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Experimental details
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Figure S1. Evolution of the sublattice polarization as a function of the degree of polar distortion 
λ changing from the centrosymmetric reference (hypothetical paraelectric, λ = 0) to the fully 
polarized (ferroelectric, λ = 1) configuration. (a) Sheet polarization of the squaric acid (SQA) 
crystal and (b) ribbon polarization of the [H-55dmbp][Hca] crystal. In the λ = 1 structures of both 
crystals, the hydrogen positions were computationally relaxed. The polarization components were 
calculated using the Cartesian coordinate system; the b′-direction is taken as being perpendicular 
to the crystallographic a and c* axes for the triclinic crystal of [H55dmbp][Hca].
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Figure S2. Comparison of the properties between the antiferroelectric [H-55dmbp][Hca] and 
ferroelectric acid/base supramolecular crystals of anilic acids as a function of the hydrogen-
bonded O∙∙∙N distance. (a) Induced polarization 2|P1| in the sublattice model (blue open squares) 
in comparison with the theoretical spontaneous polarization of the ferroelectric compounds (red 
filled squares). (b) Phase-transition temperature. Orange filled and open diamonds represent the 
ferroelectric and antiferroelectric transition (Curie) temperature Tc, respectively. The green circle 
indicates the ferroelectric-to-antiferroelectric phase-transition point of α-[H-66dmbp][Hca]. H2ia 
= iodanilic acid, dppz = 2,3-di(2-pyridinyl)pyrazine, 66dmbp = 6,6’-dimethyl-2,2’-bipyridine.
For a systematic comparison, the plot includes our previous data reported in ref. 1.



4

-200

-100

0

100

200

-200 -100 0 100 200

C
ur

re
nt

 d
en

si
ty

 (A
 m

-2
)

Electric field (kV cm-1)

(b) E||[100]tetra

E||[110]tetra

-10

0

10

Po
la

riz
at

io
n 

 (
C

 c
m

-2
)

(a)
E||[100]tetra

E||[110]tetra

Figure S3. Antiferroelectric switching with E||[100]tetra and E||[110]tetra configurations in SQA 
crystal at T = 324 K and f = 100 Hz. (a) P–E hysteresis loops. (b) Corresponding J–E curves.

Figure S4. Squaric acid. (a) Photograph of crystals. (b) Schematic of the crystal cutting for the 
electric measurements.
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