70766
Н	79	0.24759	0	0.75123	0.00117	0.75241
Н	80	0.24483	0	0.75401	0.00117	0.75517
н	81	0.2486	0	0.75001	0.00138	0.7514

С	82	-0.23514	1.99898	4.22375	0.01241	6.23514
н	83	0.23859	0	0.75992	0.00149	0.76141
С	84	-0.01687	1.99898	4.00348	0.01441	6.01687
С	85	-0.70446	1.99941	4.69739	0.00767	6.70446
н	86	0.24744	0	0.75134	0.00121	0.75256
н	87	0.25538	0	0.74339	0.00123	0.74462
н	88	0.24706	0	0.75151	0.00144	0.75294
С	89	0.1509	1.99882	3.83219	0.01809	5.8491
С	90	-0.02945	1.99898	4.01696	0.0135	6.02945
С	91	-0.71557	1.99942	4.70843	0.00773	6.71557
н	92	0.25481	0	0.74376	0.00143	0.74519
Н	93	0.24724	0	0.75173	0.00103	0.75276
н	94	0.2561	0	0.74256	0.00134	0.7439
С	95	-0.24353	1.99898	4.23246	0.01209	6.24353
н	96	0.2391	0	0.75944	0.00147	0.7609
С	97	-0.02225	1.99906	4.00902	0.01417	6.02225
С	98	-0.708	1.99942	4.70159	0.00698	6.708
Н	99	0.25074	0	0.7479	0.00136	0.74926
н	100	0.24565	0	0.75318	0.00116	0.75435
н	101	0.2462	0	0.75262	0.00117	0.7538
С	102	-0.23488	1.99899	4.22404	0.01185	6.23488
н	103	0.23789	0	0.76065	0.00147	0.76211
С	104	-0.00839	1.99897	3.99508	0.01434	6.00839
С	105	-0.70396	1.99941	4.69729	0.00726	6.70396
н	106	0.24807	0	0.75001	0.00192	0.75193
н	107	0.25963	0	0.73914	0.00123	0.74037
н	108	0.24525	0	0.75366	0.00109	0.75475
Ν	109	-0.67636	1.99919	5.66545	0.01171	7.67636
<u> </u>	110	-0.67927	1.9992	5.66805	0.01201	7.67927
* To	otal *	0	111.94908	279.26812	0.78280	392.00000

 Table S6. The NPA charges of 4a** calculated at (U)M062X/6-31G(d,p) level of theory.

Atom	No	Natural	Natural Population				
Atom	INO	Charge	Core	Valence	Rydberg	Total	
В	1	1.06023	1.99895	1.9229	0.01792	3.93977	
В	2	1.06022	1.99895	1.9229	0.01792	3.93978	
С	3	-0.45293	1.99884	4.43912	0.01496	6.45293	
С	4	-0.19302	1.99913	4.18071	0.01318	6.19302	
н	5	0.24943	0	0.74901	0.00156	0.75057	
С	6	-0.24128	1.99912	4.22803	0.01413	6.24128	

Н	7	0.25864	0	0.74019	0.00117	0.74136
С	8	-0.20985	1.99913	4.19723	0.01349	6.20985
Н	9	0.25883	0	0.74002	0.00114	0.74117
С	10	-0.24131	1.99912	4.22806	0.01412	6.24131
Н	11	0.25858	0	0.74025	0.00117	0.74142
С	12	-0.19277	1.99913	4.18046	0.01319	6.19277
Н	13	0.24963	0	0.74882	0.00156	0.75037
С	14	0.11796	1.99879	3.86541	0.01784	5.88204
С	15	-0.01982	1.99898	4.00647	0.01437	6.01982
С	16	-0.71555	1.99941	4.70839	0.00775	6.71555
Н	17	0.27238	0	0.72634	0.00128	0.72762
Н	18	0.23779	0	0.76104	0.00117	0.76221
Н	19	0.26086	0	0.73811	0.00103	0.73914
С	20	-0.2353	1.99898	4.22419	0.01213	6.2353
Н	21	0.25077	0	0.74784	0.00139	0.74923
С	22	-0.00438	1.99906	3.99115	0.01416	6.00438
С	23	-0.71454	1.99942	4.70767	0.00745	6.71454
Н	24	0.25555	0	0.74335	0.00109	0.74445
Н	25	0.25626	0	0.74267	0.00107	0.74374
Н	26	0.25633	0	0.74243	0.00124	0.74367
С	27	-0.22951	1.99898	4.21809	0.01244	6.22951
Н	28	0.24984	0	0.74876	0.0014	0.75016
С	29	-0.01839	1.99898	4.00506	0.01436	6.01839
С	30	-0.70611	1.99941	4.69889	0.00782	6.70611
Н	31	0.26223	0	0.73655	0.00121	0.73777
Н	32	0.26123	0	0.73767	0.0011	0.73877
Н	33	0.23276	0	0.76569	0.00154	0.76724
С	34	0.45632	1.99887	3.52502	0.01979	5.54368
С	35	0.45633	1.99887	3.52501	0.01979	5.54367
С	36	0.11769	1.99879	3.8657	0.01782	5.88231
С	37	-0.0203	1.99898	4.00709	0.01424	6.0203
С	38	-0.71571	1.99941	4.70855	0.00775	6.71571
Н	39	0.23721	0	0.76163	0.00116	0.76279
Н	40	0.26128	0	0.73768	0.00103	0.73872
Н	41	0.27252	0	0.7262	0.00128	0.72748
С	42	-0.23353	1.99898	4.2224	0.01214	6.23353
Н	43	0.25071	0	0.7479	0.00139	0.74929
С	44	-0.00503	1.99906	3.99182	0.01415	6.00503
С	45	-0.71542	1.99942	4.70857	0.00743	6.71542
Н	46	0.25892	0	0.73999	0.00109	0.74108
Н	47	0.25676	0	0.74204	0.00119	0.74324
Н	48	0.25305	0	0.74588	0.00107	0.74695
С	49	-0.23029	1.99898	4.21887	0.01244	6.23029

н	50	0.24989	0	0.74871	0.0014	0.75011
С	51	-0.01775	1.99898	4.00442	0.01435	6.01775
С	52	-0.70686	1.99941	4.69959	0.00786	6.70686
н	53	0.23241	0	0.76613	0.00146	0.76759
н	54	0.26421	0	0.73461	0.00118	0.73579
н	55	0.26098	0	0.73786	0.00116	0.73902
С	56	0.11768	1.99879	3.8657	0.01782	5.88232
С	57	-0.01774	1.99898	4.00441	0.01435	6.01774
С	58	-0.70687	1.99941	4.69959	0.00786	6.70687
н	59	0.26098	0	0.73786	0.00116	0.73902
н	60	0.23241	0	0.76613	0.00146	0.76759
н	61	0.26422	0	0.7346	0.00118	0.73578
С	62	-0.2303	1.99898	4.21888	0.01244	6.2303
Н	63	0.2499	0	0.7487	0.0014	0.7501
С	64	-0.00504	1.99906	3.99183	0.01415	6.00504
С	65	-0.71544	1.99942	4.70859	0.00743	6.71544
н	66	0.25896	0	0.73995	0.00109	0.74104
н	67	0.25677	0	0.74204	0.00119	0.74323
н	68	0.25302	0	0.74591	0.00107	0.74698
С	69	-0.23352	1.99898	4.2224	0.01214	6.23352
Н	70	0.25071	0	0.7479	0.00139	0.74929
С	71	-0.02031	1.99898	4.00709	0.01424	6.02031
С	72	-0.7157	1.99941	4.70854	0.00775	6.7157
Н	73	0.23721	0	0.76162	0.00116	0.76279
Н	74	0.26128	0	0.73769	0.00103	0.73872
Н	75	0.27251	0	0.72621	0.00128	0.72749
С	76	-0.45293	1.99884	4.43912	0.01496	6.45293
С	77	-0.19277	1.99913	4.18046	0.01319	6.19277
Н	78	0.24963	0	0.74881	0.00156	0.75037
С	79	-0.2413	1.99912	4.22806	0.01412	6.2413
Н	80	0.25858	0	0.74025	0.00117	0.74142
С	81	-0.20985	1.99913	4.19723	0.01349	6.20985
Н	82	0.25883	0	0.74002	0.00114	0.74117
С	83	-0.24128	1.99912	4.22803	0.01413	6.24128
Н	84	0.25864	0	0.74019	0.00117	0.74136
С	85	-0.19303	1.99913	4.18073	0.01318	6.19303
Н	86	0.24943	0	0.74901	0.00156	0.75057
С	87	0.11797	1.99879	3.8654	0.01784	5.88203
С	88	-0.01839	1.99898	4.00505	0.01436	6.01839
С	89	-0.7061	1.99941	4.69888	0.00782	6.7061
Н	90	0.23277	0	0.76568	0.00154	0.76723
Н	91	0.26221	0	0.73657	0.00121	0.73779
н	92	0.26123	0	0.73767	0.0011	0.73877

С	93	-0.22953	1.99898	4.21811	0.01244	6.22953
Н	94	0.24984	0	0.74876	0.0014	0.75016
С	95	-0.00438	1.99906	3.99116	0.01416	6.00438
С	96	-0.71455	1.99942	4.70768	0.00745	6.71455
Н	97	0.2555	0	0.74341	0.00109	0.7445
Н	98	0.25631	0	0.74262	0.00107	0.74369
Н	99	0.25634	0	0.74242	0.00124	0.74366
С	100	-0.23529	1.99898	4.22418	0.01213	6.23529
Н	101	0.25078	0	0.74784	0.00139	0.74922
С	102	-0.01982	1.99898	4.00647	0.01437	6.01982
С	103	-0.71555	1.99941	4.70838	0.00775	6.71555
Н	104	0.2378	0	0.76103	0.00117	0.7622
Н	105	0.26086	0	0.73811	0.00103	0.73914
Н	106	0.27238	0	0.72634	0.00128	0.72762
Ν	107	-0.65087	1.99917	5.63853	0.01317	7.65087
Ν	108	-0.65074	1.99917	5.63843	0.01313	7.65074
Ν	109	-0.65073	1.99917	5.63843	0.01313	7.65073
Ν	110	-0.65087	1.99917	5.63853	0.01317	7.65087
* Tc	otal *	0	111.94933	278.25637	0.79431	391.00000

 Table S7: Optimized structures of 4' and related compounds (atom, x-, y-, z- positions in Å).

Ν	0.35085800	1.70484900	-0.00000900
В	1.73576900	1.31084800	0.00002100
Ν	1.73576900	-0.12919800	-0.00001000
С	0.40565700	-0.53735100	-0.00006700
С	-0.40565700	0.53735100	-0.00006700
Ν	-0.35085800	-1.70484900	-0.00000900
В	-1.73576900	-1.31084800	0.00002100

Ν	-1.73576900	0.12919800	-0.00001000
н	-0.04373000	2.62868900	0.00018900
н	2.67852100	2.02326300	0.00005200
н	2.51646800	-0.76133900	0.00018700
н	0.04373000	-2.62868900	0.00018900
Н	-2.67852100	-2.02326300	0.00005200
Н	-2.51646800	0.76133900	0.00018700

-			
Ν	1.32578800	1.08653600	0.00000000
С	2.11742500	-0.04326800	0.00000000
С	1.33213500	-1.17370300	0.00000000
С	-0.00764400	-0.69420400	0.00000000
С	0.00764400	0.69420400	0.00000000
Ν	-1.32578800	-1.08653600	0.00000000
С	-2.11742500	0.04326800	0.00000000

С	-1.33213500	1.17370300	0.00000000
Н	1.66926000	2.03031100	0.00000100
Н	3.19182200	0.04167900	0.00000000
Н	1.69377400	-2.18843700	-0.00000100
Н	-1.66926000	-2.03031100	0.00000000
Н	-3.19182200	-0.04167900	0.00000000
Н	-1.69377400	2.18843700	0.00000000

С	-1.36543500	1.16368500	0.00000500
С	-2.17991000	0.00000000	0.00000500
С	-1.36543500	-1.16368500	-0.00000300
С	0.00000000	-0.72092000	-0.00000300
С	0.00000000	0.72092000	-0.00000300
С	1.36543500	-1.16368500	-0.00000400
С	2.17991000	0.00000000	0.00001400

С	1.36543500	1.16368600	-0.00001200
Н	-1.72946900	2.18823100	-0.00000900
Н	-3.26978700	0.00000000	0.00000600
Н	-1.72946800	-2.18823100	0.00000900
Н	1.72946900	-2.18823100	-0.00002200
Н	3.26978700	0.00000000	0.00002600
н	1.72946800	2.18823100	-0.00000200

Ν	-1.13458000	-0.18693100	0.39155600
Ν	1.13461400	-0.18646000	0.39185300
В	0.00005200	0.15103500	-0.41405900
н	0.00014200	0.60484400	-1.51049800
С	-0.67551700	-0.69441900	1.61178800
н	-1.36208600	-0.99511600	2.38961200
С	0.67545900	-0.69418500	1.61194000
н	1.36195700	-0.99463400	2.38992200

С	-2.52154800	-0.05150700	0.09668600
С	-3.29149800	-1.19606600	-0.14573100
С	-4.64889500	-1.03683700	-0.42190200
н	-5.25326200	-1.92093700	-0.61385900
С	-5.24529900	0.22206000	-0.46904600
С	-4.45008000	1.34145100	-0.22608700
Н	-4.90117100	2.33119000	-0.25271900
С	-3.09034900	1.22811900	0.05856000

С	-2.24913500	2.44870200	0.32744100
Н	-1.65486600	2.32303900	1.23752600
Н	-2.87882600	3.33404100	0.43818200
Н	-1.54459500	2.63208600	-0.49015100
С	-2.65891100	-2.56302000	-0.12624400
Н	-2.37401900	-2.86301200	0.88696400
Н	-1.74443300	-2.57443800	-0.72667400
Н	-3.34827400	-3.31211400	-0.52084700
С	2.52158700	-0.05135200	0.09684700
С	3.29120000	-1.19600100	-0.14607200
С	4.64862500	-1.03700000	-0.42237400
Н	5.25273100	-1.92117500	-0.61477100
С	5.24530600	0.22174500	-0.46915100
С	4.45036800	1.34128400	-0.22575400
Н	4.90168300	2.33092900	-0.25224400
С	3.09067100	1.22816600	0.05902200

С	2.65827000	-2.56280000	-0.12699000
Н	2.37316600	-2.86294800	0.88612200
Н	3.34747400	-3.31199600	-0.52166900
Н	1.74386100	-2.57381100	-0.72753600
С	2.24968300	2.44876600	0.32850600
Н	2.87934600	3.33436500	0.43725400
Н	1.65726700	2.32370200	1.23988200
Н	1.54340800	2.63120000	-0.48779800
С	6.70673600	0.37287400	-0.80605000
Н	6.84639700	0.51835700	-1.88245000
Н	7.14267500	1.23721700	-0.29880100
Н	7.27415100	-0.51503700	-0.51715600
С	-6.70670300	0.37342600	-0.80598400
Н	-6.84631000	0.51805800	-1.88250100
Н	-7.27441300	-0.51404400	-0.51631400
Н	-7.14231500	1.23836500	-0.29947400

7. References

- S1 Kaufmann, D. Chem. Ber. 1987, **120**, 853.
- S2 Shuji Yasuike, S.;Nakata, K.; Qin, W.; Matsumura, M.; Kakusawa, N.; Kurita, J. *J. Organometal. Chem.* 2015, **788**, 9.
- S3 Qin, Y.; Kiburu, I.; Shah, S.; Jäkle, F. Org. Lett. 2006, 8, 5227.
- S4 Lindauer, D.; Beckert, R.; Doring, M.; Fehling, P.; Görls, H. J. Prakt. Chem. 1995, 337, 143.
- S5 Bruker AXS SHELXTL, Madison, WI; *SHELX-97G*. M. Sheldrick, *Acta Crystallogr. A*, 2008, **64**, 112–122, *SHELX-2013*, http://shelx.uni-ac.gwdg.de/SHELX/index.php.
- Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.