Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Supplementary Materials

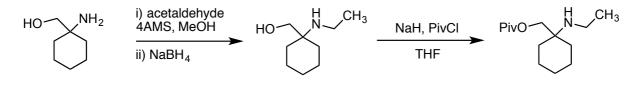
Table of Contents

General Experimental	S2
Synthesis of Starting Amines	S3
Synthesis of β–Lactam Products	S40
Functionalization of β–Lactam Products	S60
NMR Spectra of Starting Amines	S62
NMR Spectra of of β–Lactams	S93
NMR Spectra of of Functionalized Products	S127

General Experimental

All reactions were run under an inert atmosphere (N_2 or Ar where specified) unless otherwise stated, with oven-dried glassware, using standard techniques. Anhydrous solvents were obtained from solvent stills (Et₂O was distilled from sodium triphenylmethane ketyl; THF from LiAlH₄; MeCN, CH₂Cl₂, hexane and toluene from CaH₂). All other commercial reagents were used as supplied unless otherwise stated. 1,4-benzoquinone was recrystallised from hexane prior to use and stored in the dark. Silver salts were obtained from Alfa Aesar and used as supplied. Palladium salts were obtained from Alfa Aesar, and used as supplied. Silver pivalate was prepared according to a literature procedure.¹

Analytical thin-layer chromatography (TLC) was performed on Merck Kiesegel 60 F254 0.20 mm precoated, glass backed silica gel plates. Visualisation of the developed chromatogram was performed by UV absorbance ($\lambda_{max} = 254$ nm), and/or by aqueous KMnO₄. Flash column chromatography was performed using silica gel (Merck Geduran Si 60 [40-63 µm]) with the indicated solvent system. P.E. refers to 40-60 petroleum ether.


Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DPX 400 or DPX 500 spectrometer with cryoprobe. Chemical shifts (δ) for ¹H NMR spectra are recorded in ppm from Me₄Si with the solvent resonance as the internal standard (CDCl₃ = 7.26 ppm, D₂O = 4.79 ppm, (CD₃)₂SO = 2.50 ppm, CD₃OD = 3.31 ppm). Data is reported as follows: chemical shift [integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qt = quintet, sxt = sextet, spt = septet, m = multiplet, br = broad), coupling constant and molecular assignment]. ¹³C NMR spectra are reported in ppm from Me₄Si with the solvent resonance as the internal standard (CDCl₃ = 77.16 ppm, (CD₃)₂SO = 39.52, CD₃OD = 49.00).

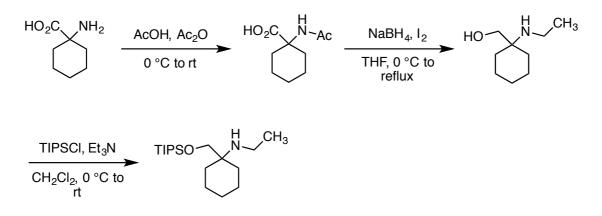
Infrared spectra (FT-IR) were recorded using a Perkin-Elmer Paragon 1000 Fourier transform Spectrometer equipped with ATR and analysed as thin films, with absorption maxima (ν_{max}) being quoted in wavenumbers (cm⁻¹) and characteristic peaks being defined (s = strong, br = broad). High Resolution Mass spectrometry (HRMS) was carried out by the ESPRC Mass Spectrometry Service at the University of Swansea using an LTQ Orbitrap XL spectrometer with positive ion nanoelectrospray. Melting points (m.p.) were recorded using a Gallenkamp melting point apparatus and are reported uncorrected.

¹Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 8525.

Procedures for the Synthesis of Starting Materials

(1-(ethylamino)cyclohexyl)methyl pivalate (1a)

Step 1


To a solution of (1-aminocyclohexyl)methanol² (1.08 g, 8.4 mmol) in MeOH (10 mL) was added powdered 4Å molecular sieves (~1 g) and acetaldehyde (0.71 mL, 12.5 mmol) and the mixture stirred at ambient temperature for 16 h. The mixture was cooled to 0 °C, sodium borohydride (0.473 g, 12.5 mmol) was added portion-wise and mixture allowed to warm to room temperature and stirred for an additional 2 h. The reaction mixture was filtered and the MeOH removed *in vacuo*. 10% Aqueous NaOH solution was added and the mixture extracted with EtOAc (3 x 10 mL). The combined organic phases were dried (MgSO₄) and concentrated *in vacuo* to afford the crude product as a white solid (1.12 g, 85%) which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 3.29 (2 H, s), 2.50 (2 H, q, *J* = 7.1 Hz), 1.58 – 1.29 (10 H, m), 1.09 (3 H, t, *J* = 7.1 Hz).

Step 2

(1-(ethylamino)cyclohexyl)methanol (1.12 g, 7.12 mmol) was dissolved in THF (15 mL) and cooled to 0 °C. Sodium hydride (60% in mineral oil, 0.29 g, 7.12 mmol) was added portion-wise and the reaction mixture stirred for 30 minutes at 0 °C. Trimethylacetyl chloride (1.05 mL, 8.55 mmol) was added drop-wise and the reaction mixture allowed to stir for 2 h at room temperature. The solution was concentrated *in vacuo* and water (15 mL) was added. The aqueous layer was extracted with CH₂Cl₂ (2 x 20 mL), the combined organic layers washed with saturated aqueous NaHCO₃ (15 mL) then water (15 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (alumina, Gradient elution: P.E. to 10% EtOAc in P.E.) to afford the title compound as a colourless oil (0.972 g, 57%). IR v_{max} /cm⁻¹ (film): 2929, 2857, 1728 (C=O), 1481, 1453, 1395, 1366, 1282, 115; ¹H NMR (500 MHz, CDCl₃) δ : 3.95 (2 H, s), 2.50 (2 H, q, *J* = 7.1 Hz), 1.64 – 1.54 (2 H, m), 1.54 – 1.44 (3 H, m), 1.43 – 1.32 (5 H, m), 1.21 (9 H, s), 1.06 (3 H, t, *J* = 7.1 Hz); ¹³C NMR (126 MHz, CDCl₃) δ : 178.5, 67.5, 53.9, 39.1, 35.4, 33.0, 27.4, 26.2, 21.5, 16.3; m/z HRMS found [M + H]⁺ 242.2108, C₁₄H₂₈NO₂ requires 242.2115.

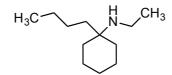
² Meinzer, A.; Breckel, A.; Thaher, B. A.; Manicone, N.; Otto, H-H. Helv. Chim. Acta, 2004, 90.

N-ethyl-1-(((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (1b)

Step 1

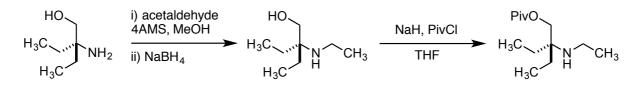
Acetic anhydride (2.0 mL) was added dropwise to a solution of 1-aminocyclohexane-1-carboxylic acid (1.36 g, 9.5 mmol) in acetic acid (5 mL) at room temperature. After the addition was complete the reaction mixture was stirred for an additional 16 hours and quenched by the addition of ice water (10 mL). The solvent was removed *in vacuo* to give the crude *N*-acetyl amino acid which was used directly in the next step without further purification (1.55 g, 88%). ¹H NMR (400 MHz, (CD₃)₂SO) δ : 7.78 (1 H, s), 1.82 (3 H, s), 1.67 – 1.55 (4 H, m), 1.54 – 1.37 (6 H, m).

Step 2


To a vigorously stirred suspension of *N*-acetyl amino acid (1.55 g, 8.4 mmol) and sodium borohydride (0.89 g, 23.4 mmol) in anhydrous THF (25 mL) was added a solution of iodine (2.55 g, 10.0 mmol) in anhydrous THF (12 mL) dropwise at 0 °C. Once gas evolution had ceased the mixture was heated at reflux for 18 hours and subsequently cooled to room temperature. Methanol was added cautiously until the solution became clear and the solvent was subsequently removed *in vacuo* to afford a white paste. The paste was dissolved in the minimum amount of 20% aqueous KOH (ca. 7 mL) and stirred at room temperature for 1 hour. The mixture was diluted with 20% aqueous KOH (20 mL) and extracted with CH_2Cl_2 (3 x 30 mL). The organics were combined, dried over MgSO₄ and removed *in vacuo* to give the crude amino alcohol as a colorless oil (0.98 g, 75%) which was used in the next step without further purification ¹H NMR (400 MHz, CDCl₃) δ : 3.31 (2 H, s), 2.49 (2 H, q, *J* = 7.1 Hz), 1.57 – 1.35 (10 H, m), 1.11 (3 H, t, *J* = 7.1 Hz).

Step 3

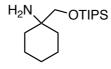
Triisopropylsilyl chloride (0.74 mL, 3.5 mmol) was added dropwise to a solution of amino alcohol (0.50 g, 3.2 mmol) and triethylamine (0.88 mL, 6.3 mmol) in anhydrous CH_2Cl_2 (32 mL) at 0 °C. The resulting solution was allowed to warm to room temperature over 16 hours and was quenched with


H₂O (30 mL). The organics were separated and washed with additional H₂O (2 x 30 mL) and brine (30 mL), dried over Na₂SO₄ and removed *in vacuo*. The crude oil was purified by flash column chromatography (EtOAc) to provide the desired amine as pale yellow oil (0.32g, 32%). IR v_{max}/cm^{-1} (film): 2929, 2865, 1463, 1383, 1368, 1306, 1248, 1111, 1093, 1069, 1058. ¹H NMR (400 MHz, CDCl₃) δ : 3.51 (2 H, s), 2.48 (2 H, q, *J* = 7.1 Hz), 1.60 – 1.53 (2 H, m), 1.46 – 1.30 (9 H, m), 1.07 – 1.02 (24 H, m). ¹³C NMR (101 MHz, CDCl₃) δ : 66.0, 55.2, 35.2, 32.6, 26.4, 22.0, 18.2, 16.2, 12.1. m/z HRMS found [M + H]⁺ 314.2871, C₁₈H₄₀ONSi requires 314.2874.

1-butyl-*N*-ethylcyclohexan-1-amine (1c)

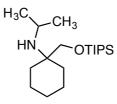
Cyclohexanone (2.07 mL, 20 mmol) and ethylamine (2M solution in THF, 10 mL, 20 mmol) were dissolved in THF (10 mL) over powdered molecular sieves (2 g) and the solution stirred for 18 h. The mixture was filtered and the solvent removed *in vacuo* to afford a light yellow liquid which was dissolved in hexane (4 mL) and added *via* syringe pump over 15 minutes to a stirred solution of *n*-butyl lithium (2.5 M solution in hexane, 16 mL, 40 mmol) in anhydrous hexane (10 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 2 h after which the solution was poured slowly over crushed ice with swirling. The resulting aqueous solution was extracted with Et₂O (2 x 15 mL), dried over MgSO₄ and concentrated *in vacuo*. Purification by Kugelrohr distillation followed by flash column chromatography (gradient elution: 10% EtOAc in P.E. to 20% EtOAc in P.E.) afforded the desired compound as a light yellow oil (0.459 g, 2.5 mmol, 13%). IR v_{max}/cm^{-1} (film): 2921, 2857, 1453, 1380, 1267, 1161, 1116, 1078; ¹H NMR (400 MHz, CDCl₃) δ : 2.46 (2 H, q, *J* = 7.1 Hz), 1.52 – 1.15 (16 H, m), 1.08 (3 H, t, *J* = 7.1 Hz), 0.90 (3 H, t, *J* = 7.2 Hz); ¹³C NMR (101 MHz, CDCl₃) δ : 53.5, 36.4, 35.8, 34.9, 26.4, 25.0, 23.6, 22.1, 16.3, 14.4; m/z HRMS found [M + H]⁺ 184.2055, C₁₂H₂₆N requires 184.2060.

2-ethyl-2-(ethylamino)butyl pivalate (1d)

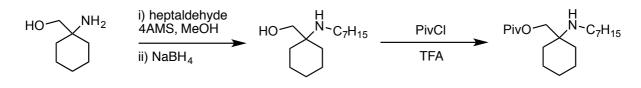

Step 1

To a solution of 2-amino-2-ethylbutan-1-ol³ (0.586 g, 5.00 mmol) in MeOH (10 mL) was added powdered 4Å molecular sieves (~1 g) and acetaldehyde (0.42 mL, 7.5 mmol) and the mixture stirred at ambient temperature for 16 hours. The mixture was cooled to 0 °C, sodium borohydride (0.28 g, 7.5 mmol) was added portion-wise and mixture allowed to warm to ambient temperature and stirred for an additional 2 h. The reaction mixture was filtered and the MeOH removed *in vacuo*. 10% Aqueous NaOH solution was added and the mixture extracted with EtOAc (3 x 10 mL). The combined organic phases were dried (MgSO₄) and concentrated *in vacuo* to afford the crude product as a light yellow oil (0.796 g, 97%) which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 3.23 (2 H, s), 2.46 (2 H, q, *J* = 7.1 Hz), 1.35 (2 H, dq, *J* = 15.1, 7.6 Hz), 1.30 – 1.20 (2 H, m), 1.07 (3 H, t, *J* = 7.1 Hz), 0.79 (6 H, t, *J* = 7.6 Hz).

Step 2


2-ethyl-2-(ethylamino)butan-1-ol (0.706 g, 4.86 mmol) was dissolved in THF (10 mL) and cooled to 0 °C. Sodium hydride (0.194 g, 4.86 mmol) was added portion-wise and the reaction mixture stirred for 30 minutes at 0 °C. Trimethylacetyl chloride (0.719 mL, 5.83 mmol) was added drop-wise and the reaction mixture allowed to stir for 2 hours at room temperature. The solution was concentrated *in vacuo* and water (10 mL) was added. The aqueous layer was extracted with CH₂Cl₂ (2 x 10 mL), the combined organic layers washed with saturated aqueous NaHCO₃ (15 mL) then water (15 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (alumina, gradient elution: P.E. to 10% EtOAc in P.E.) to afford the title compound as a colourless oil (0.528 g, 47%). IR v_{max} /cm⁻¹ (film): 2967, 2872, 1730, 1480, 1461, 1396, 1365, 1282, 1149, 1034; ¹H NMR (400 MHz, CDCl₃) δ : 3.90 (2 H, s), 2.49 (2 H, q, *J* = 7.1 Hz), 1.49 – 1.31 (4 H, m), 1.21 (9 H, s), 1.07 (3 H, t, *J* = 7.1 Hz), 0.83 (6 H, t, *J* = 7.5 Hz); ¹³C NMR (101 MHz, CDCl₃) δ : 178.4, 65.8, 57.1, 39.1, 35.5, 27.4, 26.0, 16.2, 7.5; m/z HRMS found [M + H]⁺ 230.2113, C₁₃H₂₈NO₂ requires 230.2115.

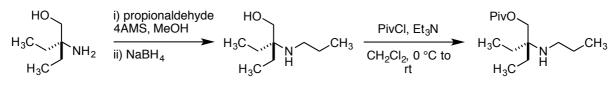
³ Calleja, J.; Pla, D.; Gorman, T. W.; Domingo, V.; Haffemayer, B.; Gaunt, M. J. *Nat. Chem.*, **2015**, 1009.


(1-aminocyclohexyl)methanol (6.46 g, 50.0 mmol) was dissolved in CH₂Cl₂ (100 mL). Triethylamine (13.95 mL, 60.0 mmol) was added followed by slow addition of triisopropylsilyl chloride (12.85 mL, 100.0 mmol). The reaction mixture was stirred at room temperature for 16 hours, quenched with water (100 mL) and extracted with CH₂Cl₂ (2 x 100 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (gradient elution: 100% CH₂Cl₂ to 5% MeOH in CH₂Cl₂) to afford the desired compound as a light yellow oil (5.48 g, 38%). IR v_{max}/cm⁻¹ (film): 2930, 2865, 1463, 1383, 1249, 1094, 1068, 1013; ¹H NMR (400 MHz, CDCl₃) δ : 3.46 (2 H, s), 1.59 – 1.24 (10 H, m), 1.14 – 0.99 (21 H, m); ¹³C NMR (101 MHz, CDCl₃) δ : 72.4, 52.5, 35.3, 26.4, 22.1, 18.2, 12.1; m/z HRMS found [M + H]⁺ 286.2554, C₁₆H₃₅NOSi requires 286.2561.

N-isopropyl-1-(((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (1e)

Acetone (1.65 mL, 22.5 mmol) was dissolved in titanium(IV) isopropoxide (6.66 mL, 22.5 mmol) followed by the addition of 1-(((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (4.28 g, 15.0 mmol) and stirred at ambient temperature overnight before cooling to 0 °C and adding MeOH (30 mL) to the reaction mixture. Sodium borohydride (1.02 g, 27.0 mmol) was added portion-wise and the reaction mixture stirred at 0 °C for 20 minutes then ambient temperature for 1 h. The reaction was quenched by the addition of 10% aqueous NaOH (30 mL) and then diluted with CH₂Cl₂ (30 mL). The mixture was filtered through Celite, eluting with CH₂Cl₂. The organic phase was separated, dried over MgSO₄ and concentrated *in vacuo*. The resulting crude product was purified by flash column chromatography (10% EtOAc in P.E) to afford the title compound as a light yellow oil (0.661 g, 14%). IR v_{max}/cm^{-1} (film): 2928, 2865, 1462, 1378, 1361, 1248, 1171, 1111, 1090, 1062, 1012; ¹H NMR (400 MHz, CDCl₃) δ : 3.54 (2 H, s), 2.92 (1 H, hept, *J* = 6.2 Hz), 1.66 – 1.52 (2 H, m), 1.48 – 1.29 (8 H, m), 1.10 – 1.02 (27 H, m). ¹³C NMR (101 MHz, CDCl₃) δ : 67.0, 56.3, 41.8, 33.3, 26.4, 26.4, 22.3, 18.3, 12.2; m/z HRMS found [M + H]⁺ 328.3024, C₁₉H₄₂NOSi requires 328.3030.

(1-(heptylamino)cyclohexyl)methyl pivalate (1f)

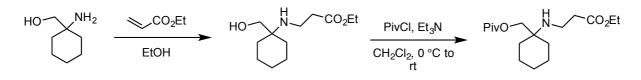

Step 1

To a solution of (1-aminocyclohexyl)methanol² (1.00 g, 7.7 mmol) in MeOH (10 mL) was added powdered 4Å molecular sieves (~1 g) and heptaldehyde (1.61 mL, 11.55 mmol) and the mixture stirred at ambient temperature for 16 h. The mixture was cooled to 0 °C, sodium borohydride (437 mg, 11.55 mmol) was added portion-wise and mixture allowed to warm to ambient temperature and stirred for an additional 2 h. The reaction mixture was filtered and the MeOH removed *in vacuo*. 10% Aqueous NaOH solution was added and the mixture extracted with EtOAc (3 x 10 mL). The combined organic phases were dried (MgSO₄) and concentrated *in vacuo* to afford the crude product as a white waxy solid (1.24 g, 71%) which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 3.31 (2 H, s), 2.46 (2 H, t, *J* = 7.0 Hz), 1.59 – 1.43 (8 H, m), 1.43 – 1.35 (4 H, m), 1.35 – 1.20 (8 H, m), 0.88 (3 H, t, *J* = 6.8 Hz).

Step 2

(1-(heptylamino)cyclohexyl)methanol (1.24 g, 5.45 mmol) was dissolved in trifluoroacetic acid (2.8 mL) and the solution cooled to 0 °C. Trimethylacetyl chloride (1 mL, 8.2 mmol) was added and the solution allowed to warm to room temperature overnight. The volatiles were removed *in vacuo* and the residue dissolved in CH₂Cl₂. Water (5 mL) and triethylamine (5 mL) were added until the solution was basic and the mixture stirred for 5 minutes. The resulting solution was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic layers washed with water, dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (15% EtOAc in P.E.) afforded the title compound as a light yellow oil (953 mg, 56%). IR v_{max}/cm^{-1} (film): 2929, 2853, 1728, 1477, 1459, 1395, 1362, 1280, 1150, 1031; ¹H NMR (400 MHz, CDCl₃) δ : 3.95 (2 H, s), 2.45 (2 H, t, *J* = 7.0 Hz), 1.65 – 1.54 (2 H, m), 1.54 – 1.44 (3 H, m), 1.44 – 1.34 (7 H, m), 1.33 – 1.23 (8 H, m), 1.21 (9 H, s), 0.87 (3 H, t, *J* = 6.8 Hz); ¹³C NMR (101 MHz, CDCl₃) δ : 178.5, 67.6, 53.8, 41.2, 39.1, 32.9, 32.0, 31.2, 29.4, 27.6, 27.4, 26.2, 22.8, 21.5, 14.2; m/z HRMS found [M + H]⁺ 312.2893, C₁₉H₃₈NO₂ requires 312.2897.

2-ethyl-2-(propylamino)butyl pivalate (1g)

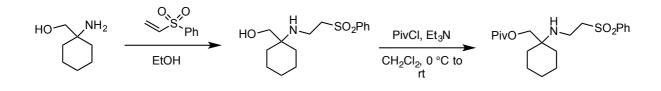

Step 1

To a solution of 2-amino-2-ethylbutan-1-ol (0.50 g, 4.27 mmol) in MeOH (10 mL) was added powdered 4Å molecular sieves (~1 g) and propionaldehyde (0.46 mL, 6.4 mmol) and the mixture stirred at ambient temperature for 16 hours. The mixture was cooled to 0 °C, sodium borohydride (0.24 g, 6.4 mmol) was added portion-wise and the mixture allowed to warm to ambient temperature and stirred for an additional 2 h. The reaction mixture was filtered and the MeOH removed *in vacuo*. 10% aqueous NaOH solution was added and the mixture extracted with EtOAc (3 x 10 mL). The combined organic phases were dried (MgSO₄) and concentrated *in vacuo* to afford the crude product as a colourless oil (0.694 g, quant.) which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 3.24 (2 H, s), 2.39 (2 H, t, *J* = 7.0 Hz), 1.51 – 1.40 (2 H, m), 1.40 – 1.30 (2 H, m), 1.29 – 1.22 (2 H, m), 0.93 (3 H, t, *J* = 7.3 Hz), 0.80 (6 H, t, *J* = 7.5 Hz).

Step 2

2-ethyl-2-(propylamino)butan-1-ol (0.694 g, 4.27 mmol) was dissolved in CH₂Cl₂ (10 mL) and cooled to 0 °C. Triethylamine (1.19 mL, 8.54 mmol) was added followed by drop-wise addition of trimethylacetyl chloride (0.63 mL, 5.12 mmol). The reaction mixture was allowed to warm slowly to ambient temperature and stirred for 16 hours after which it was quenched with water (10 mL) and extracted with CH₂Cl₂ (x2). The combined organic phases were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (alumina, gradient elution, P.E. to 5% EtOAc in P.E.) to afford the tile compound as a colourless oil (0.718 g, 69%). IR ν_{max} /cm⁻¹ (film): 2964, 2873, 1730, 1481, 1459, 1397, 1366, 1282, 1152, 1035; ¹H NMR (400 MHz, CDCl₃) δ : 3.89 (2 H, s), 2.40 (2 H, t, *J* = 7.1 Hz), 1.50 – 1.31 (6 H, m), 1.20 (9 H, s), 0.91 (3 H, t, *J* = 7.4 Hz), 0.82 (6 H, t, *J* = 7.5 Hz); ¹³C NMR (101 MHz, CDCl₃) δ : 178.4, 65.8, 56.8, 43.2, 39.1, 27.4, 26.0, 24.0, 12.1, 7.4; m/z HRMS found [M + H]⁺ 244.2269, C₁₄H₃₀NO₂ requires 244.2271.

(1-((3-ethoxy-3-oxopropyl)amino)cyclohexyl)methyl pivalate (1h)

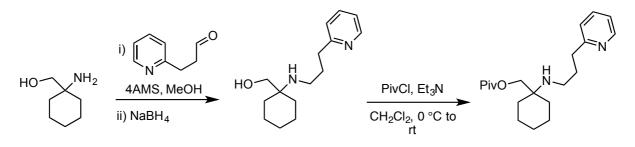

Step 1

(1-aminocyclohexyl)methanol² (0.646 g, 5.0 mmol) was dissolved in EtOH (5 mL) and the solution cooled to 0 °C. Ethyl acrylate (0.36 mL, 3.33 mmol) was added drop-wise and the mixture stirred at room temperature for 24 h after which it was concentrated *in vacuo*. Purification of the resulting residue by flash column chromatography (5% MeOH in CH₂Cl₂) afforded the desired compound as a light yellow oil (0.614 g, 80%). IR v_{max} /cm⁻¹ (film): 3429 (br), 2933, 2853, 1728, 1447, 1374, 1261, 1181, 1165, 1098, 1027; ¹H NMR (400 MHz, CDCl₃) δ : 4.16 (2 H, q, *J* = 7.1 Hz), 3.31 (2 H, s), 2.73 (2 H, t, *J* = 5.8 Hz), 2.48 (2 H, t, *J* = 5.7 Hz), 1.60 – 1.30 (10 H, m), 1.27 (3 H, t, *J* = 7.1 Hz); ¹³C NMR (101 MHz, CDCl₃) δ : 173.3, 65.4, 60.8, 36.0, 35.4, 32.8, 26.2, 21.8, 14.4; m/z HRMS found [M + H]⁺ 230.1750, C₁₂H₂₄NO₃ requires 230.1751.

Step 2

Ethyl 3-((1-(hydroxymethyl)cyclohexyl)amino)propanoate (0.60 g, 2.60 mmol) was dissolved in CH₂Cl₂ (5 mL) and cooled to 0 °C. Triethylamine (0.73 mL, 3.12 mmol) was added followed by dropwise addition of trimethylacetyl chloride (0.38 mL, 5.20 mmol). The reaction mixture was allowed to warm slowly to ambient temperature and stirred for 16 h after which it was quenched with water (5 mL) and extracted with CH₂Cl₂ (2 x 10 mL). The combined organic phases were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (20% EtOAc in P.E.) to afford the desired compound as a light yellow oil (0.673 g, 83%). IR v_{max}/cm⁻¹ (film): 2933, 2857, 1726, 1483, 1459, 1395, 1368, 1282, 1215, 1152, 1102, 1056, 1031; ¹H NMR (400 MHz, CDCl₃) δ : 4.13 (2 H, q, *J* = 7.1 Hz), 3.93 (2 H, s), 2.76 (2 H, t, *J* = 6.4 Hz), 2.44 (2 H, t, *J* = 6.3 Hz), 1.62 – 1.31 (10 H, m), 1.26 (3 H, t, *J* = 7.1 Hz), 1.22 (9 H, s); ¹³C NMR (101 MHz, CDCl₃) δ : 178.5, 173.0, 68.3, 60.5, 54.0, 39.1, 37.0, 36.2, 32.7, 27.4, 26.2, 21.4, 14.4; m/z HRMS found [M + H]⁺ 314.2332, C₁₇H₃₂NO₄ requires 314.2326.

(1-((2-(phenylsulfonyl)ethyl)amino)cyclohexyl)methyl pivalate (1i)


Step 1

(1-aminocyclohexyl)methanol² (1.00 g, 7.74 mmol) was dissolved in EtOH (5 mL) and the solution cooled to 0 °C. Phenyl vinyl sulfone (0.868 g, 5.16 mmol) in EtOH (10 mL) was added drop-wise and the mixture stirred at room temperature for 24 hours after which it was concentrated *in vacuo*. Purification of the resulting residue by flash column chromatography (5% MeOH in CH₂Cl₂) afforded the desired compound as a light yellow solid (1.38 g, 60%). m.p: 60–62 °C; IR v_{max}/cm^{-1} (film): 3111 (br), 2917, 2845, 1479, 1447, 1415, 1312, 1290, 1259, 1221, 1179, 1152, 1088, 1070, 1052, 1036, 1015; ¹H NMR (400 MHz, CDCl₃) δ : 7.94 (2 H, m), 7.71 – 7.63 (1 H, m), 7.58 (2 H, td, *J* = 6.8, 1.5 Hz), 3.28 (2 H, t, *J* = 6.1 Hz), 3.27 (2 H, s), 2.97 – 2.84 (2 H, m), 1.56 – 1.38 (7 H, m), 1.37 – 1.21 (3 H, m); ¹³C NMR (101 MHz, CDCl₃) δ : 139.6, 134.0, 129.6, 128.0, 65.3, 57.3, 55.4, 34.7, 32.6, 26.1, 21.7; m/z HRMS found [M + H]⁺ 298.1469, C₁₅H₂₄NO₃S requires 298.1471.

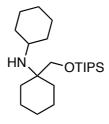
Step 2

(1-((2-(phenylsulfonyl)ethyl)amino)cyclohexyl)methanol (1.20 g, 4.0 mmol) was dissolved in CH₂Cl₂ (10 mL) and cooled to 0 °C. Triethylamine (1.11 mL, 8.0 mmol) was added followed by drop-wise addition of trimethylacetyl chloride (0.59 mL, 4.8 mmol). The reaction mixture was allowed to warm slowly to ambient temperature and stirred for 16 h after which it was quenched with water (10 mL) and extracted with CH₂Cl₂ (2 x 10 mL). The combined organic phases were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (40% EtOAc in P.E.) to afford the title compound as a viscous colourless oil (1.52 g, quant.). IR v_{max} /cm⁻¹ (film): 2933, 2857, 1722, 1479, 1449, 1397, 1362, 1304, 1282, 1142, 1082, 1035; ¹H NMR (400 MHz, CDCl₃) δ : 7.94 – 7.90 (2 H, m), 7.69 – 7.63 (1 H, m), 7.60 – 7.54 (2 H, m), 3.89 (2 H, s), 3.27 (2 H, t, *J* = 6.3 Hz), 2.93 (2 H, t, *J* = 6.3 Hz), 1.62 – 1.25 (10 H, m), 1.20 (9 H, s); ¹³C NMR (101 MHz, CDCl₃) δ : 178.5, 139.7, 133.9, 129.5, 128.1, 68.0, 57.6, 54.3, 39.1, 35.4, 32.5, 27.4, 26.0, 21.3; m/z HRMS found [M + H]⁺ 382.2046, C₂₀H₃₂NO₄S requires 382.2047.

(1-((3-(pyridin-2-yl)propyl)amino)cyclohexyl)methyl pivalate (1j)

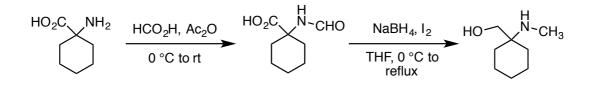
Step 1

To a solution of (1-aminocyclohexyl)methanol² (0.646 g, 5.00 mmol) in MeOH (10 mL) was added powdered 4Å molecular sieves (~1 g) and 3-(pyridin-2-yl)propanal⁴ (0.811 g, 6.00 mmol) and the mixture stirred at ambient temperature for 16 hours. The mixture was cooled to 0 °C, sodium borohydride (0.227 g, 6.00 mmol) was added portion-wise and mixture allowed to warm to ambient temperature and stirred for an additional 3 h. The reaction mixture was filtered and the MeOH removed *in vacuo*. 10% aqueous NaOH solution was added and the mixture extracted with EtOAc (3 x 10 mL). The combined organic phases were dried (MgSO₄) and concentrated *in vacuo* to afford the crude product, which was purified by flash column chromatography (10% MeOH in CH₂Cl₂) to afford the desired compound as a light brown viscous oil (923 mg, 74%); ¹H NMR (400 MHz, CDCl₃) δ : 8.49 (1 H, d, *J* = 4.9 Hz), 7.60 (1 H, td, *J* = 7.7, 1.8 Hz), 7.16 (1 H, d, *J* = 7.8 Hz), 7.11 (1 H, dd, *J* = 7.4, 5.0 Hz), 3.28 (2 H, s), 2.88 (2 H, t, *J* = 7.3 Hz), 2.47 (2 H, t, *J* = 6.5 Hz), 1.89 (2 H, qt, *J* = 6.9 Hz), 1.52 – 1.27 (10 H, m); ¹³C NMR (101 MHz, CDCl₃) δ : 161.8, 149.1, 136.8, 123.1, 121.3, 64.9, 55.0, 39.0, 35.5, 32.8, 30.8, 26.2, 21.8.


Step 2

(1-((3-(pyridin-2-yl)propyl)amino)cyclohexyl)methanol (0.90 g, 3.60 mmol) was dissolved in CH₂Cl₂ (7 mL) and cooled to 0 °C. Triethylamine (1.00 mL, 7.2 mmol) was added followed by drop-wise addition of trimethylacetyl chloride (0.532 mL, 4.32 mmol). The reaction mixture was allowed to warm slowly to ambient temperature and stirred for 16 h after which it was quenched with water (7 mL) and extracted with CH₂Cl₂ (2 x 10 mL). The combined organic phases were washed with brine (10 mL), dried (MgSO₄) and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (5% MeOH in CH₂Cl₂) to afford the title compound as a light yellow oil (0.802 g, 67%). IR v_{max} /cm⁻¹ (film): 2933, 2853, 1728, 1590, 1570, 1477, 1435, 1397, 1364, 1282, 1154, 1102, 1035; ¹H NMR (400 MHz, CDCl₃) δ : 8.50 (1 H, dd, *J* = 4.8, 0.8 Hz), 7.57 (1 H, td, *J* = 7.7, 1.8 Hz), 7.14 (1 H, d, *J* = 7.8 Hz), 7.08 (1 H, dd, *J* = 7.3, 5.6 Hz), 3.91 (2 H, s), 2.86 (2 H, t, *J* =

⁴ Kitbunnadaj, R.; Zuiderveld, O.P.; Christophe, B.; Hulscher, S.; Menge, W. M. P.B.; Gelens, E.; Snip, E.; Bakker, R. A.; Celanire, S.; Gillard, M.; Talaga, P.; Timmerman, H.; Leurs; R. *J. Med Chem.*, **2004**, 2414.

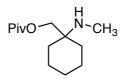

7.8 Hz), 2.53 (2 H, t, J = 6.9 Hz), 1.86 (2 H, qt, J = 7.3 Hz), 1.63 – 1.27 (10 H, m), 1.18 (9 H, s); ¹³C NMR (101 MHz, CDCl₃) δ : 178.5, 162.2, 149.3, 136.4, 122.8, 121.1, 68.0, 53.8, 40.7, 39.1, 36.4, 32.8, 31.3, 27.4, 26.2, 21.4; m/z HRMS found [M + H]⁺ 333.2535, C₂₀H₃₃N₂O₂ requires 333.2527.

N-cyclohexyl-1-(((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (1k)

Cyclohexanone (0.40 mL, 3.85 mmol) was dissolved in titanium(IV) isopropoxide (1.55 mL, 5.25 mmol), 1-(((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (1.00 g, 3.50 mmol) was added and the reaction mixture stirred at room temperature overnight before cooling to 0 °C and adding methanol (15 mL). Sodium borohydride (0.24 g, 6.30 mmol) was added portion-wise and the reaction mixture stirred at 0 °C for 20 minutes then ambient temperature for 1 h. The reaction was quenched by the addition of 10% aqueous NaOH (15 mL) and then diluted with CH₂Cl₂ (15 mL). The mixture was filtered through Celite, eluting with CH₂Cl₂ (30 mL). The organic phase was separated, dried over MgSO₄ and concentrated *in vacuo*. The resulting crude product was purified by flash column chromatography (20% EtOAc in P.E) followed by SCX column, loaded in MeOH, washed with MeOH and eluted with ammonia in MeOH solution (2 M, 50 mL) to afford the title compound as a colourless oil (0.164 g, 13%). IR v_{max}/cm⁻¹ (film): 2930, 2864, 1462, 1383, 1247, 1093, 1068, 1012; ¹H NMR (400 MHz, CDCl₃) δ : 3.53 (2 H, s), 2.46 (1 H, tt, *J* = 10.2, 3.7 Hz), 1.77 (2 H, app d, *J* = 11.7 Hz), 1.68 (2 H, dt, *J* = 12.9, 2.9 Hz), 1.63 – 1.52 (3 H, m), 1.45 – 1.12 (13 H, m), 1.10 – 1.02 (21 H, m). ¹³C NMR (101 MHz, CDCl₃) δ : 67.2, 56.2, 50.1, 37.0, 33.4, 26.4, 26.0, 25.9, 22.3, 18.3, 12.2; m/z HRMS found [M + H]⁺ 368.3336, C₂₂H₄₆NOSi requires 368.3343.

(1-(methylamino)cyclohexyl)methanol

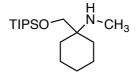
Step 1


To a dry 250 mL 3-neck round-bottomed flask equipped with pressure-equalizing addition funnel, thermometer and nitrogen inlet was added 1-aminocyclohexane-1-carboxylic acid (7.16 g, 50 mmol)

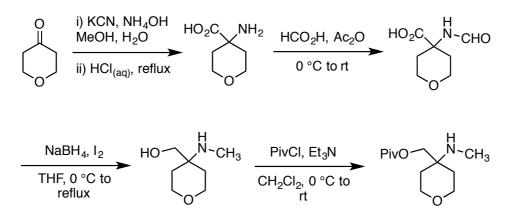
and formic acid (> 95%, 125 mL). Acetic anhydride (47.5 mL) was added dropwise over 30 minutes ensuring the temperature remained below 50 °C. The solution was stirred at room temperature for 90 minutes and was quenched with ice water (130 mL). The solvent was removed *in vacuo* to give the crude *N*-formyl amino acid which was used directly in the next step without further purification (quantitative yield). ¹H NMR (400 MHz, (CD₃)₂SO) δ : 12.02 (1 H, br s), 7.94 (1 H, s), 1.99 – 1.88 (2 H, s), 1.70 – 1.58 (2 H, m), 1.56 – 1.39 (6 H, m).

Step 2

To a dry 250 mL 3-neck round-bottomed flask equipped with pressure-equalizing addition funnel and condenser under nitrogen was added N-formyl amino acid (6.84 g, 40 mmol), sodium borohydride (4.26 g, 112.2 mmol) and anhydrous THF (100 mL). The mixture was cooled to 0 °C and a solution of iodine (11.85 g, 46.6 mmol) in anhydrous THF (40 mL) was added dropwise with vigorous stirring (Caution - vigorous gas evolution can be delayed!). Once gas evolution had ceased the mixture was heated to a vigorous reflux for 18 hours. The mixture was cooled to room temperature and then to 0 °C and quenched cautiously by the dropwise addition of methanol. Once the solution had become clear, the solvent was removed in vacuo and the residue stirred with a mixture of 20% aqueous KOH (50 mL) and CH₂Cl₂ (50 mL) for 36 hours. The mixture was diluted with brine (100 mL), CH₂Cl₂ (50 mL) and the organic layer separated. The aqueous was extracted with additional CH₂Cl₂ (3 x 50 mL), the organics were combined, dried over MgSO₄ and the solvent removed in vacuo to give the crude amino alcohol as a colorless oil (5.29 g, 92%) which was used in the next step without further purification. IR v_{max}/cm⁻¹ (film): 3304 (br), 2927, 2855, 1449, 1361, 1301, 1118, 1064, 1040. ¹H NMR (400 MHz, CDCl₃) δ: 3.29 (2 H, s), 2.23 (3 H, s), 1.51 – 1.32 (10 H, m). ¹³C NMR (101 MHz, CDCl3) δ : 64.7, 54.9, 32.1, 27.2, 26.1, 21.8. m/z HRMS found [M + H]⁺ 144.1381, C₈H₁₈ON requires 144.1383


(1-(methylamino)cyclohexyl)methyl pivalate (1m)

To a solution of (1-(methylamino)cyclohexyl)methanol (0.47 g, 3.3 mmol) in anhydrous CH_2Cl_2 (30 mL) was added triethylamine (0.92 mL, 6.6 mmol) and trimethylacetyl chloride (0.45 mL, 3.6 mmol) dropwise at 0 °C. The reaction mixture was warmed to room temperature over 16 hours and quenched by the addition of saturated aqueous NaHCO₃ (30 mL). The organic layer was separated and washed with additional saturated aqueous NaHCO₃ (2 x 30 mL), brine (30 mL) and dried over MgSO₄. The solvent was removed *in vacuo* and the crude oil purified by flash column chromatography (EtOAc) to


afford the product as a colourless oil (0.33 g, 44%). IR v_{max}/cm^{-1} (film): 2931, 2855, 1728, 1480, 1463, 1397, 1364, 1282, 1150. ¹H NMR (400 MHz, CDCl₃) δ : 3.77 (2 H, s), 2.09 (3 H, s), 1.43 – 1.16 (10 H, m), 1.04 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 177.9, 66.8, 53.5, 38.7, 32.0, 27.6, 27.0, 25.8, 21.1. m/z HRMS found [M + H]⁺ 228.1953, C₁₃H₂₆O₂N requires 228.1958.

N-methyl-1-(((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (1n)

Triisopropylsilyl chloride (7.31 mL, 34.16 mmol) was added dropwise to a solution of (1-(methylamino)cyclohexyl)methanol (5.15 g, 36.0 mmol) and triethylamine (7.52 mL, 53.9 mmol) in anhydrous CH_2Cl_2 (100 mL) at 0 °C. The resulting solution was allowed to warm to room temperature over 16 hours and was quenched with H₂O (100 mL). The organics were separated and washed with additional H₂O (2 x 100 mL) and brine (100 mL), dried over Na₂SO₄ and removed *in vacuo*. The crude oil was purified by flash column chromatography (gradient elution: 1% MeOH in CH₂Cl₂ to 5% MeOH in CH₂Cl₂) to provide the desired amine as pale yellow oil (5.56 g, 52%). IR v_{max}/cm⁻¹ (film): 2929, 2865, 1463, 1383, 1367, 1307, 1254, 1123, 1090, 1057. ¹H NMR (400 MHz, CDCl₃) δ : 3.51 (2 H, s), 2.25 (3 H, s), 1.85 (1 H, br s), 1.61 – 1.52 (2 H, m), 1.50 – 1.43 (3 H, m), 1.39 – 1.31 (5 H, m), 1.09 – 1.04 (21 H, m). ¹³C NMR (101 MHz, CDCl₃) δ : 65.8, 55.3, 32.0, 27.9, 26.4, 21.8, 18.2, 12.1. m/z HRMS found [M + H]⁺ 300.2715, C₁₇H₃₈NOSi requires 300.2717

(4-(methylamino)tetrahydro-2H-pyran-4-yl)methyl pivalate (10)

Step 1

A solution of tetrahydro-4H-pyran-4-one (2.5 mL, 27.1 mmol) in methanol (16 mL) was added to a vigorously stirred solution of potassium cyanide (1.76 g, 27.1 mmol), ammonium hydroxide solution (35%, 8.0 mL) and ammonium chloride (1.60 g, 29.8 mmol) in H₂O (5.5 mL) at room temperature. The reaction mixture was stirred overnight, diluted with CH₂Cl₂ (20 mL) and the organic layer separated. The aqueous phase was extracted with CH₂Cl₂ (2 x 20 mL), the organics were combined, dried over MgSO₄ and removed *in vacuo*. The resulting product was obtained as yellow oil (3.07 g, 90%) and used without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 3.98 (2 H, dt, *J* = 12.4, 4.1 Hz), 3.66 (2 H, ddd, *J* = 12.4, 10.3, 2.5 Hz), 2.02 – 1.95 (2H, m), 1.75 (2 H, ddd, *J* = 13.9, 10.3, 4.1 Hz).

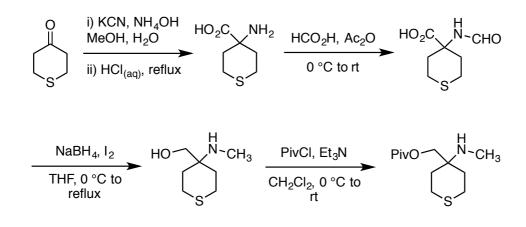
Step 2

The crude product was treated with conc. HCl (80 mL) and water (40 mL) and refluxed for 16 hours. The reaction mixture was subsequently cooled to room temperature and the solvent removed *in vacuo*. The resulting solid was dissolved in the minimum amount of water (80 °C) and was treated with 10% aquous NaOH until pH = 6. The mixture was cooled to 0 °C and the resulting precipitate removed by vacuum filtration to afford the product as a pale brown solid (2.40 g, 69%). (If no precipitate is formed the solvent is removed *in vacuo*, the residue taken up in ethanol and filtered, and the resulting filtrate removed *in vacuo* to afford the product). ¹H NMR (400 MHz, D₂O) δ : 2.89 – 2.76 (4 H m), 2.41 – 2.32 (2 H, m), 2.09 – 2.03 (2 H, m).

Step 3

Acetic anhydride (6 mL) was added dropwise to a solution of crude amino acid (1.05 g, 8.7 mmol) in formic acid (> 95%, 17 mL) at room temperature. After the addition was complete the reaction mixture was stirred for an additional hour and quenched by the addition of ice water (10 mL). The solvent was removed *in vacuo* to give the crude *N*-formyl amino acid which was used directly in the next step without further purification (quantitative yield). ¹H NMR (400 MHz, (CD₃)₂SO) δ : 7.96 (1 H, s), 2.81 – 2.70 (2 H, m), 2.48 – 2.43 (2 H, m), 2.29 – 2.21 (2 H, m), 1.97 – 1.88 (2 H, m).

Step 4


To a vigorously stirred suspension of *N*-formyl amino acid (1.25 g, 7.2 mmol) and sodium borohydride (0.77 g, 20.2 mmol) in anhydrous THF (20 mL) was added a solution of iodine (2.2 g, 8.7 mmol) in anhydrous THF (10 mL) dropwise at 0 °C. Once gas evolution had ceased the mixture was heated at reflux for 18 hours and subsequently cooled to room temperature. Methanol was added cautiously until the solution became clear and the solvent was subsequently removed *in vacuo* to afford a white paste. The paste was dissolved in the minimum amount of 20% aqueous KOH (ca. 5

mL) and stirred at room temperature for 1 hour. The mixture was diluted with 20% aqueous KOH (10 mL) and extracted with CH_2Cl_2 (3 x 30 mL). The organics were combined, dried over MgSO₄ and removed *in vacuo* to give the crude amino alcohol as a colorless oil (0.57 g, 54%) which was used in the next step without further purification ¹H NMR (400 MHz, CDCl₃) δ : 3.38 (2 H, s), 2.77 – 2.68 (2 H, m), 2.59 – 2.50 (2 H, m), 2.29 (3 H, s), 1.95 – 1.81 (2 H, m), 1.77 – 1.67 (2 H, m).

Step 5

To a solution of crude amino alcohol (0.57 g, 3.9 mmol) in anhydrous CH_2Cl_2 (30 mL) was added triethylamine (1.1 mL, 7.9 mmol) and trimethylacetyl chloride (0.53 mL, 4.3 mmol) dropwise at 0 °C. The reaction mixture was warmed to room temperature over 16 hours and quenched by the addition of saturated aqueous NaHCO₃ (20 mL). The organic layer was separated and washed with additional saturated aqueous NaHCO₃ (2 x 20 mL), brine (20 mL) and dried over MgSO₄. The solvent was removed *in vacuo* and the crude oil purified by flash column chromatography (EtOAc) to afford the product as a colourless oil (0.32 g, 36%). IR v_{max}/cm^{-1} (film): 2959, 2928, 1726, 1480, 1460, 1428, 1387, 1365, 1281, 1152, 1102, 1078, 1036. ¹H NMR (400 MHz, CDCl₃) δ : 3.80 (2 H, s), 2.91 (2 H, ddd, *J* = 2.6, 11.5, 13.7 Hz), 2.24 (2 H, dt, *J* = 3.7, 13.6 Hz), 2.15 (3 H, s), 1.76 (2 H, dt, *J* = 3.2, 14.3 Hz), 1.57 (2 H, ddd, *J* = 3.4, 11.4, 13.4 Hz), 1.12 (9 H, s), 0.78 (1 H, br s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.0, 67.4, 52.6, 38.9, 33.2, 27.3, 27.1, 22.8. m/z HRMS found [M + H]⁺ 230.1749, C₁₂H₂₄O₃N requires 230.1751.

(4-(methylamino)tetrahydro-2H-thiopyran-4-yl)methyl pivalate (1p)

Step 1

A solution of tetrahydro-4H-thiopyran-4-one (2.0 g, 17.2 mmol) in methanol (10 mL) was added to a vigorously stirred solution of potassium cyanide (1.12 g, 17.2 mmol), ammonium hydroxide solution (35%, 5.0 mL) and ammonium chloride (1.01 g, 18.9 mmol) in H₂O (3.5 mL) at room temperature. The reaction mixture was stirred overnight, diluted with CH_2Cl_2 (15 mL) and the organic layer

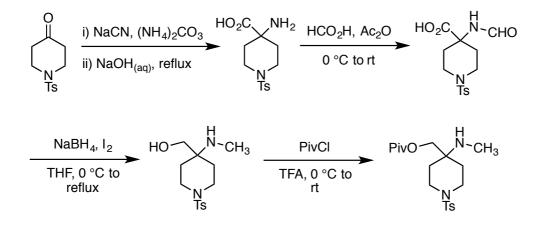
separated. The aqueous was extracted with CH_2Cl_2 (2 x 15 mL), the organics were combined, dried over MgSO₄ and removed *in vacuo*. The resulting product was obtained as brown oil (2.18 g, 89%) and used without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 2.91 – 2.82 (2 H, m), 2.79 – 2.69 (2 H, m), 2.32 – 2.22 (2 H, m), 1.91 – 1.82 (2 H, m).

Step 2

The crude product was treated with conc. HCl (50 mL) and water (25 mL) and refluxed for 16 hours. The reaction mixture was subsequently cooled to room temperature and the solvent removed *in vacuo*. The resulting solid was dissolved in the minimum amount of water (80 °C) and was treated with 10% aquous NaOH until pH = 6. The mixture was cooled to 0 °C and the resulting precipitate removed by vacuum filtration to afford the product as a pale brown solid (2.08 g, 84%). (If no precipitate is formed the solvent is removed *in vacuo*, the residue taken up in ethanol and filtered, and the resulting filtrate removed *in vacuo* to afford the product). ¹H NMR (400 MHz, D₂O) δ : 4.04 – 3.79 (4 H, m), 2.31 – 2.19 (2 H, m), 1.91 – 1.83 (2 H, m).

Step 3

Acetic anhydride (8 mL) was added dropwise to a solution of crude amino acid (1.50 g, 9.3 mmol) in formic acid (> 95%, 18 mL) at room temperature. After the addition was complete the reaction mixture was stirred for 1 hour and quenched by the addition of ice water (10 mL). The solvent was removed *in vacuo* to give the crude *N*-formyl amino acid which was used directly in the next step without further purification (quantitative yield). ¹H NMR (400 MHz, (CD₃)₂SO) δ : 7.98 (1 H, s), 3.74 – 3.60 (2 H, m), 3.58 – 3.50 (2 H, m), 1.91 – 1.83 (4 H, m).


Step 4

To a vigorously stirred suspension of *N*-formyl amino acid (1.70 g, 9.0 mmol) and sodium borohydride (0.95 g, 25.2 mmol) in anhydrous THF (25 mL) was added a solution of iodine (2.74 g, 10.8 mmol) in anhydrous THF (10 mL) dropwise at 0 °C. Once gas evolution had ceased the mixture was heated at reflux for 18 hours and subsequently cooled to room temperature. Methanol was added cautiously until the solution became clear and the solvent was subsequently removed *in vacuo* to afford a white paste. The paste was dissolved in the minimum amount of 20% aqueous KOH (ca. 7 mL) and stirred at room temperature for 1 hour. The mixture was diluted with 20% aqueous KOH (15 mL) and extracted with CH_2Cl_2 (3 x 40 mL). The organics were combined, dried over MgSO₄ and removed *in vacuo* to give the crude amino alcohol as a yellow oil (0.50 g, 39%) which was used in the next step without further purification ¹H NMR (400 MHz, CDCl₃) δ : 3.75 – 3.62 (4 H, m), 3.43 (2 H, s), 2.30 (3 H, s), 1.62 – 1.54 (4 H, m).

Step 5

To a solution of crude amino alcohol (0.49 g, 3.0 mmol) in anhydrous CH_2Cl_2 (30 mL) was added triethylamine (0.9 mL, 6.2 mmol) and trimethylacetyl chloride (0.42 mL, 3.4 mmol) dropwise at 0 °C. The reaction mixture was warmed to room temperature over 16 hours and quenched by the addition of saturated aqueous NaHCO₃ (20 mL). The organic layer was separated and washed with additional saturated aqueous NaHCO₃ (2 x 20 mL), brine (20 mL) and dried over MgSO₄. The solvent was removed *in vacuo* and the crude oil purified by flash column chromatography (EtOAc) to afford the product as a colourless oil (0.25 g, 33%). IR v_{max}/cm^{-1} (film): 2956, 2867, 1727, 1480, 1463, 1397, 1364, 1282, 1238, 1151, 1110, 1091, 1033. ¹H NMR (400 MHz, CDCl₃) δ : 3.90 (2 H, s), 3.73 (2 H, app td, *J* = 2.8, 11.3 Hz), 3.58 (2 H, dt, *J* = 4.3, 11.5 Hz), 2.21 (3 H, s), 1.53 (2 H, ddd, *J* = 4.3, 10.0, 14.3 Hz), 145 – 1.41 (2 H, m), 1.15 (9 H, s), 1.02 (1 H, br s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.2, 66.9, 63.0, 51.9, 39.0, 32.5, 27.8, 27.2. m/z HRMS found [M + H]⁺ 246.1521, C₁₂H₂₄O₂NS requires 246.1522

(4-(methylamino)-1-tosylpiperidin-4-yl)methyl pivalate (1q)

Step 1

1-tosyl-4-piperidone⁵ (4.0 g, 15.8 mmol), sodium cyanide (0.85 g, 17.4 mmol), and ammonium carbonate (3.5 g, 75.8 mmol) were suspended in ethanol/water (1:1, 50 mL) and heated at 60 °C for 16 hours. The solution was cooled to room temperature and the resulting precipitate was collected by vacuum filtration, washed with water (50 mL) and dried under vacuum to afford the desired product as a white solid (5.0 g, 98%) which was used directly in the next step without further purification. ¹H NMR (400 MHz, (CD₃)₂SO) δ : 10.66 (1 H, br s), 8.42 (1 H, s), 7.63 (2 H, d, *J* = 8.0 Hz), 7.46 (2 H, d, *J* = 8.0 Hz), 3.50 – 3.42 (2 H, m), 2.79 – 2.70 (2 H, m), 2.42 (3 H, s), 1.92 – 1.75 (2 H, m), 1.69 – 1.56 (2 H, m).

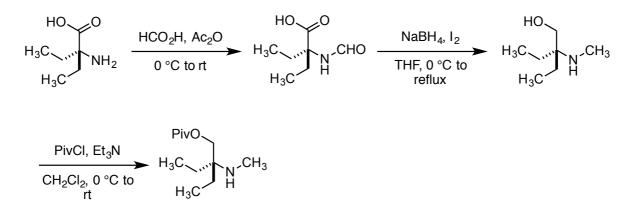
⁵ Pagenkopf, B. L.; Moustafa, M. Org. Lett., 2010, 12, 3168

Step 2

Crude hydantoin (5.0 g, 15.5 mmol) was suspended in aqueous sodium hydroxide (5 M, 25 mL) and heated at 120 °C for 24 hours. The solution was cooled to room temperature and the solid removed by filtration. The mother liquor was acidified to pH = 6 and the resulting solid removed by vacuum filtration to afford the product as a white solid (3.81 g, 85%). ¹H NMR (400 MHz, CD₃OD) δ : 7.70 (2 H, d, *J* = 8.2 Hz), 7.45 (2 H, d, *J* = 8.2 Hz), 3.37 – 3.32 (2 H, m), 3.28 – 3.21 (2 H, m), 2.46 (3 H, s), 2.32 – 2.20 (2 H, m), 1.85 (2 H, m).

Step 3

Acetic anhydride (4 mL) was added dropwise to a solution of crude amino acid (1.40 g, 4.7 mmol) in formic acid (> 95%, 10 mL) at room temperature. After the addition was complete the reaction mixture was stirred for 1 hour and quenched by the addition of ice water (10 mL). The solvent was removed *in vacuo* to give the crude *N*-formyl amino acid which was used directly in the next step without further purification (1.43 g, 93%). ¹H NMR (400 MHz, (CD₃)₂SO) δ : 7.85 (1 H, s), 7.63 (2 H, d, *J* = 8.2 Hz), 7.45 (4 H, d, *J* = 8.2 Hz), (4 H, obscured), 2.41 (3 H, s), 2.05 – 1.97 (2 H, m), 1.94 – 1.86 (2 H, m).


Step 4

To a vigorously stirred suspension of *N*-formyl amino acid (1.35 g, 4.1 mmol) and sodium borohydride (0.44 g, 11.6 mmol) in anhydrous THF (11 mL) was added a solution of iodine (1.26 g, 4.8 mmol) in anhydrous THF (5 mL) dropwise at 0 °C. Once gas evolution had ceased the mixture was heated at reflux for 18 hours and subsequently cooled to room temperature. Methanol was added cautiously until the solution became clear and the solvent was subsequently removed *in vacuo* to afford a white paste. The paste was dissolved in the minimum amount of 20% aqueous KOH (ca. 5 mL) and stirred at room temperature for 1 hour. The mixture was diluted with 20% aqueous KOH (10 mL) and extracted with CH_2Cl_2 (3 x 20 mL). The organics were combined, dried over MgSO₄ and removed *in vacuo* to give the crude amino alcohol as a white solid (0.52 g, 42%) which was used in the next step without further purification ¹H NMR (400 MHz, CDCl₃) δ : 7.64 (2 H, d, *J* = 8.1 Hz), 7.32 (2 H, d, *J* = 8.1 Hz), 3.29 (2 H, d, *J* = 5.0 Hz), 3.25 – 3.16 (2 H, m), 2.94 – 2.81 (2 H, m), 2.45 (3 H, s), 2.18 (3 H, s), 1.63 – 1.54 (4 H, m).

Step 5

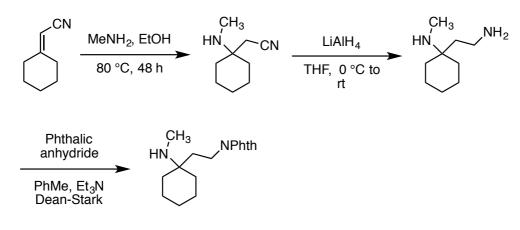
A 10 mL round-bottomed flask was charged with crude amino alcohol (0.50 g, 1.7 mmol) and cooled in an ice bath. Trifluoroacetic acid (1 mL) was added dropwise with vigorous stirring to afford a viscous solution. The reaction mixture was stirred at 0 °C for 5 minutes and trimethylacetyl chloride (0.30 mL, 2.5 mmol) was added dropwise. The flask was sealed with a glass-stopper and warmed to room temperature over 16 hours. The solvent was removed *in vacuo*, the residue was dissolved in diethyl ether (10 mL) and treated with triethylamine until pH = 9. Water (10 mL) was added and the layers were separated and the aqueous was extracted with diethyl ether (3 x 10 mL). The organics were combined, dried over MgSO₄ and removed *in vacuo*. The crude product was purified by flash column chromatography (30% EtOAc in CH₂Cl₂) to afford the product as a white solid (0.26 g, 41%). IR v_{max} /cm⁻¹ (film): 2971, 2862, 1722, 1661, 1598, 1475, 1461, 1432, 1398, 1347, 1330, 1281, 1246, 1160, 1090. ¹H NMR (400 MHz, CDCl₃) δ : 7.59 (2 H, d, *J* = 8.1 Hz), 7.27 (2 H, d, *J* = 8.1 Hz), 3.82 (2 H, s), 3.43 – 3.33 (2 H, m), 2.79 – 2.70 (2 H, m), 2.38 (3 H, s), 2.09 (3 H, s), 1.58 – 1.51 (4 H, m), 1.14 (9 H, s), 0.96 (1 H, br s). ¹³C NMR (101 MHz, CDCl₃) δ :177.9, 143.3, 133.6, 129.6, 127.5, 66.7, 51.8, 41.2, 38.9, 31.1, 27.5, 27.1, 21.4. m/z HRMS found [M + H]⁺ 383.1997, C₁₉H₃₁O₄N₂S requires 383.1999.

2-ethyl-2-(methylamino)butyl pivalate (1r)

Step 1

Acetic anhydride (10 mL) was added drop-wise to a solution of 2-amino-2-ethylbutanoic acid (2.00 g, 15.2 mmol) in formic acid (> 95%, 32 mL) at 0 °C. After the addition was complete the reaction mixture allowed to warm to room temperature, stirred for 14 h and quenched by the addition of ice water (10 mL). The solvent was removed *in vacuo* to give the crude *N*-formyl amino acid as a white solid which was used directly in the next step without further purification (2.01 g, 87%). ¹H NMR (400 MHz, (CD₃)₂SO) δ : 8.24 (1 H, s), 1.77 – 1.57 (4 H, m), 0.85 (6 H, t, *J* = 7.5 Hz).

Step 2


In a 3-necked flask, to a vigorously stirred suspension of *N*-formyl amino acid (2.01 g, 13.2 mmol) and sodium borohydride (1.40 g, 37.0 mmol) in anhydrous THF (35 mL) was added a solution of iodine (4.01 g, 15.8 mmol) in anhydrous THF (15 mL) dropwise at 0 °C. Once gas evolution had ceased the mixture was heated at reflux for 18 hours and subsequently cooled to room temperature. MeOH was added cautiously until the solution became clear and the solvent was subsequently

removed *in vacuo* to afford a white paste. The paste was dissolved in 20% aqueous KOH (30 mL) and stirred at room temperature for 1.5 h. The mixture was extracted with CH_2Cl_2 (3 x 40 mL). The organics were combined, washed with brine (40 mL), dried over MgSO₄ and concentrated *in vacuo* to give the crude amino alcohol as a colourless oil (0.901 g, 52%) which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 3.29 (2 H, s), 2.22 (3 H, s), 1.58 – 1.51 (4 H, m), 0.93 (6 H, t, *J* = 7.3 Hz).

Step 3

2-ethyl-2-(methylamino)butan-1-ol (0.90 g, 6.86 mmol) was dissolved in CH₂Cl₂ (10 mL) and cooled to 0 °C. Triethylamine (1.91 mL, 13.72 mmol) was added followed by dropwise addition of trimethylacetyl chloride (1.01 mL, 8.23 mmol). The reaction mixture was allowed to warm slowly to ambient temperature and stirred for 16 hours after which it was quenched with water (10 mL) and extracted with CH₂Cl₂ (2 x 10 mL). The combined organic phases were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (30% EtOAc in P.E.) to afford the title compound as a light yellow oil (0.119 g, 8%). IR v_{max} /cm⁻¹ (film): 2965, 2880, 1730, 1646, 1515, 1480, 1461, 1397, 1365, 1281, 1150, 1034; ¹H NMR (400 MHz, CDCl₃) δ : 3.94 (2 H, s), 2.30 (3 H, s), 1.45 (4 H, qq, *J* = 14.5, 7.4 Hz), 1.22 (9 H, s), 0.85 (6 H, t, *J* = 7.5 Hz); ¹³C NMR (101 MHz, CDCl₃) δ : 178.4, 65.3, 57.7, 39.1, 28.0, 27.3, 25.3, 7.4; m/z HRMS found [M + H]⁺ 216.1957, C₁₂H₂₇NO₂ requires 216.1958.

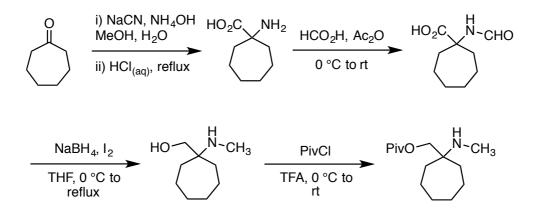
N-(2-(1-(methylamino)cyclohexyl)ethyl)phthalimide (1s)

Step 1

A solution of 2-cyclohexylideneacetonitrile⁶ (1.89 g, 15.7 mmol) in ethanol (2 mL) and methylamine (33% w/w in EtOH, 3.9 mL, 31.3 mmol) were stirred at 80 °C in a sealed tube for 48 hours. After such time the solution was cooled to room temperature and the solvent removed *in vacuo*. The crude

⁶ Karagiozov, S. K.; Abbott, F. S. Synth. Commun., 2004, 34, 871

oil was purified by flash column chromatography (100% EtOAc) to provide the desired amine as a colorless oil (1.45 g, 61%). ¹H NMR (400 MHz, CDCl₃) δ : 2.43 (2 H, s), 2.29 (3 H, s), 1.66 – 1.23 (10 H, m), 1.18 (1 H, br s (N-H)).


Step 2

To a solution of ethyl 2-(1-(methylamino)cyclohexyl)acetonitrile (1.45 g, 9.5 mmol) in anhydrous Et₂O (50 mL) was added LiAlH₄ (0.90 g, 23.8 mmol) portionwise at 0 °C and then heated at reflux for 16 hours. The resulting solution cooled to warm to room temperature and was quenched successively with H₂O (1 mL), 10% NaOH (1.3 mL) and H₂O (2.5 mL). The resulting slurry was stirred with MgSO₄ and filtered. The filter cake was washed with hot CH₂Cl₂ (100 mL). The filter cake was then removed and heated to 100 °C in 10% NaOH (100 mL) for 2 hours. The mixture was cooled to room temperature, filtered and the solution extracted with CH₂Cl₂ (3 x 100 mL). The combined organics were dried over K₂CO₃ and removed *in vacuo* to afford the crude diamine as a colorless oil (1.16 g, 78%) which was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 2.72 (2 H, t, *J* = 8.0 Hz), 2.26 (3 H, s), 1.54 – 1.41 (10 H, m), 1.37 – 1.29 (4 H, m).

Step 3

The crude diamine (1.16 g, 7.5 mmol), phthalic anhydride (1.10 g, 7.5 mmol) and triethylamine (1.04 mL, 7.5 mmol) were heated under Dean-Stark conditions in toluene (10 mL) for 6 hours. The solution was cooled to room temperature and the solvent removed *in vacuo* and the resulting oil purified by flash column chromatography (gradient elution: 1% MeOH in CH₂Cl₂ to 5% MeOH in CH₂Cl₂) to provide the desired amine as a pale red viscous oil (1.53 g, 72%). IR v_{max}/cm^{-1} (film): 3351 (br), 2927, 2854, 2799, 1770, 1706, 1641, 1615, 1559, 1466, 1443, 11396, 1367, 1223, 1187, 1159, 1131. ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (2 H, dd, *J* = 3.1, 5.4 Hz), 7.66 (2 H, dd, *J* = 3.1, 5.4 Hz), 3.71 – 3.66 (2 H, m), 2.32 (3 H, s), 1.70 – 1.66 (2 H, m), 1.52 – 1.32 (10 H, m). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 133.9, 132.4, 123.1, 53.1, 35.1, 34.2, 33.2, 27.5, 26.1, 21.7. m/z HRMS found [M + H]⁺ 287.1754, C₁₇H₂₃O₂N₂ requires 287.1754.

(1-(methylamino)cycloheptyl)methyl pivalate (1t)

Step 1

A solution of cycloheptanone (2.38 mL, 21.2 mmol) in methanol (12.5 mL) was added to a vigorously stirred solution of sodium cyanide (1.07 g, 21.2 mmol), ammonium hydroxide solution (35%, 7.0 mL) and ammonium chloride (1.25 g, 23.3 mmol) in H₂O (4.2 mL) at room temperature. The reaction mixture was stirred for 16 h, diluted with CH₂Cl₂ (15 mL) and the organic layer separated. The aqueous was extracted with CH₂Cl₂ (2 x 15 mL), the organics were combined, dried over MgSO₄ and removed *in vacuo*. The resulting product was obtained as colourless oil (quantitative yield) and used without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 2.10 – 2.00 (4 H, m), 1.77 – 1.51 (8 H, m).

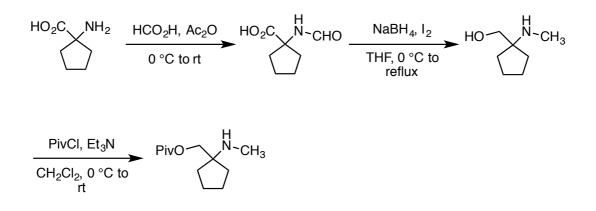
Step 2

The crude product was treated with conc. HCl (70 mL) and water (35 mL) and refluxed for 16 hours. The reaction mixture was subsequently cooled to room temperature and the solvent removed *in vacuo*. The resulting solid was dissolved in the minimum amount of water (80 °C) and was treated with 10% aquous NaOH until pH = 6. The mixture was cooled to 0 °C and the resulting precipitate removed by vacuum filtration to afford the product as a white crystalline solid (1.75 g, 53%). (If no precipitate is formed the solvent is removed *in vacuo*, the residue taken up in ethanol and filtered, and the resulting filtrate removed *in vacuo* to afford the product). ¹H NMR (400 MHz, D₂O) 2.24 – 2.15 (2 H, m), 1.86 – 1.78 (2 H, m), 1.78 – 1.70 (2 H, m), 1.65 – 1.54 (6 H, m).

Step 3

Acetic anhydride (8 mL) was added dropwise to a solution of crude amino acid (1.70 g, 10.8 mmol) in formic acid (> 95%, 22 mL) at room temperature. After the addition was complete the reaction mixture was stirred for an additional hour and quenched by the addition of ice water (10 mL). The solvent was removed *in vacuo* to give the crude *N*-formyl amino acid which was used directly in the next step without further purification (1.66 g, 83%). ¹H NMR (400 MHz, (CD₃)₂SO) δ : 7.86 (1 H, s), 2.03 – 1.84 (4 H, m), 1.53 – 1.42 (8 H, m).

Step 4


To a vigorously stirred suspension of *N*-formyl amino acid (1.60 g, 8.6 mmol) and sodium borohydride (0.92 g, 24.2 mmol) in anhydrous THF (36 mL) was added a solution of iodine (2.36 g, 10.4 mmol) in anhydrous THF (10 mL) dropwise at 0 °C. Once gas evolution had ceased the mixture was heated at reflux for 18 hours and subsequently cooled to room temperature. Methanol was added cautiously until the solution became clear and the solvent was subsequently removed *in vacuo* to afford a white paste. The paste was dissolved in the minimum amount of 20% aqueous KOH (ca. 7 mL) and stirred at room temperature for 1 hour. The mixture was diluted with 20% aqueous KOH (15

mL) and extracted with CH_2Cl_2 (3 x 40 mL). The organics were combined, dried over MgSO₄ and removed *in vacuo* to give the crude amino alcohol as a colorless oil (1.29 g, 95%) which was used in the next step without further purification ¹H NMR (400 MHz, CDCl₃) δ : 3.28 (2 H, s), 2.28 (3 H, s), 1.61 – 1.41 (12 H, m).

Step 5

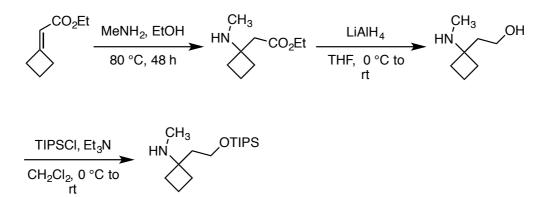
A 10 mL round-bottomed flask was charged with crude amino alcohol (0.36 g, 2.3 mmol) and cooled in an ice bath. Trifluoroacetic acid (1.2 mL) was added dropwise with vigorous stirring to afford a viscous solution. The reaction mixture was stirred at 0 °C for 5 minutes and trimethylacetyl chloride (0.43 mL, 3.5 mmol) was added dropwise. The flask was sealed with a glass-stopper and warmed to room temperature over 16 hours. The solvent was removed *in vacuo*, the residue was dissolved in diethyl ether (10 mL) and treated with triethylamine until pH = 9. Water (10 mL) was added and the layers were separated and the aqueous was extracted with diethyl ether (3 x 10 mL). The organics were combined, dried over MgSO₄ and removed *in vacuo*. The crude product was purified by SCX column, loaded in methanol, washed with methanol and eluted with ammonia in methanol solution (2 M) to afford the product as a colourless oil (0.24 g, 75%). IR v_{max}/cm^{-1} (film): 2925, 2856, 2802, 1727, 1480, 1463, 1397, 1463, 1397, 1364, 1282, 1154. ¹H NMR (400 MHz, CDCl₃) δ : 3.86 (2 H, s), 2.22 (3 H, s), 1.54 – 1.37 (13 H, m), 1.17 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.4, 67.3, 57.7, 39.0, 35.3, 30.6, 28.5, 27.3, 22.5. m/z HRMS found [M + H]⁺ 242.2112, C₁₄H₂₈O₂N requires 242.2115.

(1-(methylamino)cyclopentyl)methyl pivalate (1u)

Step 1

Acetic anhydride (12 mL) was added dropwise to a solution of 1-aminocyclopentane-1-carboxylic acid (2.0 g, 15.5 mmol) in formic acid (> 95%, 30 mL) at room temperature. After the addition was complete the reaction mixture was stirred for an additional hour and quenched by the addition of ice water (10 mL). The solvent was removed *in vacuo* to give the crude *N*-formyl amino acid which was

used directly in the next step without further purification (quantitative yield). ¹H NMR (400 MHz, $(CD_3)_2SO$) δ : 7.89 (1 H, s), 2.11 – 1.92 (2 H, m), 1.92 – 1.83 (2 H, m), 1.73 – 1.59 (4 H, m).


Step 2

To a vigorously stirred suspension of *N*-formyl amino acid (2.4 g, 15.4 mmol) and sodium borohydride (1.87 g, 49.5 mmol) in anhydrous THF (40 mL) was added a solution of iodine (4.7 g, 18.6 mmol) in anhydrous THF (20 mL) dropwise at 0 °C. Once gas evolution had ceased the mixture was heated at reflux for 18 hours and subsequently cooled to room temperature. Methanol was added cautiously until the solution became clear and the solvent was subsequently removed *in vacuo* to afford a white paste. The paste was dissolved in the minimum amount of 20% aqueous KOH (ca. 10 mL) and stirred at room temperature for 1 hour. The mixture was diluted with 20% aqueous KOH (20 mL) and extracted with CH₂Cl₂ (3 x 50 mL). The organics were combined, dried over MgSO₄ and removed *in vacuo* to give the crude amino alcohol as a colorless oil (1.96 g, 97%) which was used in the next step without further purification ¹H NMR (400 MHz, CDCl₃) δ : 3.40 (2 H, s), 2.33 (3 H, s), 1.65 – 1.51 (8 H, m).

Step 3

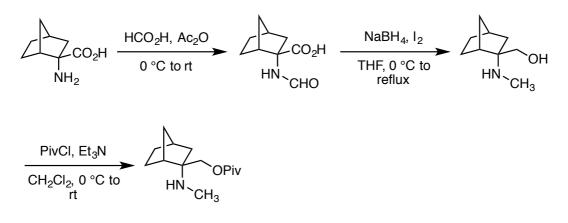
To a solution of crude amino alcohol (1.94 g, 15.0 mmol) in anhydrous CH_2Cl_2 (150 mL) was added triethylamine (4.2 mL, 30.0 mmol) and trimethylacetyl chloride (2.0 mL, 16.5 mmol) dropwise at 0 °C. The reaction mixture was warmed to room temperature over 16 hours and quenched by the addition of saturated aqueous NaHCO₃ (100 mL). The organic layer was separated and washed with additional saturated aqueous NaHCO₃ (2 x 100 mL), brine (100 mL) and dried over MgSO₄. The solvent was removed *in vacuo* and the crude oil purified by flash column chromatography (EtOAc) to afford the product as a colourless oil (0.23 g, 7%). IR v_{max}/cm^{-1} (film): 2958, 2871, 2798, 1728, 1480, 1397, 1365, 1331, 1283, 1151, 1096, 1034. ¹H NMR (400 MHz, CDCl₃) δ : 3.94 (2 H, s), 2.25 (3 H, s), 1.73 – 1.63 (2 H, m), 1.59 – 1.50 (4 H, m), 1.48 0- 1.41 (3 H, m), 1.16 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.4, 66.8, 64.4, 38.9, 34.8, 29.5, 27.3, 24.7. m/z HRMS found [M + H]⁺ 214.1799, $C_{12}H_{24}O_2N$ requires 214.1802

N-methyl-1-(2-((triisopropylsilyl)oxy)ethyl)cyclobutan-1-amine (1v)

Step 1

A solution of ethyl 2-cyclobutylideneacetate⁷ (2.80 g, 20 mmol) and methylamine (33% w/w in EtOH, 4.98 mL, 40 mmol) were stirred at 80 °C in a sealed tube for 48 hours. After such time the solution was cooled to room temperature and the solvent removed *in vacuo* to afford the product as a colourless oil (3.13 g, 92%) which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 4.10 (2 H, q, *J* = 7.1 Hz), 2.59 (2 H, s), 2.27 (3 H, s), 2.04 – 1.97 (2 H, m), 1.93 – 1.85 (2 H, m), 1.87 – 1.65 (3 H, m, (N-H)), 1.23 (3 H, t, *J* = 7.1 Hz).

Step 2


To a solution of ethyl 2-(1-(methylamino)cyclobutyl)acetate (3.13 g, 18.3 mmol) in anhydrous THF (60 mL) was added LiAlH₄ (1.39 g, 36.6 mmol) portionwise at 0 °C. The resulting solution was allowed to warm to room temperature over 16 hours and quenched successively with H₂O (1.5 mL), 10% NaOH (2 mL) and H₂O (4 mL). The resulting slurry was stirred with MgSO₄ and filtered. The filter cake was washed with Et₂O (100 mL) and the combined organics removed *in vacuo* to afford the crude amino alcohol in quantitative yield, which was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 3.79 (2 H, t, *J* = 5.3 Hz), 2.29 (3 H, s), 1.97 – 1.70 (8 H, m).

Step 3

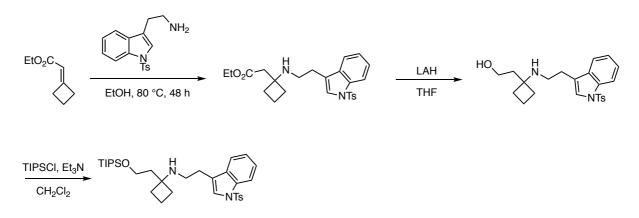
Triisopropylsilyl chloride (0.89 mL, 4.18 mmol) was added dropwise to a solution of amino alcohol (0.56 g, 4.4 mmol) and triethylamine (0.92 mL, 6.6 mmol) in anhydrous CH₂Cl₂ (20 mL) at 0 °C. The resulting solution was allowed to warm to room temperature over 16 hours and was quenched with H₂O (20 mL). The organics were separated and washed with additional H₂O (2 x 20 mL) and brine (20 mL), dried over Na₂SO₄ and removed *in vacuo*. The crude oil was purified by flash column chromatography (gradient elution: 1% MeOH in CH₂Cl₂ to 5% MeOH in CH₂Cl₂) to provide the desired amine as colorless oil (0.55 g, 44%). IR v_{max}/cm⁻¹ (film): 2941, 2866, 1463, 1383, 1246, 1161, 1093, 1068, 1030. ¹H NMR (400 MHz, CDCl₃) δ : 3.79 (2 H, t, *J* = 6.9 Hz), 2.41 (1 H, br s), 2.29 (3 H, s), 2.03 – 1.96 (2 H, m), 1.91 – 1.85 (4 H, m), 1.80 – 1.68 (2 H, m), 1.12 – 1.04 (21 H, m). ¹³C NMR (125 MHz, CDCl₃) δ 60.2, 59.4, 38.6, 32.1, 28.8, 18.2, 13.7, 12.1. m/z HRMS found [M + H]⁺ 286.2559, C₁₆H₃₆ONSi requires 286.2561

⁷ Afzal, M.; Walton, John C. J. Chem, Soc., Perkin Trans. 2, 1999, 5, 937

endo-2-(methylamino)norbornane-2-methyl pivalate (1w)

Step 1

Acetic anhydride (2.94 mL, 31.1 mmol) was added dropwise to a solution of *endo*-2-amino-2-norbornanecarboxylic acid (0.65 g, 4.19 mmol) in formic acid (>95%, 8.7 mL) at 0 °C. The resulting solution was allowed to stir at room temperature for 1 hour and quenched with ice water (6 mL). The solvent was removed *in vacuo* to give the crude *N*-formyl amino acid (0.72 g) which was used directly in the next step without further purification. ¹H NMR (400 MHz, (CD₃)₂SO) δ : 7.92 (1 H, s), 2.65 (1 H, d, *J* = 3.5 Hz), 2.17 – 2.10 (2 H, m), 2.07 (1 H, d, *J* = 10.0 Hz), 1.59 – 1.45 (2 H, m), 1.36 – 2.44 (3 H, m), 1.19 – 1.12 (1 H, m).


Step 2

To a vigorously stirred suspension of *N*-formyl amino acid (0.72 g, 3.9 mmol) and sodium borohydride (0.42 g, 11.1 mmol) in anhydrous THF (10 mL) was added a solution of iodine (1.17 g, 4.6 mmol) in anhydrous THF (5 mL) dropwise at 0 °C. Once gas evolution had ceased the mixture was heated at reflux for 18 hours and cooled to room temperature. Methanol was added cautiously until the solution became clear and the solvent was subsequently removed *in vacuo* to afford a white paste. The paste was dissolved in the minimum amount of 20% aqueous KOH (ca. 4 mL) and stirred at room temperature for 1 hour. The mixture was diluted with 20% aqueous KOH (10 mL) and extracted with CH_2Cl_2 (3 x 15 mL). The organics were subsequently dried (Na_2SO_4) and removed *in vacuo* to give the crude amino alcohol as a colorless oil (0.55 g, 91%) which was used in the next step without further purification ¹H NMR (400.1 MHz, CDCl₃) δ 3.50 (1 H, d, *J* = 10.2 Hz), 3.24 (1 H, d, *J* = 10.5 Hz), 2.22 (3 H, s), 2.22 – 2.20 (1 H, m), 2.09 (1 H, d, *J* = 4.5 Hz), 1.68 (1 H, ddd, *J* = 3.1, 4.4, 13.0 Hz), 1.64 – 1.40 (3 H, m), 1.31 – 1.12 (3 H, m), 0.76 (1 H, dd, *J* = 2.7, 13.2 Hz).

Step 3

To a solution of crude amino alcohol (0.55 g, 3.6 mmol) and 4-dimethylaminopyridine (22 mg, 0.18 mmol) in anhydrous CH₂Cl₂ (8 mL) was added trimethylacetyl chloride (0.52 mL, 4.3 mmol) dropwise. The reaction mixture was cooled to 0 °C and triethylamine (1.15 mL, 4.3 mmol) was added dropwise and the solution allowed to warm to room temperature over 16 h. The reaction was then diluted with CH₂Cl₂ (20 mL) and washed sequentially with water (2 x 30 mL), 0.1 M HCl (30 mL), sat. NaHCO₃ (30 mL) and brine (30 mL). The organic phase was dried over Na₂SO₄ and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (gradient elution: 5% EtOAc in P.E. to 100% EtOAc) to provide the desired amine as colorless oil (0.19 g, 20%). IR v_{max} /cm⁻¹ (film) 2950, 2870, 2800, 1727, 1480, 1467, 1443, 1397, 1364, 1328, 1313, 1282, 1152, 1101, 1064, 1036; ¹H NMR (400 MHz, CDCl₃) δ : 4.12 (1 H, d, *J* = 11.4 Hz), 3.91 (1 H, d, *J* = 11.4 Hz), 2.25 (3 H, s), 2.20 (1 H, app. t, *J* = 3.9 Hz), 2.10 (1 H, app. d, *J* = 2.6 Hz), 1.92 – 1.85 (1 H, m), 1.58 – 1.50 (2 H, m), 1.45 (1 H, ddd, *J* = 2.9, 4.4, 12.4 Hz), 1.37 – 1.24 (3 H, m), 1.21 (9 H, s), 0.93 (1 H, dd, *J* = 2.9, 12.6 Hz). ¹³C NMR (101 MHz, CDCl₃) δ : 178.7, 65.3, 62.7, 42.1, 41.9, 39.1, 38.2, 36.9, 30.4, 29.0, 27.4, 22.8. m/z HRMS found [M + H]⁺ 240.1959, C₁₄H₂₆NO₂ requires 240.1958.

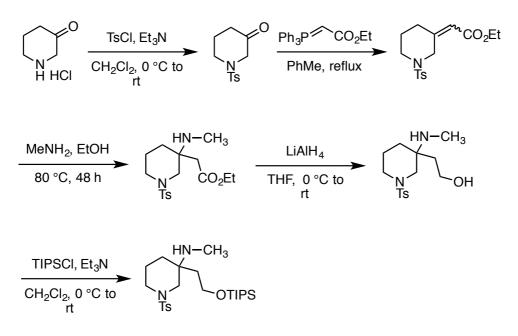
N-(2-(1-tosyl-1H-indol-3-yl)ethyl)-1-(2-((triisopropylsilyl)oxy)ethyl)cyclobutan-1-amine (1x)

Step 1

2-(1-tosyl-1H-indol-3-yl)ethan-1-amine⁸ (4.21 g, 13.40 mmol) and ethyl 2-cyclobutylideneacetate⁴ (0.94 g, 6.70 mmol) were combined in EtOH (5 mL) and heated at 80 °C in a sealed tube for 2 days. The reaction mixture was concentrated *in vacuo* and the residue purified by flash column chromatography (50% EtOAc in P.E.) to afford the title compound as a viscous yellow oil (3.00 g, 98%). IR v_{max} /cm⁻¹ (film): 2979, 2936, 1726, 1446, 1367, 1274, 1241, 1170, 1118, 1095, 1019; ¹H NMR (400 MHz, CDCl₃) δ : 7.97 (1 H, d, *J* = 8.3 Hz), 7.75 (2 H, d, *J* = 8.3 Hz), 7.49 (1 H, d, *J* = 7.7 Hz), 7.40 (1 H, s), 7.29 (1 H, t, *J* = 7.7 Hz), 7.24 – 7.16 (3 H, m), 4.04 (2 H, q, *J* = 7.1 Hz), 2.83 (4 H, s), 2.61 (2 H, s), 2.31 (3 H, s), 1.98 – 1.69 (6 H, m), 1.17 (3 H, t, *J* = 7.1 Hz); ¹³C NMR (101 MHz,

⁸ Logers, M.; Overman, L. E.; Welmaker, G. S.; J. Am. Chem. Soc., 1995, 9139.

CDCl₃) δ : 171.8, 144.8, 135.4, 135.3, 131.1, 129.9, 126.9, 124.7, 123.2, 123.1, 121.1, 119.6, 113.8, 60.2, 58.3, 41.6, 41.4, 32.3, 26.4, 21.6, 14.3, 13.8; m/z HRMS found $[M + H]^+$ 455.1988, C₂₅H₃₁N₂O₄S requires 455.1999.


Step 2

Ethyl 2-(1-((2-(1-tosyl-1H-indol-3-yl)ethyl)amino)cyclobutyl)acetate (2.90 g, 6.40 mmol) was dissolved in THF (30 mL) and the solution cooled to 0 °C. Lithium aluminium hydride (0.968 g, 25.00 mmol) was added portion-wise and the solution allowed to warm to room temperature and stirred for 30 minutes. Water (1 mL) was added to the reaction carefully at 0 °C followed by the sequential addition of 10% aqueous NaOH solution (1 mL) and water (3 mL). MgSO₄ was added to the reaction mixture and the solution filtered through celite, eluting with Et₂O, and concentrated *in vacuo* to afford the title compound as a white solid (2.04 g, 77%). ¹H NMR (400 MHz, CDCl₃) δ : 8.00 (1 H, d, *J* = 8.3 Hz), 7.76 (2 H, d, *J* = 8.4 Hz), 7.49 (1 H, d, *J* = 7.8 Hz), 7.37 (1 H, s), 7.40 – 7.29 (1 H, m), 7.25 – 7.17 (3 H, m), 3.86 – 3.77 (2 H, m), 2.90 – 2.84 (2 H, m), 2.83 – 2.77 (2 H, m), 2.33 (3 H, s), 1.97 – 1.57 (8 H, m); ¹³C NMR (101 MHz, CDCl₃) δ : 145.0, 135.5, 135.4, 130.8, 130.0, 126.9, 125.0, 123.4, 123.3, 122.2, 119.5, 113.9, 60.7, 60.4, 41.0, 34.7, 33.0, 25.8, 21.7, 13.5.

Step 3

2-(1-((2-(1-tosyl-1H-indol-3-yl)ethyl)amino)cyclobutyl)ethan-1-ol (1.90 g, 4.60 mmol) was dissolved in CH₂Cl₂ (15 mL) and cooled to 0 °C. Triethylamine (0.96 mL, 6.90 mmol) was added followed by drop-wise addition of triisopropylsilyl chloride (0.94 mL, 4.37 mmol) and the solution was allowed to warm to room temperature overnight. The mixture was transferred to a separating funnel and diluted with CH₂Cl₂. The organic layer was washed sequentially with water (3 x 15 mL) then brine (15 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (gradient elution: CH₂Cl₂ to 15% MeOH in CH₂Cl₂) to afford the title compound as a light yellow solid (1.18 g, 45%). m. p.: 68–70 °C; IR v_{max}/cm⁻¹ (film): 2928, 2863, 1461, 1444, 1363, 1307, 1275, 1171, 1128, 1116, 1095; ¹H NMR (400 MHz, CDCl₃) δ : 7.99 (1 H, d, *J* = 8.3 Hz), 7.74 (2 H, app d, *J* = 8.4 Hz), 7.49 (1 H, d, *J* = 7.8 Hz), 7.37 (1 H, s), 7.31 (1 H, td, *J* = 8.3, 1.1 Hz), 7.24 – 7.18 (3 H, m), 3.75 (2 H, t, *J* = 7.0 Hz), 2.81 (4 H, s), 2.33 (3 H, s), 1.88 (4 H, t, *J* = 7.0 Hz), 1.85 – 1.76 (2 H, m), 1.74 – 1.63 (2 H, m), 1.08 – 1.02 (21 H, m); ¹³C NMR (101 MHz, CDCl₃) δ : 144.9, 135.5, 135.5, 131.1, 129.9, 126.9, 124.8, 123.3, 123.2, 121.2, 119.6, 113.9, 60.2, 58.9, 41.8, 33.0, 26.5, 21.7, 18.2, 17.9, 13.8, 12.1.; m/z HRMS found [M + H]⁺ 569.3216, C₃₂H₄₉N₂O₃SSi requires 569.3228.

N-methyl-1-tosyl-3-(2-((triisopropylsilyl)oxy)ethyl)piperidin-3-amine (1y)

Step 1

Tosyl chloride (1.30 g, 6.8 mmol) was added portionwise to a solution of 3-piperidone hydrochloride hydrate (1.00 g, 6.5 mmol) and triethylamine (2.7 mL, 19.5 mmol) in dichloromethane (25 mL) at 0 °C. The solution was allowed to warm to room temperature over 16 hours and was quenched with H₂O (20 mL). The organic layer was separated, and the aqueous extracted with additional dichloromethane (2 x 15 mL). The organics were combined and washed with 1M HCl (50 mL), brine (50 mL), dried over K₂CO₃ and removed *in vacuo* to afford the crude 1-tosyl-3-piperidone as a pale yellow solid which was used without further purification (1.37 g, 84%). ¹H NMR (400 MHz, CDCl₃) δ : 7.64 (2 H, d, *J* = 8.2 Hz), 7.33 (2 H, d, *J* = 8.2 Hz), 3.58 (2 H, s), 3.27 (2 H, t, *J* = 6.0 Hz), 2.42 (3 H, s), 2.34 (2 H, t, *J* = 6.9 Hz), 2.02 – 1.96 (2 H, m).

Step 2

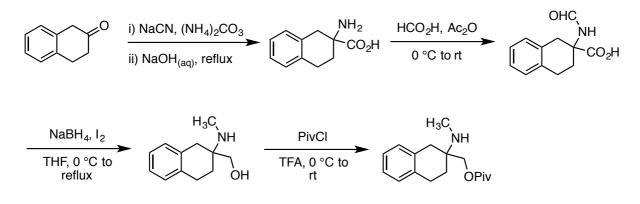
A solution of 1-tosyl-3-piperidone (2.30 g, 9.1 mmol) and ethyl (triphenylphosphoranylidene)acetate (3.48 g, 10 mmol) was refluxed in toluene (20 mL) for 24 hours. The solution was subsequently cooled to room temperature and the solvent removed *in vacuo*. The resulting product was dissolved in 2:1 EtOAc/P.E. (50 mL), filtered over a bed of silica and celite, and washed with additional 2:1 EtOAc/P.E. (100 mL). The solvent was removed *in vacuo* and the resulting oil purified by flash column chromatography (gradient elution: 5% EtOAc in P.E. to 30% EtOAc in P.E.) to provide the desired product (1.97 g, 67%) as an inseparable mixture of diastereoisomers with *E*-form and *Z*-form (1:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.69 – 7.63 (4 H, m), 7.33 – 7.29 (4 H, m), 5.77 (1 H, s), 5.68 (1 H, s), 4.28 (2 H, s), 4.21 – 4.11 (4 H, m), 3.54 (2 H, s), 3.20 (2 H, t, *J* = 5.0 Hz), 3.13 (2 H, t, *J* =

4.90), 2.79 (2 H, t, *J* = 5.6 Hz), 2.43 (3 H, s), 2.42 (3 H, s), 2.21 (2 H, t, *J* = 5.6 Hz), 1.78 – 1.70 (4 H, m), 1.31 – 1.25 (6 H, m).

Step 3

A solution of ethyl 2-(1-tosylpiperidin-3-ylidene)acetate (1.97 g, 6.1 mmol) in ethanol (2 mL) and methylamine (33% w/w in EtOH, 1.5 mL, 12.2 mmol) were stirred at 80 °C in a sealed tube for 48 hours. After such time the solution was cooled to room temperature and the solvent removed *in vacuo*. The crude oil was purified by flash column chromatography (gradient elution: 1% MeOH in CH₂Cl₂ to 5% MeOH in CH₂Cl₂) to provide the desired amine as colorless oil (1.52 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ : 7.60 (2 H, d, *J* = 8.4 Hz), 7.29 (2 H, d, *J* = 8.1 Hz), 4.11 (2 H, q, *J* = 7.1 Hz), 2.94 – 2.87 (4 H, m), 2.49 (2 H, s), 2.40 (3 H, s), 2.29 (3 H, s), 1.79 (1 H, br s, (N-H)), 1.72 – 1.62 (2 H, m), 1.52 – 1.41 (2 H, m), 1.24 (3 H, t, *J* = 7.1 Hz).

Step 4


To a solution of ethyl 2-(3-(methylamino)-1-tosylpiperidin-3-yl)acetate (1.52 g, 4.3 mmol) in anhydrous THF (30 mL) was added LiAlH₄ (0.65 g, 17.1 mmol) portionwise at 0 °C. The resulting solution was allowed to warm to room temperature over 6 hours and quenched successively with H₂O (0.75 mL), 10% NaOH (1 mL) and H₂O (2 mL). The resulting slurry was stirred with MgSO₄ and filtered. The filter cake was washed with Et₂O (100 mL) and the combined organics removed *in vacuo* to afford the crude amino alcohol (1.23 g, 91%) as a viscous oil which solidified on standing and was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 7.63 (2 H, d, *J* = 8.3 Hz), 7.33 (2 H, d, *J* = 7.8 Hz), 3.80 – 3.74 (2 H, m), 3.56 – 3.51 (2 H, m), 2.44 (3 H, s), 2.35 (3 H, s), 2.19 (1 H, d, *J* = 11.2 Hz), 1.86 – 1.48 (6 H, m), 1.22 – 1.13 (1 H, m).

Step 5

Triisopropylsilyl chloride (0.80 mL, 3.7 mmol) was added dropwise to a solution of amino alcohol (1.23 g, 3.9 mmol) and triethylamine (0.82 mL, 5.8 mmol) in anhydrous dichloromethane (15 mL) at 0 °C. The resulting solution was allowed to warm to room temperature over 16 hours and was quenched with H₂O (20 mL). The organics were separated and washed with additional H₂O (2 x 20 mL) and brine (20 mL), dried over Na₂SO₄ and removed *in vacuo*. The crude oil was purified by flash column chromatography (gradient elution: 50% EtOAc in P.E. to 100% EtOAc) to provide the desired amine as a white crystalline solid (1.49 g, 82%). m.p. 76–77 °C. IR v_{max}/cm^{-1} (film): 3370, 2938, 2865, 2790, 1598, 1465, 1389, 1353, 1336, 1307, 1257, 1162, 1145, 1091, 1064. ¹H NMR (400 MHz, CDCl₃) δ : 7.61 (2 H, d, *J* = 8.6 Hz), 7.30 (2 H, d, *J* = 8.2 Hz), 3.81 (2 H, t, *J* = 6.7 Hz), 3.27 – 3.24 (1 H, m), 3.19 (1 H, d, *J* = 11.5 Hz), 2.58 – 2.53 (1 H, m), 2.50 (1 H, d, *J* = 11.5 Hz), 2.42 (3 H, s), 2.26 (3 H, s), 1.74 (1 H, br s), 1.71 – 1.55 (5 H, m), 1.32 – 1.25 (1 H, m), 1.06 – 1.02 (21 H, m). ¹³C NMR

(101 MHz, CDCl₃) δ: 143.5, 133.3, 129.7, 127.8, 59.2, 53.8, 52.9, 46.8, 37.1, 32.2, 27.9, 21.6, 21.2, 18.2, 12.0. m/z HRMS found [M + H]⁺ 469.2904, C₂₄H₄₅O₃N₂SSi requires 469.2915.

(2-(methylamino)-1,2,3,4-tetrahydronaphthalen-2-yl)methyl pivalate (1z)

Step 1

β-tetralone (3.5 g, 23.9 mmol), sodium cyanide (2.13 g, 26.3 mmol), and ammonium carbonate (5.3 g, 114.7 mmol) were suspended in ethanol/water (1:1, 80 mL) and heated at 60 °C for 16 hours. The solution was cooled to room temperature and the resulting precipitate was collected by vacuum filtration, washed with water (50 mL) and dried under vacuum to afford the desired product as a white solid (4.5 g, 87%) which was used directly in the next step without further purification. ¹H NMR (400 MHz, (CD₃)₂SO) δ: 10.05 (1 H, br s), 8.24 (1 H, s), 7.32 – 6.74 (4 H, m), 3.11 (1 H, d, *J* = 17.0 Hz), 2.95 – 2.83 (2 H, m), 2.76 (1 H, d, *J* = 17.0 Hz), 1.97 – 1.89 (1 H, m), 1.87 – 1.76 (1 H, m).

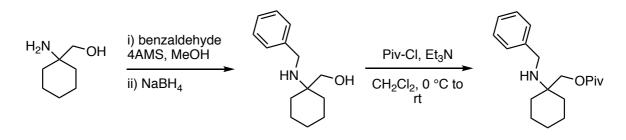
Step 2

Crude hydantoin (4.5 g, 20.8 mmol) was suspended in aqueous sodium hydroxide (5 M, 25 mL) and heated at 120 °C for 24 hours. The solution was cooled to room temperature and the solid removed by filtration. The mother liquor was acidified to pH = 6 and the solvent removed *in vacuo*. The residue was suspended in ethanol (100 mL) and heated to reflux for 10 minutes. The solvent was rapidly filtered and the mother liquor cooled to room temperature and removed *in vacuo* to afford the crude amino acid as a pale pink solid (1.15 g, 25%). ¹H NMR (400 MHz, D₂O) δ : 7.30 – 7.18 (4 H, m), 3.23 (1 H, d, *J* = 16.7 Hz), 2.98 (1 H, d, *J* = 16.7 Hz), 2.89 – 2.76 (2 H, m), 2.42 – 2.31 (1 H, m), 2.05 – 1.99 (1 H, m).

Step 3

Acetic anhydride (4 mL) was added dropwise to a solution of crude amino acid (0.83 g, 5.2 mmol) in formic acid (> 95%, 10 mL) at room temperature. After the addition was complete the reaction mixture was stirred for an additional hour and quenched by the addition of ice water (10 mL). The solvent was removed *in vacuo* to give the crude *N*-formyl amino acid which was used directly in the

next step without further purification (0.76 g, 80%). ¹H NMR (400 MHz, $(CD_3)_2SO$) δ : 7.89 (1 H, s), 7.09 – 7.00 (4 H, m), 3.17 (1 H, d, J = 16.8 Hz), 3.04 (1 H, d, J = 16.8 Hz), 2.80 – 2.71 (2 H, m), 2.35 – 2.27 (1 H, m), 2.00 – 1.89 (1 H, m).

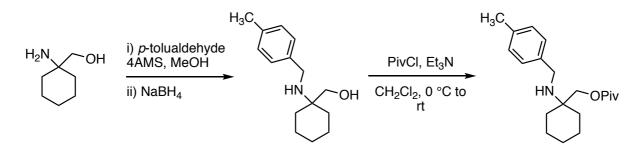

Step 4

To a vigorously stirred suspension of *N*-formyl amino acid (0.76 g, 3.5 mmol) and sodium borohydride (0.37 g, 9.7 mmol) in anhydrous THF (10 mL) was added a solution of iodine (1.06 g, 4.2 mmol) in anhydrous THF (5 mL) dropwise at 0 °C. Once gas evolution had ceased the mixture was heated at reflux for 18 hours and subsequently cooled to room temperature. Methanol was added cautiously until the solution became clear and the solvent was subsequently removed *in vacuo* to afford a white paste. The paste was dissolved in the minimum amount of 20% aqueous KOH (ca. 5 mL) and stirred at room temperature for 1 hour. The mixture was diluted with 20% aqueous KOH (10 mL) and extracted with CH_2Cl_2 (3 x 20 mL). The organics were combined, dried over MgSO₄ and removed *in vacuo* to give the crude amino alcohol as a brown oil (0.40 g, 59%) which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 7.14 – 7.16 (4 H, m), 3.52 – 3.33 (2 H, m), 2.86 – 2.67 (2 H, m), 2.33 (3 H, s), 1.91 – 1.82 (1 H, m), 1.79 – 1.69 (1 H, m), 1.62 – 1.52 (1 H, m), 1.44 – 1.33 (1 H, m).

Step 5

A 10 mL round-bottomed flask was charged with crude amino alcohol (0.40 g, 2.0 mmol) and cooled in an ice bath. Trifluoroacetic acid (1 mL) was added dropwise with vigorous stirring to afford a viscous solution. The reaction mixture was stirred at 0 °C for 5 minutes and trimethylacetyl chloride (0.37 mL, 3.0 mmol) was added dropwise. The flask was sealed with a glass-stopper and warmed to room temperature over 16 hours. The solvent was removed *in vacuo*, the residue was dissolved in diethyl ether (10 mL) and treated with triethylamine until pH = 9. Water (10 mL) was added and the layers were separated and the aqueous was extracted with diethyl ether (3 x 10 mL). The organics were combined, dried over MgSO₄ and removed *in vacuo*. The crude product was purified by flash column chromatography (30% EtOAc in P.E.) to afford the product as a white solid (0.26 g, 41%). m.p. 51–53 °C; IR v_{max} /cm⁻¹ (film): 3348, 2958, 2935, 2911, 1712, 1496, 1478, 1465, 1454, 1425, 1396, 1368, 1285, 1172, 1154, 1142, 1076, 1038. ¹H NMR (400 MHz, CDCl₃) δ : 7.11 – 7.07 (4 H, m), 4.05 (2 H, dd, *J* = 11.1, 18.1 Hz), 2.95 – 2.71 (4 H, m), 2.37 (3 H, s), 1.91 – 1.75 (2 H, m), 1.24 (9 H, s), 1.16 (1 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.3, 135.6, 134.1, 129.6, 128.8 126.0, 126.0, 66.4, 53.8, 39.1, 37.3, 28.7, 28.3, 27.3, 25.6. m/z HRMS found [M + H]⁺ 276.1957, C₁₇H₂₆O₂N requires 276.1958

(1-(benzylamino)cyclohexyl)methyl pivalate (1aa)


Step 1

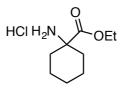
To a solution of (1-aminocyclohexyl)methanol (1.00 g, 7.70 mmol) in MeOH (10 mL) was added powdered 4Å molecular sieves (~1 g) and benzaldehyde (1.17 mL, 11.6 mmol) and the mixture stirred at ambient temperature for 16 h. The mixture was cooled to 0 °C, sodium borohydride (0.43 g, 11.6 mmol) was added portion-wise and the mixture allowed to warm to ambient temperature and stirred for an additional 2 h. The reaction mixture was filtered and the MeOH removed *in vacuo*. 10% aqueous NaOH solution was added and the mixture was extracted with EtOAc (3 x 10 mL). The combined organic phases were dried (MgSO₄) and concentrated *in vacuo* to afford the crude product as a colourless oil (1.46 g, 86%) which was used in the following step without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 7.39 – 7.29 (5 H, m), 3.64 (2 H, s), 3.39 (2 H, s), 1.69 – 1.59 (2 H, m), 1.58 – 1.34 (8 H, m).

Step 2

(1-(benzylamino)cyclohexyl)methanol (1.46 g, 6.66 mmol) was dissolved in CH₂Cl₂ (15 mL) and cooled to 0 °C. Triethylamine (1.86 mL, 13.3 mmol) was added followed by drop-wise addition of trimethylacetyl chloride (0.984 mL, 7.99 mmol). The reaction mixture was allowed to warm slowly to ambient temperature and stirred for 16 h after which it was quenched with water (7 mL) and extracted with CH₂Cl₂ (2 x 15 mL). The combined organic phases were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (5% EtOAc in P.E.) to afford the title compound as a colourless oil (1.40 g, 70%). IR v_{max}/cm⁻¹ (film): 2925, 2845, 1717, 1481, 1465, 1453, 1393, 1362, 1286, 1165, 1086, 1066, 1035; ¹H NMR (400 MHz, CDCl₃) δ : 7.39 – 7.28 (4 H, m), 7.27 – 7.21 (1 H, m), 4.04 (2 H, s), 3.65 (2 H, s), 1.75 – 1.54 (5 H, m), 1.48 – 1.29 (5 H, m), 1.22 (9 H, s); ¹³C NMR (101 MHz, CDCl₃) δ : 178.5, 141.5, 128.5, 128.4, 127.0, 68.1, 54.2, 45.9, 39.1, 32.9, 27.4, 26.3, 21.4; m/z HRMS found [M + H]⁺ 304.2269, C₁₉H₃₀NO₂ requires 304.2271.

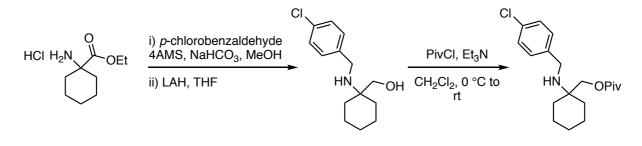
(1-((4-methylbenzyl)amino)cyclohexyl)methyl pivalate (1ab)

Step 1


To a solution of (1-aminocyclohexyl)methanol (1.0 g, 7.7 mmol) and powdered 4A molecular sieves (1 g) in anhydrous methanol (10 mL) was added *p*-tolualdehyde (1.36 mL, 11.6 mmol). The resulting mixture was stirred at room temperature for 16 hours and cooled to 0 °C. Sodium borohydride (0.44 g, 11.6 mmol) was cautiously added portionwise and warmed to room temperature over 2 hours. The crude reaction mixture was filtered over celite, washed with methanol and the solvent removed *in vacuo*. The resulting white paste was dissolved in 10% aqueous NaOH (30 mL) and stirred at room temperature for 2 hours. The aqueous was extracted with CH₂Cl₂ (3 x 30 mL) and concentrated *in vacuo*. The resulting product was dissolved in 3M HCl (30 mL) and water (30 mL) and washed with diethyl ether (3 x 30 mL) and discarded. The resulting aqueous layer was cooled to 0 °C and basified carefully to pH = 10 with sodium hydroxide pellets. The solution was extracted with dichloromethane (3 x 30 mL), dried over Na₂SO₄ and removed *in vacuo* to afford the crude amino alcohol as a white solid (1.43 g, 79%), which was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 7.23 (2 H, d, *J* = 7.8 Hz), 7.14 (2 H, d, *J* = 7.8 Hz), 3.59 (2 H, s), 3.37 (2 H, s), 2.34 (3 H, s), 1.65 – 1.37 (10 H, m).

Step 2

To a solution of crude amino alcohol (0.90 g, 3.9 mmol) in anhydrous dichloromethane (20 mL) was added triethylamine (1.19 mL, 8.6 mmol) and trimethylacetyl chloride (0.52 mL, 4.3 mmol) dropwise at 0 °C. The reaction mixture was warmed to room temperature over 16 hours and quenched by the addition of saturated aqueous NaHCO₃ (20 mL). The organic layer was separated and washed with additional saturated aqueous NaHCO₃ (2 x 20 mL), brine (20 mL) and dried over MgSO₄. The solvent was removed *in vacuo* and the crude oil purified by flash column chromatography (gradient elution: 100% P.E. to 10% EtOAc in P.E.) to afford the product as a white solid (0.90 g, 73%). m.p. 42–44 °C. IR v_{max} /cm⁻¹ (film): 3321, 2923, 2848, 1712, 1514, 1481, 1463, 1441, 1398, 1360, 1286, 1185, 1166, 1088. ¹H NMR (400 MHz, CDCl₃) δ : 7.24 (2 H, d, *J* = 7.7 Hz), 7.12 (2 H, d, *J* = 7.7 Hz), 4.03 (2 H, s), 3.60 (2 H, s), 2.33 (3 H, s), 1.73 – 1.56 (5 H, m), 1.47 – 1.30 (5 H, m), 1.22 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.6, 138.5, 136.5, 129.2, 128.4, 68.1, 54.2, 45.6, 39.1, 32.9, 27.4, 26.3, 21.4,

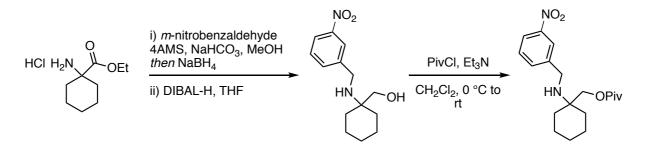

21.2. m/z HRMS found $[M + H]^+$ 318.2429, C₂₀H₃₂NO₂ requires 344.2428.

Ethyl 1-aminocyclohexanecarboxylate hydrochloride

Thionyl chloride (30 mL) was added dropwise to a suspension of 1-aminocyclohexane-1-carboxylic acid hydrochloride (8.95 g, 50 mmol) in absolute ethanol (200 mL) at 0 °C. The resulting mixture was heated to reflux for 16 hours and subsequently cooled to room temperature. The solvent was removed *in vacuo* and residue dried under hi-vac (>1 mbar, 75 °C) to afford the product as a free-flowing white powder (10.2 g, 99%). m.p. 182 °C (sharp). IR v_{max}/cm^{-1} (film): 2938, 2897, 2853, 1743, 1597, 1569, 1519, 1471, 1452, 1391, 1367, 1293, 1244, 1154, 1107, 1042, 1023. ¹H NMR (400 MHz, D₂O) δ : 4.32 (2 H, q, *J* = 7.1 Hz), 2.17 – 2.10 (2 H, m), 1.85 – 1.73 (4 H, m), 1.60 – 1.50 (4 H, m), 1.32 (3 H, t, *J* = 7.1 Hz). ¹³C NMR (101 MHz, D₂O) δ : 172.2, 63.6, 59.9, 31.1, 23.5, 20.2, 13.1. m/z HRMS found [M + H]⁺ 172.1328, C₉H₁₈NO₂ requires 172.1332.

(1-((4-chlorobenzyl)amino)cyclohexyl)methyl pivalate (1ac)

Step 1


To a solution of ethyl 1-aminocyclohexanecarboxylate hydrochloride (1.03 g, 5.0 mmol), sodium bicarbonate (0.42 g, 5.5 mmol) and powder 4A molecular sieves (1.0 g) in anhydrous methanol (10 mL) as added *p*-chlorobenzaldehyde (0.70 g, 5.0 mmol). The reaction was allowed to stir at room temperature for 16 hours and was subsequently filtered over celite and washed with methanol. The solvent was removed *in vacuo* and dried under vacuum. The resulting residue was dissolved in anhydrous THF (25 mL) and cooled to 0 °C before LAH (0.57 g, 15.0 mmol) was added portion-wise. The reaction mixture was warmed to room temperature over 2 hours, cooled to to 0 °C and quenched successively with H₂O (0.75 mL), 10% NaOH (1 mL) and H₂O (2 mL). The resulting slurry was stirred with MgSO₄ and filtered. The filter cake was washed with Et₂O (100 mL) and the combined organics removed *in vacuo* to afford the crude amino alcohol as a white solid (1.23 g, 97%), which

was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ: 7.33 – 7.26 (5 H, m), 3.60 (2 H, s), 3.38 (2 H, s), 1.61 – 1.40 (10 H, m).

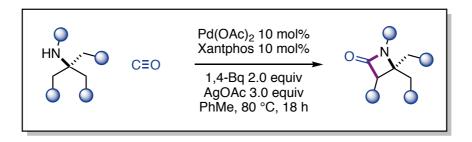
Step 2

To a solution of crude amino alcohol (1.01 g, 4.0 mmol) in anhydrous dichloromethane (20 mL) was added triethylamine (1.22 mL, 8.8 mmol) and trimethylacetyl chloride (0.53 mL, 4.4 mmol) dropwise at 0 °C. The reaction mixture was warmed to room temperature over 16 hours and quenched by the addition of saturated aqueous NaHCO₃ (20 mL). The organic layer was separated and washed with additional saturated aqueous NaHCO₃ (2 x 20 mL), brine (20 mL) and dried over MgSO₄. The solvent was removed *in vacuo* and the crude oil purified by flash column chromatography (gradient elution: 100% P.E. to 10% EtOAc in P.E.) to afford the product as a colourless oil (0.45 g, 33%). IR v_{max}/cm^{-1} (film): 2933, 2855, 1727, 1490, 1479, 1461, 1397, 1364, 1282, 1150, 1091, 1034, 1015. ¹H NMR (400 MHz, CDCl₃) δ : 7.28 – 7.26 (5 H, m), 4.02 (2 H, s), 3.61 (2 H, s), 1.70 – 1.57 (5 H, m), 1.46 – 1.31 (5 H, m), 1.21 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.5, 140.1, 132.6, 129.7, 128.6, 68.1, 54.3, 45.2, 39.1, 32.8, 27.4, 26.2, 21.4. m/z HRMS found [M + H]⁺ 338.1884, C₁₉H₂₉CINO₂ requires 338.1881.

(1-((3-nitrobenzyl)amino)cyclohexyl)methyl pivalate (1ad)

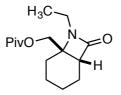
Step 1

To a solution of ethyl 1-aminocyclohexanecarboxylate hydrochloride (1.03 g, 5.0 mmol), sodium bicarbonate (0.42 g, 5.5 mmol) and powder 4A molecular sieves (1.0 g) in anhydrous methanol (10 mL) as added *m*-nitrobenzaldehyde (0.76 g, 5.0 mmol). The reaction was allowed to stir at room temperature for 16 hours and was subsequently cooled to 0 °C. Sodium borohydride (0.28 g, 7.5 mmol) was cautiously added portion-wise and the mixture was allowed to warm to room temperature over 2 hours. The reaction mixture was filtered over celite, washed with methanol and the solvent removed *in vacuo* to afford the amino ester as a yellow oil (1.45 g, 95%), which was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 8.23 (1 H, app s), 8.09 (1 H, dd, *J* = 1.6, 8.2 Hz), 7.68 (1 H, d, *J* = 7.5 Hz), 7.47 (1 H, t, *J* = 8.0 Hz), 4.20 (2 H, q, *J* = 7.1 Hz), 3.70 (2 H, s), 1.95 – 1.89 (2 H, m), 1.75 – 1.37 (8 H, m), 1.30 (3 H, t, *J* = 7.1 Hz).

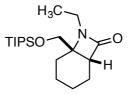

Step 2

To a solution of the crude amino ester (1.38 g, 4.5 mmol) in anhydrous THF (20 mL) at 0 °C was added DIBAL-H (1 M in THF, 13.5 mL, 13.5 mmol) dropwise. The resulting solution was allowed to warm to room temperature over 16 hours. The solution was cooled to 0 °C and quenched with Rochelle's salt (20 mL). The mixture was allowed to stir at room temperature for 3 hours and the organic layer was separated. The aqueous was extracted with ethyl acetate (3 x 20 mL) and the combined organic layers washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting solid was purified by flash column chromatography (gradient elution: 5% EtAOc in P.E. to 50% EtOAc in P.E.) to afford the amino alcohol as a pale yellow solid (0.58 g, 49%). ¹H NMR (400 MHz, CDCl₃) δ : 8.22 (1 H, app s), 8.11 (1 H, dd, *J* = 1.3, 8.2 Hz), 7.70 (1 H, d, *J* = 7.6 Hz), 7.50 (1 H, t, *J* = 7.9 Hz), 3.76 (2 H, s), 3.42 (2 H, s), 1.97 (1 H, br s), 1.63 – 1.41 (10 H, m).

Step 3

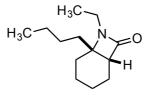

To a solution of crude amino alcohol (0.58 g, 2.2 mmol) in anhydrous dichloromethane (10 mL) was added triethylamine (0.67 mL, 4.8 mmol) and trimethylacetyl chloride (0.30 mL, 2.4 mmol) dropwise at 0 °C. The reaction mixture was warmed to room temperature over 16 hours and quenched by the addition of saturated aqueous NaHCO₃ (10 mL). The organic layer was separated and washed with additional saturated aqueous NaHCO₃ (2 x 10 mL), brine (10 mL) and dried over MgSO₄. The solvent was removed *in vacuo* and the crude oil purified by flash column chromatography (gradient elution: 100% P.E. to 25% EtOAc in P.E.) to afford the product as a colourless oil (0.47 g, 61%). IR v_{max}/cm^{-1} (film): 2932, 2856, 1725, 1527, 1479, 1461, 1397, 1348, 1282, 1151, 1094, 1034. ¹H NMR (400 MHz, CDCl₃) δ : 8.25 (1 H, app s), 8.09 (1 H, dd, *J* = 1.0, 8.0 Hz), 7.70 (1 H, d, *J* = 7.8 Hz), 7.45 (1 H, t, *J* = 7.8 Hz), 4.04 (2 H, s), 3.77 (2 H, s), 1.67 – 1.56 (5 H, m), 1.50 – 1.38 (5 H, m), 1.22 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.5, 148.5, 143.5, 134.5, 129.3, 123.2, 122.1, 68.0, 54.5, 45.2, 39.2, 32.8, 27.4, 26.2, 21.4. m/z HRMS found [M + H]⁺ 349.2122, C₁₉H₂₉N₂O₄ requires 349.2122

General procedure A for the synthesis of β–Lactams

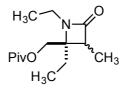


To a 10 mL oven-dried round-bottomed flask with large oval stirrer bar was added palladium (II) acetate (6.7 mg, 0.03 mmol, 0.1 equiv), silver(I) acetate (150 mg, 0.9 mmol, 3 equiv), Xantphos (17 mg, 0.03 mmol, 0.1 equiv) and 1,4-benzoquinone (66 mg, 0.6 mmol, 2 equiv). Anhydrous toluene (3 mL) and amine (0.3 mmol) were then added successively and the flask sealed with a new septum and Teflon tape. A balloon of carbon monoxide was placed on top and the flask purged (3 cycles). The flask was then placed into a preheated oil bath at 80 °C so as the solvent and oil level matched and left to stir at 500 rpm for 18 hours. After such time, the reaction mixture was filtered over celite and washed with additional EtOAc (5 mL). The organics were removed under vacuum and the crude reaction mixture purified by flash column chromatography to afford the corresponding β -lactam.

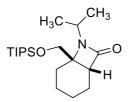
cis-(7-ethyl-8-oxo-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (2a)



General procedure A was applied to (1-(ethylamino)cyclohexyl)methyl pivalate (72.4 mg, 0.3 mmol) for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 5% EtOAc in P.E. to 30% EtOAc in P.E.) and filtered through a pad of activated charcoal (10% EtOAc in P.E.) to afford the product as a colourless oil (58.2 mg, 72%). IR (v_{max} /cm⁻¹): 2937, 2872, 1727, 1481, 1459, 1399, 1376, 1282, 1228, 1148, 1035. ¹H NMR (400 MHz, CDCl₃) δ : 4.25 (1 H, d, *J* = 11.8 Hz), 4.01 (1 H, d. *J* = 12.0 Hz), 3.19 (1 H, sxt, *J* = 7.1 Hz), 3.10 (1 H, sxt, *J* = 7.1 Hz), 2.97 (1 H, dd, *J* = 3.1, 5.6 Hz), 1.90 – 1.85 (1 H, m), 1.81 – 1.77 (1 H, m), 1.66 – 1.49 (6 H, m), 1.20 – 1.17 (12 H, m). ¹³C NMR (101 MHz, CDCl₃) δ : 178.2, 169.8, 66.6, 59.1, 49.7, 39.1, 34.5, 27.3, 25.3, 19.4, 18.7, 17.2, 14.3. m/z HRMS found [M + H]⁺ 268.1908, C₁₅H₂₆NO₃ requires 268.1907.

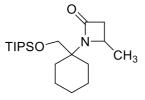

General procedure A was applied to *N*-ethyl-1-(((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (101.8 mg, 0.3 mmol) for 18 hours. The crude product was purified by flash column chromatography over silica (20% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (gradient elution: 5% EtOAc in P.E. to 10% EtOAc in P.E.) to afford the product as a colourless oil (53.0 mg, 54%). IR (v_{max} /cm⁻¹): 2941, 2866, 1743, 1462, 1401, 1375, 1199, 1116, 1066. ¹H NMR (400 MHz, CDCl₃) δ : 3.73 (2 H, dd, *J* = 10.4, 16.9 Hz), 3.23 – 3.11 (2 H, m), 2.90 (1 H, dd, *J* = 3.2, 6.1 Hz), 1.89 – 1.77 (2 H, m), 1.66 – 1.45 (6 H, m), 1.19 (3 H, t, *J* = 7.4 Hz), 1.08 – 1.04 (21 H, m). ¹³C NMR (101 MHz, CDCl₃) δ : 170.5, 68.2, 61.0, 49.3, 34.6, 25.3, 19.8, 19.1, 18.1, 17.7, 14.5, 12.0. m/z HRMS found [M + H]⁺ 340.2666, C₁₉H₃₈O₂NSi requires 340.2666.

cis-6-butyl-7-ethyl-7-azabicyclo[4.2.0]octan-8-one (2c)


Prepared according to general procedure A using 1-butyl-*N*-ethylcyclohexan-1-amine (55.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (20% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (20% EtOAc in P.E.) to afford the product as a colourless oil (37.0 mg, 59%). IR v_{max} /cm⁻¹ (film): 2929, 2861, 1734, 1455, 1399, 1376, 1334, 1302, 1191, 1142, 1086, 1056, 1035; ¹H NMR (400 MHz, CDCl₃) δ : 3.12 (2 H, d sept, *J* = 25.4, 7.2 Hz), 2.85 (1 H, dd, *J* = 2.9, 5.3 Hz), 1.94 – 1.80 (1 H, m), 1.75 – 1.63 (3 H, m), 1.63 – 1.45 (6 H, m), 1.39 – 1.23 (4 H, m), 1.19 (3 H, t, *J* = 7.3 Hz), 0.91 (3 H, t, *J* = 7.0 Hz); ¹³C NMR (101 MHz, CDCl₃) δ : 170.5, 60.6, 51.5, 38.3, 34.1, 28.1, 26.7, 23.3, 19.8, 18.5, 17.7, 14.4, 14.2; m/z HRMS found [M + H]⁺ 209.1786, C₁₃H₂₃NO requires 209.1780.

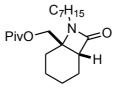
(1,2-diethyl-3-methyl-4-oxoazetidin-2-yl)methyl pivalate (2d)

Prepared according to general procedure A using 2-ethyl-2-(ethylamino)butyl pivalate (64.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate(150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 10% EtOAc in P.E. to 30% EtOAc in P.E.) to afford the product as a colourless oil (39.0 mg, 51%, inseparable 1:1 mixture of diastereomers). IR v_{max} /cm⁻¹ (film): 2972, 2935, 1728, 1480, 1461, 1399, 1368, 1280, 1148, 1092, 1035; ¹H NMR (400 MHz, CDCl₃) δ : 4.37 (1 H, d, *J* = 12.0 Hz), 4.35 (1 H, d, *J* = 12.0 Hz), 4.07 (2 H, d, *J* = 12.0 Hz), 3.21– 3.11 (2 H, m), 3.16 (2 H, quintet, *J* = 7.4 Hz), 3.00 (1 H, q, *J* = 7.7 Hz), 2.98 (1 H, q, *J* = 7.6 Hz), 1.93 (1 H, dq, *J*= 7.4, 14.8 Hz), 1.88 (1 H, dq, *J*= 7.6, 15.2 Hz), 1.70 (1 H, dq, *J*= 7.6, 15.1 Hz), 1.59 (1 H, dq, *J*= 7.6, 15.0 Hz), 1.25 – 1.15 (12 H, m), 1.22 (9 H, s), 1.21 (9 H, s), 0.94 (6 H, q, *J* = 7.5 Hz); ¹³C NMR (101 MHz, CDCl₃) δ : 178.1, 178.1, 170.1, 170.1, 65.5, 65.2, 63.2, 63.0, 50.8, 49.6, 39.1, 39.0, 35.0, 34.9, 27.3, 27.3, 27.1, 23.8, 14.7 (2C), 9.2, 9.1, 9.0, 8.5; m/z HRMS found [M + H]⁺ 256.1909, C₁₄H₂₆NO₃ requires 256.1907.


cis-7-isopropyl-6-(((triisopropylsilyl)oxy)methyl)-7-azabicyclo[4.2.0]octan-8-one (2e)

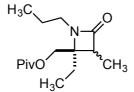
Prepared according to general procedure А using N-isopropyl-1-(((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (98.0 mg, 0.3 mmol), Pd(OAc)₂ (9.3 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (20% EtOAc in P.E.) to afford an inseparable mixture of *cis*-7-isopropyl-6-(((triisopropylsilyl)oxy)methyl)-7-azabicyclo[4.2.0]octan-8-one and 4-methvl-1-(1-(((triisopropylsilyl)oxy)methyl)cyclohexyl)azetidin-2-one as a colorless oil (21.0 mg, 20%, 1.5:1 ratio). The mixture was separated by preparative HPLC to obtain a clean sample of the title compound for analysis. IR v_{max}/cm^{-1} (neat): 2943, 2867, 1743, 1464, 1382, 1119, 1067, 1014; ¹H NMR (400 MHz, CDCl₃) δ 3.74 (2H, d, J = 2.1 Hz), 3.55 (1H, spt, J = 6.8 Hz), 2.86 (1H, dd, J = 3.3, 6.3 Hz), 1.89 – 1.78 (2H, m), 1.72 – 1.63 (3H, m), 1.60 – 1.43 (3H, m), 1.33 (6H, dd, *J* = 2.7, 6.8 Hz),

1.17 - 0.98 (21H, m); ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 68.6, 61.6, 49.2, 44.7, 25.9, 21.8, 21.6, 19.9, 19.2, 18.2, 18.0, 12.1; m/z HRMS found [M + H]⁺ 354.2827, C₂₀H₄₀NO₂Si requires 354.2823.

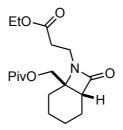

4-methyl-1-(1-(((triisopropylsilyl)oxy)methyl)cyclohexyl)azetidin-2-one

Prepared according general procedure А using N-isopropyl-1to (((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (98.0 mg, 0.3 mmol), Pd(OAc)₂ (9.3 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (20% EtOAc in P.E.) to afford an inseparable mixture of 4-methyl-1-(1-(((triisopropylsilyl)oxy)methyl)cyclohexyl)azetidin-2-one and *cis*-7-isopropyl-6-(((triisopropylsilyl)oxy)methyl)-7-azabicyclo[4.2.0]octan-8-one as a colorless oil (21.0 mg, 20%, 1:1.5 ratio). The mixture was separated by preparative HPLC to obtain a clean sample of the title compound for analysis.

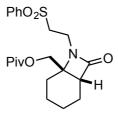
IR v_{max}/cm^{-1} (neat): 2940, 2865, 1744, 1463, 1379, 1364, 1348, 1134, 1098, 1068; ¹H NMR (400 MHz, CDCl₃) δ 3.85 (1H, qt d, J = 2.1, 5.7 Hz), 3.70 (2H, dd, J = 9.6, 22.6 Hz), 2.97 (1H, dd, J = 5.3, 14.3 Hz), 2.33 (1 H, dd, J = 2.3, 14.3 Hz), 2.24 – 2.12 (1H, m), 1.94 (1H, app. d, J = 13.5 Hz), 1.68 – 1.43 (6H, m), 1.38 (3 H, d, J = 6.1 Hz), 1.35 – 1.24 (2H, m), 1.23 – 0.92 (21H, m); ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 68.4, 61.4, 47.2, 43.1, 30.7, 25.7, 22.6, 22.3, 22.2, 18.2, 12.1; m/z HRMS found [M + H]⁺ 354.2828, C₂₀H₄₀NO₂Si requires 354.2823.


cis-7-heptyl-8-oxo-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (2f)

Prepared according to general procedure A using (1-(heptylamino)cyclohexyl)methyl pivalate (93.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The

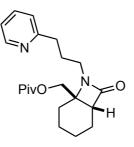

crude product was purified by flash column chromatography (gradient elution: 5% EtOAc in P.E. to 15% EtOAc in P.E.) to afford the product as a brown oil (71 mg, 70%). IR v_{max} /cm⁻¹ (film): 2933, 2861, 1730, 1481, 1461, 1393, 1368, 1276, 1148, 1037; ¹H NMR (400 MHz, CDCl₃) δ : 4.24 (1 H, d, *J* = 11.9 Hz), 4.02 (1 H, d, *J* = 11.9 Hz), 3.15 – 3.06 (1 H, m), 3.04 – 2.95 (2 H, m), 1.94 – 1.84 (1 H, m), 1.79 (1 H, dt, *J* = 3.6, 8.3 Hz), 1.72 – 1.43 (8 H, m), 1.33 – 1.24 (8 H, m), 1.21 (9 H, s), 0.87 (3 H, t, *J* = 6.9 Hz); ¹³C NMR (101 MHz, CDCl₃) δ : 178.2, 170.1, 66.8, 59.0, 49.6, 40.2, 39.1, 31.9, 29.3, 29.1, 27.4, 27.3, 25.3, 22.7, 19.6, 18.8, 17.3, 14.2; m/z HRMS found [M + H]⁺ 338.2691, C₂₀H₃₆NO₃ requires 338.2690.

(2-ethyl-3-methyl-4-oxo-1-propylazetidin-2-yl)methyl pivalate (2g)

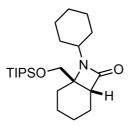

Prepared according to general procedure A using 2-ethyl-2-(propylamino)butyl pivalate (73.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate(150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (20% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (20%% EtOAc in P.E.) to afford the product as a colourless oil (53.0 mg, 66%, inseparable 1:1 mixture of diastereomers). IR v_{max}/cm^{-1} (film): 2972, 2873, 1730, 1483, 1459, 1399, 1365, 1278, 1148, 1094, 1033; ¹H NMR (400 MHz, CDCl₃) & 4.36 (1 H, d, *J* = 11.9 Hz), 4.34 (1 H, d, *J* = 12.0 Hz), 4.06 (2 H, d, *J* = 12.0 Hz), 3.10 – 2.90 (6 H, m), 1.99 – 1.82 (2 H, m), 1.75 – 1.63 (2 H, m), 1.64 – 1.50 (4 H, m), 1.26 – 1.16 (6 H, m), 1.21 (9 H, s), 1.20 (9 H, s), 0.96 – 0.90 (6 H, m), 0.89 (3 H, t, *J* = 7.5 Hz), 0.89 (3 H, t, *J* = 7.4 Hz); ¹³C NMR (101 MHz, CDCl₃) & 178.1, 178.0, 170.4, 170.4, 65.5, 65.2, 63.1, 62.8, 50.7, 49.5, 42.2, 42.1, 39.1, 39.0, 27.3 (2C), 27.1, 23.7, 22.8, 22.7, 11.8, 11.8, 9.2, 9.1, 9.1, 8.5; m/z HRMS found [M + H]⁺ 270.2065, C₁₅H₂₈NO₃ requires 270.2064.

(cis -7-(3-ethoxy-3-oxopropyl)-8-oxo-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (2h)

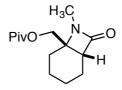
Prepared according to general procedure А (1-((3-ethoxy-3using oxopropyl)amino)cyclohexyl)methyl pivalate (94.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 20% EtOAc in P.E. to 30% EtOAc in P.E.) and subsequently by filtration through activated charcoal, eluting with EtOAc, to afford the product as a yellow oil (84 mg, 82%). IR v_{max}/cm⁻¹ (film): 2937, 2873, 1726, 1479, 1459, 1399, 1367, 1282, 1146, 1031; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta$: 4.23 (1 H, d, J = 11.9 Hz), 4.14 (2 H, q, J = 7.1 Hz), 4.04 (1 H, d, J = 11.9 Hz), 3.38 (2 H, dtd, J = 7.5, 14,4. 21.8 Hz), 2.97 (1 H, dd, J = 3.7, 5.9 Hz), 2.76 - 2.54 (2 H, m), 1.93 -1.76 (2 H, m), 1.69 - 1.47 (6 H, m), 1.25 (3 H, t, J = 7.1 Hz), 1.21 (9 H, s); ¹³C NMR (101 MHz, CDCl₃) δ: 178.1, 171.4, 170.4, 66.5, 61.0, 59.4, 49.7, 39.1, 35.7, 33.7, 27.3, 25.0, 19.5, 18.7, 17.3, 14.3; m/z HRMS found $[M + H]^+$ 340.2120, C₁₈H₃₀NO₅ requires 340.2118.


(cis -8-oxo-7-(2-(phenylsulfonyl)ethyl)-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (2i)

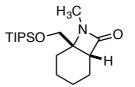
Prepared according general procedure А (1-((2to using (phenylsulfonyl)ethyl)amino)cyclohexyl)methyl pivalate (1. 15 g, 3 mmol), Pd(OAc)₂ (67.0 mg, 0.3 mmol), Xantphos (170.0 mg, 0.3 mmol), 1,4-benzoquinone (655.0 mg, 6.0 mmol) and silver(I) acetate (1.50 g, 9.0 mmol) in toluene (30 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (50% EtOAc in P.E.) to afford the product as a white amorphous solid (833 mg, 68%). m.p. 61–63 °C; IR v_{max}/cm⁻¹ (film): 2940, 2865, 1752, 1724, 1477, 1449, 1403, 1368, 1306, 1280, 1151, 1140, 1082, 1050, 1031; ¹H NMR (500 MHz, CDCl₃) δ : 7.92 (2 H, app d, J = 7.2 Hz), 7.69 (1 H, tt, J = 7.5, 1.1 Hz), 7.59 (2 H, app t, J = 7.7 Hz), 4.27 (1 H, d, J = 12.0 Hz), 3.97 (1 H, d, J = 12.0 Hz, 3.60 - 3.35 (4 H, m), 2.92 (1 H, dd, J = 6.5, 3.8 Hz), 1.88 - 1.77 (2 H, m), 1.68 - 1.39 (6 Hz)


H, m), 1.20 (9 H, s); ¹³C NMR (126 MHz, CDCl₃) δ : 178.0, 170.3, 138.9, 134.3, 129.7, 128.2, 66.7, 59.7, 54.1, 50.0, 39.1, 34.0, 27.3, 24.9, 19.4, 18.8, 17.3; m/z HRMS found [M + H]⁺ 408.1836, C₂₁H₃₀NO₅S requires 408.1839.

(cis -8-oxo-7-(3-(pyridin-2-yl)propyl)-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (2j)

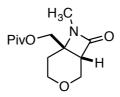

Prepared according to general procedure А using (1-((3-(pyridin-2yl)propyl)amino)cyclohexyl)methyl pivalate (100.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 60% EtOAc in P.E. to 70% EtOAc in P.E.) to afford the product as a dark brown oil (83 mg, 77%). IR v_{max}/cm^{-1} (film): 2944, 2877, 1724, 1594, 1568, 1475, 1435, 1399, 1368, 1278, 1144, 1035; ¹H NMR (400 MHz, CDCl₃) δ : 8.51 (1 H, d, J = 4.1 Hz), 7.60 (1 H, td, J = 7.7, 1.8 Hz), 7.20 (1 H, d, J = 7.8 Hz), 7.12 (1 H, dd, J = 7.4, 5.0 Hz), 4.23 (1 H, d, J = 11.9 Hz), 4.04 (1 H, d, J = 11.9 Hz), 3.07 (2 H, d sept, J = 14.2, 7.6 Hz), 2.98 (1 H, dd, J = 5.9, 3.6 Hz), 2.83 (2H, t, J = 7.6 Hz), 2.04 (2 H, qt, J = 7.6 Hz), 1.95 – 1.84 (1 H, m), 1.84 – 1.74 (1 H, m), 1.74 – 1.44 (6 H, m), 1.18 (9 H, s); ¹³C NMR (101 MHz, CDCl₃) δ: 178.2, 170.3, 160.8, 149.3, 136.8, 123.2, 121.4, 66.8, 59.1, 49.7, 39.7, 39.1, 35.8, 29.0, 27.3, 25.3, 19.6, 18.8, 17.4; m/z HRMS found [M + H]⁺ 359.2329, C₂₁H₃₁N₂O₃ requires 359.2329.

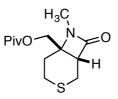
cis-7-cyclohexyl-6-(((triisopropylsilyl)oxy)methyl)-7-azabicyclo[4.2.0]octan-8-one (2k)


Prepared according to general procedure A using N-cyclohexyl-1-(((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (110 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude mixture was purified by flash column chromatography (10% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (10% EtOAc in P.E.) to afford the tile compound as a light yellow oil (29.0 mg, 25%). IR v_{max}/cm^{-1} (neat): 2931, 2863, 1736, 1450, 1364, 1288, 1115, 1090, 1065; ¹H NMR (500 MHz, CDCl₃) δ 3.75 (2 H, s), 3.17 (1 H, tt, *J* = 3.9, 11.8 Hz), 2.86 (1 H, dd, *J* = 3.4, 6.3 Hz), 1.97 – 1.45 (16 H, m), 1.29 – 1.16 (2 H, m), 1.08 (21 H, m); ¹³C NMR (126 MHz, CDCl₃) δ 169.7, 68.8, 61.4, 52.6, 49.0, 31.8, 31.6, 25.8, 25.8, 25.7, 25.3, 19.8, 19.1, 18.0, 17.8, 11.9; m/z HRMS found [M + H]⁺ 394.3127, C₂₃H₄₄NO₂Si requires 394.3136.

cis-7-methyl-8-oxo-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (2m)

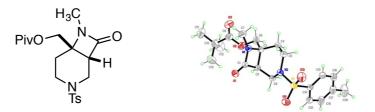
Prepared according to general procedure A using (1-(methylamino)cyclohexyl)methyl pivalate (68.2 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. Purification by flash column chromatography (30% EtOAc in P.E.) gave the desired product as a colorless oil (65.6 mg, 86%). IR v_{max}/cm^{-1} (film): 2939, 2872, 1727, 1480, 1461, 1421, 1389, 1366, 1281, 1148, 1032. ¹H NMR (400 MHz, CDCl₃) δ : 4.30 (1 H, d, *J* = 11.9 Hz), 3.92 (1 H, d, *J* = 11.9 Hz), 2.99 – 2.97 (1 H, m), 2.65 (3 H, s), 1.88 – 1.72 (2 H, m), 1.66 – 1.45 (6 H, m), 1.17 (9H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.1, 170.0, 65.9, 58.6, 49.6, 39.0, 27.2, 24.8, 24.3, 19.4, 18.7, 17.1. m/z HRMS found [M + H]⁺ 254.1751, C₁₄H₂₄O₃N requires 254.1751


cis-7-methyl-6-(((triisopropylsilyl)oxy)methyl)-7-azabicyclo[4.2.0]octan-8-one (2n)

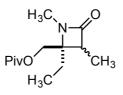

To a 250 mL round-bottomed flask equipped with large oval shaped stirrer bar was added palladium (II) acetate (168 mg, 0.75 mmol, 0.1 equiv), silver(I) acetate (3.75 g, 22.5 mmol, 3 equiv), Xantphos (425 mg, 0.75 mmol, 0.1 equiv) and 1,4-benzoquinone (1.65 g, 15 mmol, 2 equiv). *N*-methyl-1-

(((triisopropylsilyl)oxy)methyl)cyclohexan-1-amine (2.24 g, 7.5 mmol) was subsequently dissolved in toluene (30 mL) and added to the flask. The flask was sealed with a new septa and Teflon tape and purged with a balloon of CO (3 cycles). The flask was placed into a preheated oil bath at 80 °C and stirred vigorously for 18 hours. The flask was allowed to cool to room temperature, filtered over a plug of celite and washed with EtOAc. The solvent was removed *in vacuo* and the crude product was purified by flash column chromatography (5% EtOAc in P.E. to 30% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (5% EtOAc in P.E. to 30% EtOAc in P.E.) to afford the product as a colourless oil (1.98 g, 81%). IR (v_{max}/cm^{-1}): 2941, 2865, 1746, 1463, 1418, 1387, 1334, 1295, 1247, 1116, 1092, 1066. ¹H NMR (400 MHz, CDCl₃) δ : 3.74 (1 H, d, *J* = 10.1 Hz), 3.86 (1 H, d, *J* = 10.1 Hz), 2.92 – 2.90 (1 H, m), 2.71 (3 H, s), 1.88 – 1.77 (2 H, m), 1.62 – 1.45 (6 H, m), 1.09 – 1.02 (21 H, m). ¹³C NMR (101 MHz, CDCl₃) δ : 170.6, 67.8, 60.2, 49.2, 25.1, 24.3, 19.7, 19.2, 18.1, 17.7, 12.0. m/z HRMS found [M + H]⁺ 326.2503, C₁₈H₃₆NO₂Si requires 326.2510

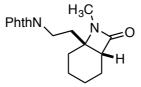
cis-(7-methyl-8-oxo-3-oxa-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (20)



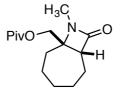
Prepared according to general procedure A using (4-(methylamino)tetrahydro-2*H*-pyran-4-yl)methyl pivalate (73.5 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. Purification by flash column chromatography (gradient elution: 50% EtOAc in P.E. to 80% EtOAc in P.E.) gave the desired product as a colorless oil (65.6 mg, 86%). IR v_{max} /cm⁻¹ (film): 2973, 2874, 1732, 1614, 1480, 1460, 1415, 1359, 1339, 1148, 1118. ¹H NMR (400 MHz, CDCl₃) δ : 5.59 (1 H, dd, *J* = 10.7, 17.3 Hz), 5.41 (1 H, d, *J* = 10.8 Hz), 5.22 (1 H, d, *J* = 17.4 Hz), 4.29 (1 H, d, *J* = 11.8 Hz), 4.11 (1 H, d, *J* = 11.8 Hz), 3.03 (1 H, td, *J* = 2.9, 12.3 Hz), 2.94 (3 H, s), 2.72 (1 H, ddd, *J* = 3.3, 5.9, 12.3 Hz), 2.32 (1 H, ddd, *J* = 3.2, 11.7, 14.4 Hz), 2.08 (1 H, ddd, *J* = 2.9, 4.9, 14.0 Hz), 1.19 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 177.8, 167.1, 135.3, 118.2, 66.1, 64.5, 39.0, 32.5, 31.2, 27.2, 22.8. m/z HRMS found [M + H]⁺ 256.1540, C₁₃H₂₂O₄N requires 256.1549


Prepared according to general procedure A using (4-(methylamino)tetrahydro-2*H*-thiopyran-4yl)methyl pivalate (68.8 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. Purification by flash column chromatography (30% EtOAc in P.E.) gave the desired product as a colorless oil (65.5 mg, 84%). IR v_{max} /cm⁻¹ (film): 2979, 1732, 1683, 1480, 1462, 1396, 1280, 1149, 1070, 1037. ¹H NMR (400 MHz, CDCl₃) δ : 4.55 – 4.51 (1 H, m), 4.38 – 4.35 (1 H, m), 3.94 – 3.86 (3 H, m), 2.75 (3 H, s), 2.68 – 2.61 (1 H, m), 2.49 – 2.43 (1 H, m), 2.06 – 2.01 (1 H, m), 1.84 – 1.77 (1 H, m), 1.15 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 177.9, 173.3, 79.3, 73.5, 66.9, 64.0, 38.9, 38.2, 32.6, 27.2, 25.6. m/z HRMS found [M + H]⁺ 272.1314, C₁₃H₂₂O₃NS requires 272.1320.

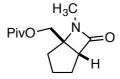
cis-(7-methyl-8-oxo-3-tosyl-3,7-diazabicyclo[4.2.0]octan-6-yl)methyl pivalate (2q)


Prepared according to general procedure A using (4-(methylamino)-1-tosylpiperidin-4-yl)methyl pivalate (114.7 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. Purification by flash column chromatography (30% EtOAc in P.E.) gave the desired product as an off-white solid (89.0 mg, 73%). m.p. 140–142 °C; IR v_{max}/cm^{-1} (film): 2959, 1756, 1737, 1716, 1599, 1461, 1399, 1378, 1358, 1340, 1308, 1286, 1166, 1090, 1040. ¹H NMR (400 MHz, CDCl₃) δ : 7.64 (2 H, d, *J* = 8.2 Hz), 7.29 (2 H, d, *J* = 8.2 Hz), 4.35 (1 H, d, *J* = 11.9 Hz), 3.92 (1 H, d, *J* = 11.9 Hz), 3.65 (1 H, dd, *J* = 3.3, 13.1 Hz), 3.47 (1 H, dt, *J* = 5.0, 12.0 Hz), 3.32 (1 H, dd, *J* = 5.9, 13.0 Hz), 3.14 (1 H, dd, *J* = 3.3, 5.6 Hz), 3.00 (1 H, td, *J* = 4.1, 11.7 Hz), 2.61 (3 H, s), 2.39 (3 H, s), 2.00 – 1.94 (1 H, m), 1.84 – 1.77 (1 H, m), 1.15 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 177.7, 166.7, 143.8, 134.3, 129.8, 127.5, 64.5, 56.8, 49.7, 40.0, 39.2, 39.0, 27.1, 25.2, 25.0, 21.6. m/z HRMS found [M + H]⁺ 409.1793, C₂₀H₂₉O₅N₂S requires 409.1792.

(2-ethyl-1,3-dimethyl-4-oxoazetidin-2-yl)methyl pivalate (2r)

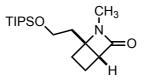

Prepared according to general procedure A using 2-ethyl-2-(methylamino)butyl pivalate (65.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate(150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (10% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (10% EtOAc in P.E.) to afford the product as a yellow oil (53.0 mg, 73%, inseparable 1:1 mixture of diastereomers). IR v_{max}/cm^{-1} (film): 2964, 2940, 1728, 1479, 1459, 1417, 1395, 1368, 1276, 1146, 1086, 1039; ¹H NMR (400 MHz, CDCl₃) δ : 4.41 (1 H, d, *J* = 12.0 Hz), 4.37 (1 H, d, *J* = 11.9 Hz), 4.08 (1 H, d, *J* = 11.9 Hz), 4.04 (1 H, d, *J* = 12.0 Hz), 3.01 (2 H, q, *J* = 7.6 Hz), 2.72 (3 H, s), 2.71 (3 H, s), 1.96 – 1.81 (2 H, m), 1.72 – 1.61 (1 H, m), 1.61 – 1.52 (1 H, m), 1.24-1.20 (6 H, m), 1.21 (9 H, s), 1.20 (9 H, s), 0.96 (3 H, t, *J* = 7.6 Hz), 0.93 (3 H, t, *J* = 7.5 Hz); ¹³C NMR (101 MHz, CDCl₃) δ : 178.1, 178.1, 170.3, 170.2, 64.7, 64.7, 62.5, 62.3, 50.9, 49.7, 39.1, 39.0, 27.3, 27.3, 26.0, 25.4, 25.3, 22.9, 9.1, 9.1, 9.0, 8.3; m/z HRMS found [M + H]⁺ 242.1751, C₁₃H₂₄NO₃ requires 242.1751.

N-(2-(cis-7-methyl-8-oxo-7-azabicyclo[4.2.0]octan-6-yl)ethyl)phthalimide (2s)

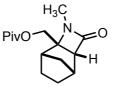

Prepared according to general procedure A using *N*-(2-(1-(methylamino)cyclohexyl)ethyl)phthalimide (57.3 mg, 0.3 mmol), Pd(OAc)₂ (9.3 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4benzoquinone (65 mg, 0.6 mmol) and silver(I) pivalate (189 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 30% EtOAc in P.E. to 60% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (gradient elution: 20% EtOAc in P.E. to 50% EtOAc in P.E.) to afford the product as a white crystalline solid (74.5 mg, 80%) (Product contains 5 % impurity by ¹H NMR spectroscopy). m.p. 124–126 °C. IR ν_{max} /cm⁻¹ (film): 2937, 2872, 1771, 1736, 1707, 1614, 1466, 1436, 1407, 1394, 1378, 1275, 1252, 1189, 1138, 1092. ¹H NMR (400 MHz, CDCl₃) δ : 7.85 (2 H, dd, *J* = 3.1, 5.5 Hz), 7.72 (2 H, dd, J = 3.1, 5.5 Hz), 3.81 - 3.66 (2 H, m), 3.08 - 3.06 (1 H, m), 2.74 (3 H, s), 2.09 - 2.01 (1 H, m), 1.97 - 1.89 (2 H, m), 1.76 - 1.45 (7 H, m). ¹³C NMR (101 MHz, CDCl₃) δ : 170.0, 168.2, 134.3, 132.2, 123.5, 58.5, 51.4, 35.5, 33.5, 27.2, 24.5, 19.4, 18.2, 17.1. m/z HRMS found [M + H]⁺ 313.1552, $C_{18}H_{21}N_2O_3$ requires 313.1552

cis-(8-methyl-9-oxo-8-azabicyclo[5.2.0]nonan-7-yl)methyl pivalate (2t)

Prepared according to general procedure A using (1-(methylamino)cycloheptyl)methyl pivalate (72.4 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. Purification by flash column chromatography (20% EtOAc in P.E.) gave the desired product as a colorless oil (71.0 mg, 89%). IR ν_{max} /cm⁻¹ (film): 2926, 2859, 1728, 1480, 1450, 1421, 1392, 1366, 1281, 1146, 1090, 1059, 1035. ¹H NMR (400 MHz, CDCl₃) δ : 4.35 – 4.31 (1 H, m), 3.97 (1 H, dt, *J* = 1.6, 11.9 Hz), 3.08 (1 H, d, 4.4 Hz), 2.66 (3 H, s), 1.89 – 1.80 (2 H, m), 1.64 – 1.33 (8 H, m), 1.17 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.0, 1692, 66.3, 63.8, 56.2, 39.0, 31.6, 30.0, 27.2, 27.1, 25.7, 24.8, 24.0. m/z HRMS found [M + H]⁺ 268.1907, C₁₅H₂₆O₃N requires 268.1907

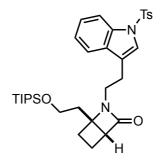

cis-(6-methyl-7-oxo-6-azabicyclo[3.2.0]heptan-5-yl)methyl pivalate (2u)

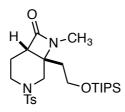
Prepared according to general procedure A using (1-(methylamino)cyclopentyl)methyl pivalate (64.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. Purification by flash column chromatography (40% EtOAc in P.E.) gave the desired product as a colorless oil (59.0 mg, 82%). IR v_{max}/cm^{-1} (film): 2959, 2874, 1728, 1481, 1461, 1419, 1335, 1282, 1150, 1084. ¹H NMR (400 MHz, CDCl₃) δ : 4.50 (1 H, d, *J* = 11.9 Hz), 4.07 (1 H, d, *J* = 11.9 Hz), 3.22 (1 H, app d, *J* = 7.6 Hz), 2.65 (3 H, s), 2.00 – 1.95 (1 H, m), 1.92 – 1.84 (2 H, m), 1.68 – 1.55 (1


H, m), 1.51 - 1.42 (1 H, m), 1.31 - 1.22 (1 H, m), 1.17 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.0, 168.8, 68.6, 64.5, 57.2, 39.0, 27.8, 27.2, 25.1, 24.4, 23.7. m/z HRMS found [M + H]⁺ 240.1593, $C_{13}H_{22}O_{3}N$ requires 240.1594.

cis-2-methyl-1-(2-((triisopropylsilyl)oxy)ethyl)-2-azabicyclo[2.2.0]hexan-3-one (2v)

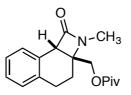
Prepared according procedure N-methyl-1-(2to general А using ((triisopropylsilyl)oxy)ethyl)cyclobutan-1-amine (85.7 mg, 0.3 mmol), Pd(OPiv)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 5% EtOAc in P.E. to 30% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (gradient elution: 5% EtOAc in P.E. to 30% EtOAc in P.E.) to afford the product as a colourless oil (78.9 mg, 84%). IR v_{max}/cm^{-1} (film): 2942, 2866, 1744, 1463, 1413, 13784, 1292, 1246, 1225, 1187, 1097. ¹H NMR (400 MHz, CDCl₃) δ: 3.75 (2 H, dt, J = 1.0, 6.3 Hz), 3.40 (1 H, dd, J = 2.2, 8.9 Hz), 2.75 (3 H, s), 2.37 - 2.28 (1 H, m), 2.20(1 H, dt, J = 5.5, 12.3 Hz), 2.06 - 1.92 (2 H, m), 1.90 (2 H, t, J = 6.3 Hz), 1.09 - 1.02 (21 H, m).NMR (101 MHz, CDCl₃) δ: 171.4, 62.5, 59.8, 52.8, 35.3, 27.1, 24.9, 18.1 (TIPS CH₃ and cyclo-C₄), 12.0. m/z HRMS found $[M + H]^+$ 312.2354, C₁₇H₃₄NSi requires 312.2353


cis-3-methyl-4-oxo-3-azatricyclo[4.2.1.0^{2,5}]nonan-2-yl)methyl pivalate (2w)

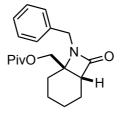

Prepared according to general procedure A using endo-2-(methylamino)norbornane-2-methyl pivalate (71.8 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 5% EtOAc in P.E. to 20% EtOAc in P.E.) and subsequently by flash column chromatography over

alumina (gradient elution: 5% EtOAc in P.E. to 30% EtOAc in P.E.) to afford the product as a colourless oil (55.0 mg, 69%). IR v_{max} /cm⁻¹ (film): 2959, 2878, 1724, 1480, 1459, 1419, 1382, 1331, 1303, 1281, 1149. ¹H NMR (400 MHz, CDCl₃) δ : 4.49 (1 H, d, *J* = 12.3 Hz), 4.01 (1 H, d, *J* = 12.3 Hz), 3.19 (1 H, d, *J* = 5.7 Hz), 2.73 (3 H, s), 2.45 (1 H, br s), 2.24 (1 H, app. d, *J* = 3.3 Hz), 1.77 (1 H, d, *J* = 10.6 Hz), 1.67 - 1.53 (4 H, m), 1.44 - 1.39 (1 H, m), 1.19 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.2, 169.0, 69.1, 62.8, 61.3, 43.4, 39.3, 39.1, 36.5, 27.3, 27.1, 25.8, 24.3. m/z HRMS found [M + H]⁺ 266.1752, C₁₅H₂₄O₃N requires 266.1751

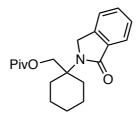
cis-2-(2-(1-tosyl-1H-indol-3-yl)ethyl)-1-(2-((triisopropylsilyl)oxy)ethyl)-2-azabicyclo[2.2.0]hexan-3-one (2x)



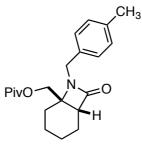
Prepared according to general procedure A using *N*-(2-(1-tosyl-1H-indol-3-yl)ethyl)-1-(2-((triisopropylsilyl)oxy)ethyl)cyclobutan-1-amine (171.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (20% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (20%% EtOAc in P.E.) to afford the product as a viscous yellow oil (145 mg, 81%). IR v_{max}/cm^{-1} (film): 2937, 2869, 1732, 1461, 1447, 1395, 1378, 1352, 1308, 1274, 1245, 1203, 1167, 1134, 1115, 1098, 1066, 1013; ¹H NMR (400 MHz, CDCl₃) δ : 7.99 (1 H, d, *J* = 8.3 Hz), 7.76 (2 H, d, *J* = 8.4 Hz), 7.49 (1 H, d, *J* = 7.8 Hz), 7.45 (1 H, s), 7.32 (1 H, app t, *J* = 7.7 Hz), 7.26 - 7.19 (3 H, m), 3.72 (2 H, td, *J* = 1.8, 6.1 Hz), 3.55 (1 H, ddd, *J* = 6.4, 9.1, 14.1 Hz), 3.45 - 3.35 (2 H, m), 3.11 - 2.95 (2 H, m), 2.33 (3 H, s), 2.30 - 2.18 (2 H, m), 1.90 (2 H, d, *J* = 7.2 Hz), 1.84 (2 H, t, *J* = 6.1 Hz), 1.08 - 0.96 (21 H, m); ¹³C NMR (101 MHz, CDCl₃) δ : 171.6, 144.9, 135.5, 135.3, 130.7, 130.0, 127.0, 125.0, 123.4, 123.3, 119.7, 119.4, 113.9, 63.0, 59.9, 52.7, 40.1, 35.9, 28.2, 24.6, 21.7, 18.1, 17.9, 12.0; m/z HRMS found [M + H]⁺ 595.3009, C₃₃H₄₇N₂O₄SSi requires 595.3020.


Prepared according to general procedure А using N-methyl-1-tosyl-3-(2-((triisopropylsilyl)oxy)ethyl)piperidin-3-amine (140.6 mg, 0.3 mmol), Pd(OAc)₂ (9.3 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) pivalate (189 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 5% EtOAc in P.E. to 30% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (gradient elution: 5% EtOAc in P.E. to 30% EtOAc in P.E.) to afford the product as a colourless oil (87.0 mg, 59%). IR v_{max}/cm^{-1} (film): 2943, 2866, 1744, 1598, 1463, 1421, 1390, 1338, 1250, 1162, 1092. ¹H NMR (400 MHz, CDCl₃) δ: 7.65 (2 H, d, J = 8.3 Hz), 7.30 (2 H, J = 8.1 Hz), 3.81 - 3.76 (3 H, m), 3.49 (1 H, dt, J = 6.1, 11.6 Hz), 3.19 (1 H, t, J = 3.7 Hz), 3.13 (1 H, ddd, J = 2.3, 7.1, 10.8 Hz), 3.00 (1 H, d, J = 13.6 Hz), 2.67 (3 H, s), 2.41 (3 H, s), 2.06 (1 H, dqt, 3.1, 14.9 Hz), 1.92 – 1.69 (3 H, m), 1.03 – 0.99 (21 H, m). ¹³C NMR (101 MHz, CDCl₃) δ: 168.2, 143.6, 134.9, 129.9, 127.3, 59.4, 59.3, 50.6, 44.6, 40.9, 36.8, 24.4, 21.6, 19.5, 18.1, 11.9. m/z HRMS found $[M + NH_4]^+$ 512.2964, C₂₅H₄₆O₄N₃SSi requires 512.2973.

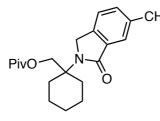
cis-(2-methyl-1-oxo-1,3,4,8b-tetrahydronaphtho[2,1-b]azet-2a(2H)-yl)methyl pivalate (2z)


Prepared according to general procedure A using (2-(methylamino)-1,2,3,4-tetrahydronaphthalen-2yl)methyl pivalate (82.6 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. Purification by flash column chromatography (30% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (30% EtOAc in P.E.) gave the desired product as a colorless oil (77.0 mg, 86%). IR v_{max} /cm⁻¹ (film): 2971, 1746, 1729, 1480, 1458, 1419, 1387, 1366, 1281, 1253, 1226, 1208, 1143, 1052, 1036. ¹H NMR (400 MHz, CDCl₃) δ : 7.22 – 7.14 (4 H, m), 4.59 (1 H, d, *J* = 12.1 Hz), 4.08 – 4.05 (2 H, m), 2.78 (3 H, s), 2.75 – 2.61 (2 H, m), 2.19 (1 H, dt, J = 3.5, 14.1 Hz), 1.48 (1 H, td, J = 4.3, 13.5 Hz), 1.25 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.0, 166.0, 137.5, 130.2, 129.5, 28.3, 127.5, 127.2, 65.4, 61.3, 56.2, 39.1, 27.3, 25.4, 25.2, 24.2. m/z HRMS found $[M + H]^+$ 302.1750, C₁₈H₂₄O₃N requires 302.1751

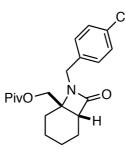
(cis -7-benzyl-8-oxo-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (2aa)


Prepared according to general procedure A using (1-(benzylamino)cyclohexyl)methyl pivalate (91.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude mixture was purified by flash column chromatography (gradient elution, 10% EtOAc in P.E. to 30% EtOAc in P.E.) to afford (*cis* -7-benzyl-8-oxo-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (56 mg, 57%). m.p. 74–76 °C; IR v_{max}/cm⁻¹ (film): 2933, 2877, 1719, 1498, 1479, 1467, 1451, 1435, 1403, 1358, 1336, 1284, 1199, 1163, 1054, 1033; ¹H NMR (400 MHz, CDCl₃) δ : 7.34 – 7.24 (5 H, m), 4.29 (2 H, q, *J* = 15.2 Hz), 4.10 (1 H, d, *J* = 12.0 Hz), 3.92 (1 H, d, *J* = 11.9 Hz) 3.06 (1 H, dd, *J* = 3.8, 6.4 Hz), 1.91 (1 H, ddd, *J* = 2.6, 5.3, 8.6 Hz), 1.71 – 1.54 (3 H, m), 1.51 – 1.34 (3 H, m), 1.32 – 1.20 (1 H, m), 1.16 (9 H, s); ¹³C NMR (101 MHz, CDCl₃) δ : 178.1, 170.0, 136.8, 128.8, 128.6, 127.8, 66.2, 59.8, 50.1, 43.9, 39.1, 27.3, 25.1, 19.7, 18.7, 17.1; m/z HRMS found [M + H]⁺ 330.2064, C₂₀H₂₈NO₃ requires 330.2064.

(1-(1-oxoisoindolin-2-yl)cyclohexyl)methyl pivalate (3aa)

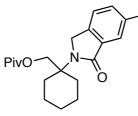

Prepared according to general procedure A using (1-(benzylamino)cyclohexyl)methyl pivalate (91.0 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude mixture was purified by flash column chromatography (gradient elution, 10% EtOAc in P.E. to 30% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (gradient elution, 10% EtOAc in P.E. to 30% EtOAc in P.E.) to afford (1-(1-oxoisoindolin-2-yl)cyclohexyl)methyl pivalate (23 mg, 23%) as a white solid. m.p. 86–88 °C; IR v_{max}/cm^{-1} (film): 2936, 2863, 1723, 1671, 1479, 1469, 1443, 1388, 1366, 1327, 1301, 1281, 1138, 1071, 1034; ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (1 H, d, *J* = 7.5 Hz), 7.52 (1 H, td, *J* = 1.1, 7.4 Hz), 7.46 – 7.40 (2 H, m), 4.57 (2 H, s), 4.39 (2 H, s), 2.60 – 2.52 (2 H, m), 1.82 – 1.73 (2 H, m), 1.72 – 1.51 (6 H, m), 1.10 (9 H, s); ¹³C NMR (101 MHz, CDCl₃) δ : 178.3, 169.7, 141.0, 134.1, 131.3, 128.0, 123.5, 122.3, 67.7, 59.5, 49.2, 39.0, 31.9, 27.3, 25.8, 22.3; m/z HRMS found [M + H]⁺ 330.2063, C₂₀H₂₈NO₃ requires 330.2064.

cis-7-(4-methylbenzyl)-8-oxo-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (2ab)



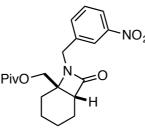
Prepared according to general procedure A using (1-((4-methylbenzyl)amino)cyclohexyl)methyl pivalate (95.2 mg, 0.3 mmol), Pd(OAc)₂ (9.3 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 100% P.E. to 25% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (gradient elution: 100 % P.E. to 20% EtOAc in P.E.) to afford the product as a colorless oil (32.7 mg, 32%). IR v_{max} /cm⁻¹ (film): 2936, 2871, 1728, 1516, 1480, 1458, 1397, 1365, 1346, 1281, 1145, 1035. ¹H NMR (400 MHz, CDCl₃) δ : 7.20 (2 H, d, *J* = 8.0 Hz), 7.10 (2 H, d, *J* = 8.0 Hz), 4.29 (1 H, d, *J* = 15.1 Hz), 4.20 (1 H, d, *J* = 15.1 Hz), 4.08 (1 H, d, *J* = 11.7 Hz), 3.92 (1 H, d, *J* = 11.71 Hz), 3.06 – 3.04 (1 H, m), 2.31 (3 H, s), 1.93 – 1.88 (1 H, m), 1.67 – 1.56 (3 H, m), 1.49 – 1.38 (3 H, m), 1.29 – 1.23 (1 H, m), 1.17 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.1, 170.0, 137.5, 133.7, 129.5, 128.5, 66.1, 59.8, 50.0, 43.6, 39.0, 27.3, 25.1, 21.2, 19.6, 18.7, 17.1. m/z HRMS found [M + H]⁺ 344.2222, C₂₁H₃₀NO₃ requires 344.2220

(1-(6-methyl-1-oxoisoindolin-2-yl)cyclohexyl)methyl pivalate (3ab)



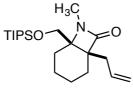
Prepared according to general procedure A using (1-((4-methylbenzyl)amino)cyclohexyl)methyl pivalate (95.2 mg, 0.3 mmol), Pd(OAc)₂ (9.3 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4 $benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 100% P.E. to 25% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (gradient elution: 100 % P.E. to 20% EtOAc in P.E.) to afford the product as a colorless oil (51.7 mg, 51%). IR v_{max}/cm⁻¹ (film): 2933, 2866, 1727, 1680, 1628, 1497, 1480, 1449, 1385, 1321, 1281, 1229, 1194, 1149, 1035. ¹H NMR (400 MHz, CDCl₃) <math>\delta$: 7.58 (1 H, s), 7.34 – 7.26 (2 H, m), 4.52 (2 H, s), 4.38 (2 H, s), 2.55 – 2.52 (2 H, m), 2.43 (3 H, s), 1.78 – 1.73 (2 H, m), 1.68 – 1.42 (6 H, m), 1.10 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.3, 169.8, 138.3, 138.0, 134.2, 132.4, 123.7, 122.0, 67.7, 59.4, 49.0, 39.0, 31.9, 27.3, 25.8, 22.3, 21.5. m/z HRMS found [M + H]⁺ 344.2221, C₂₁H₃₀NO₃ requires 344.2220 cis-7-(4-chlorobenzyl)-8-oxo-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (2ac)

Prepared according to general procedure A using (1-((4-chlorobenzyl)amino)cyclohexyl)methyl pivalate (101.2 mg, 0.3 mmol), Pd(OAc)₂ (9.3 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 100% P.E. to 25% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (gradient elution: 100 % P.E. to 20% EtOAc in P.E.) to afford the product as a colorless oil (56.3 mg, 52%). IR v_{max}/cm⁻¹ (film): 2936, 2871, 1730, 1492, 1480, 1458, 1396, 1365, 1281,1146, 1092, 1035. ¹H NMR (400 MHz, CDCl₃) δ : 7.30 – 7.25 (4 H, m), 4.29 (1 H, d, *J* = 15.3 Hz), 4.18 (1 H, d, *J* = 15.3 Hz), 4.15 (1 H, d, *J* = 11.8 Hz), 3.93 (1 H, d, *J* = 11.8 Hz), 3.07 (1 H, dd, *J* = 3.5, 6.3 Hz), 1.93 – 1.86 (1 H, m), 1.69 – 1.55 (3 H, m), 1.51 – 1.39 (3 H, m), 1.26 – 1.19 (1 H, m), 1.16 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.1, 170.1, 135.5, 133.7, 129.8, 129.0, 66.0, 59.9, 50.0, 43.2, 39.0, 27.2, 25.1, 19.6, 18.7, 17.1. m/z HRMS found [M + H]⁺ 364.1677, C₂₀H₂₇ClNO₃ requires 364.1674


(1-(6-chloro-1-oxoisoindolin-2-yl)cyclohexyl)methyl pivalate (3ac)

Prepared according to general procedure A using (1-((4-chlorobenzyl)amino)cyclohexyl)methyl pivalate (101.2 mg, 0.3 mmol), Pd(OAc)₂ (9.3 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4-benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 100% P.E. to 25% EtOAc in P.E.) and subsequently by flash column chromatography over alumina (gradient elution: 100 % P.E. to 20% EtOAc in P.E.) to afford the product as a colorless needles (13.0 mg, 12%). m.p. 112 °C (sharp). IR ν_{max}/cm^{-1} (film): 2934, 2867, 1729, 1687, 1449, 1386, 1318, 1282,

1263, 1205, 1152, 1036. ¹H NMR (400 MHz, CDCl₃) δ : 7.75 (1 H, d, J = 1.8 Hz), 7.49 (1 H, dd, J = 1.8, 8.0 Hz), 7.35 (1 H, d, J = 8.0 Hz), 4.54 (2 H, s), 4.38 (2 H, s), 2.51 (2 H, m), 1.77 (2 H, ddd, J = 3.0, 9.5, 12.6 Hz), 1.66 – 1.60 (3 H, m), 1.55 – 1.42 (3 H, m), 1.10 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ :178.2, 168.3, 139.1, 135.8, 134.4, 131.6, 123.7, 123.7, 67.6. 59.8, 48.8, 39.0, 31.9, 27.3, 25.7, 22.3. m/z HRMS found [M + H]⁺ 364.1674, C₂₀H₂₇ClNO₃ requires 364.1677.

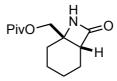

cis-7-(3-nitrobenzyl)-8-oxo-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (2ad)

Prepared according to general procedure A using (1-((3-nitrobenzyl)amino)cyclohexyl)methyl pivalate (104.5 mg, 0.3 mmol), Pd(OAc)₂ (9.3 mg, 0.03 mmol), Xantphos (17 mg, 0.03 mmol), 1,4benzoquinone (65 mg, 0.6 mmol) and silver(I) acetate (150 mg, 0.9 mmol) in toluene (3 mL) at 80 °C for 18 hours. The crude product was purified by flash column chromatography (gradient elution: 100% P.E. to 35% EtOAc in P.E.) to afford the product as a pale yellow oil (52.1 mg, 46%). IR v_{max}/cm^{-1} (film): 2937, 2871, 1728, 1529, 1480, 1461, 1397, 1348, 1281, 1145, 1097, 1035. ¹H NMR (400 MHz, CDCl₃) δ : 8.18 – 8.13 (2 H, m), 7.73 (1 H, d, *J* = 7.8 Hz), 7.52 (1 H, t, *J* = 7.3 Hz), 4.40 (1 H, d, *J* = 15.5 Hz), 4.34 (1 H, d, *J* = 15.1 Hz), 4.21 (1 H, d, *J* = 11.9 Hz), 3.96 (1 H, d, *J* = 11.9 Hz), 3.10 (1 H, dd, *J* = 3.7, 6.7 Hz), 1.95 – 1.88 (1 H, m), 1.72 – 1.43 (6 H, m), 1.30 – 1.22 (1 H, m), 1.14 (9 H, s). ¹³C NMR (101 MHz, CDCl₃) δ : 178.0, 170.4, 148.5, 139.2, 134.5, 130.0 123.0, 122.9, 66.1, 60.2, 50.1, 43.2, 39.0, 27.2, 25.2, 19.6, 18.7, 17.2. m/z HRMS found [M + H]⁺ 375.1916, C₂₀H₂₇N₂O₅ requires 375.1914

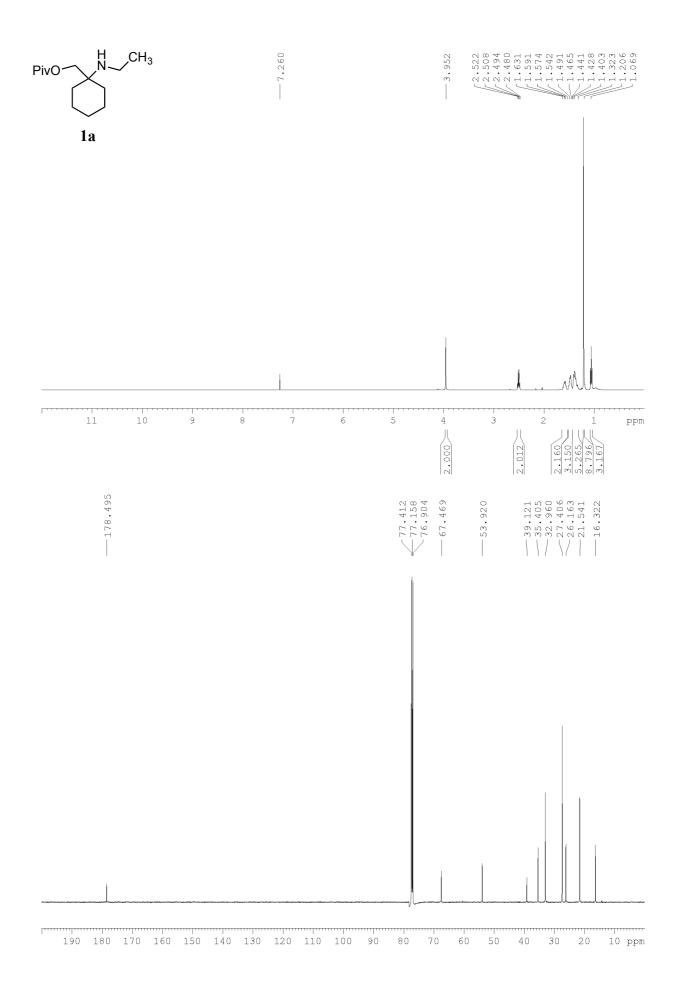
Functionalization of β-lactam products

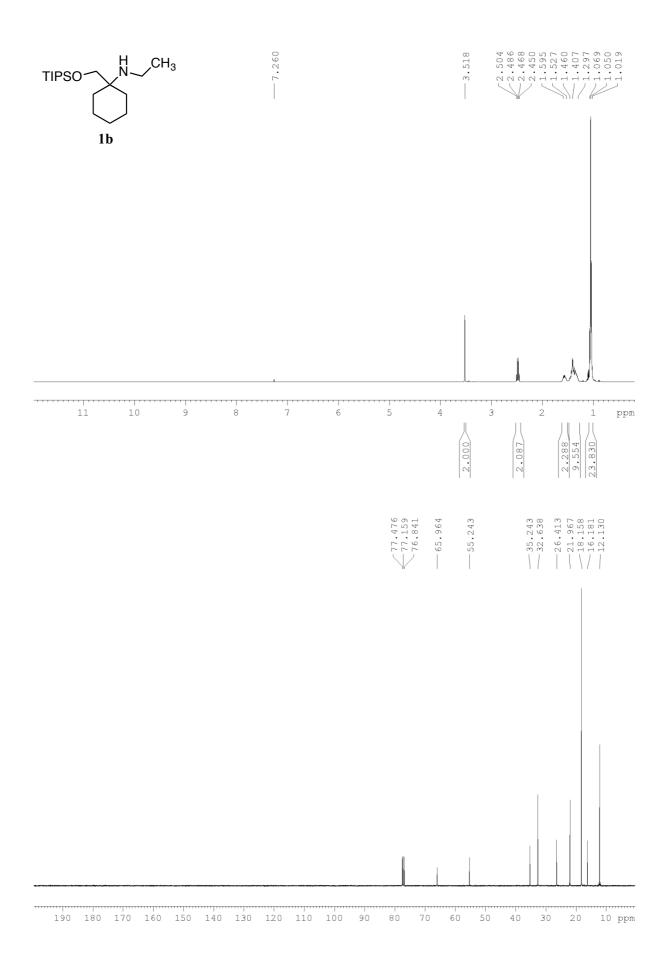
cis-1-allyl-6-(((triisopropylsilyl)oxy)methyl)-7-methyl-7-azabicyclo[4.2.0]octan-8-one (4a)

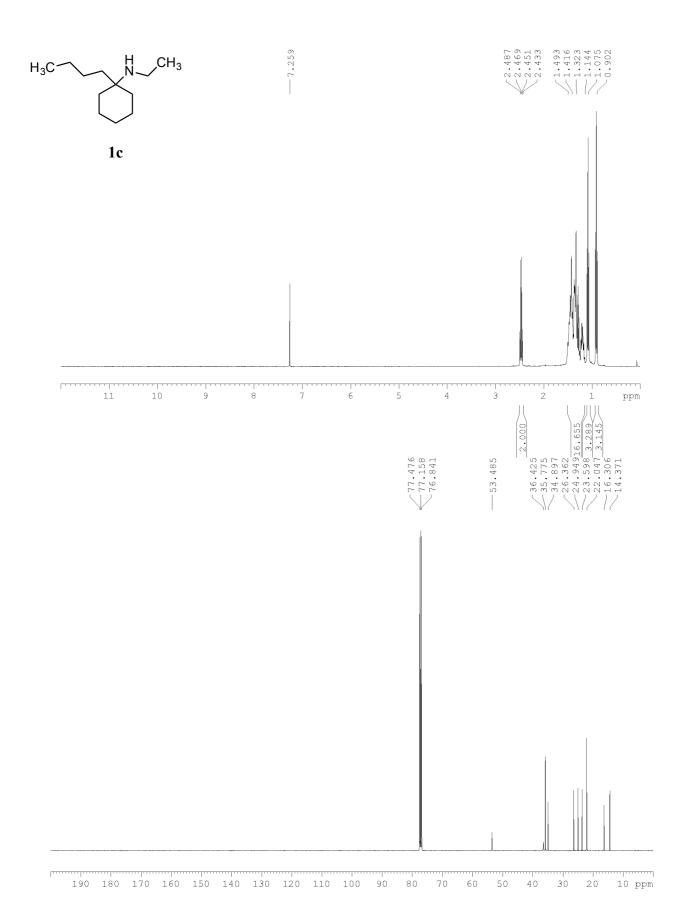
To a pre-cooled solution of *cis*-7-methyl-6-(((triisopropylsilyl)oxy)methyl)-7-azabicyclo[4.2.0]octan-8-one (97.6 mg, 0.3 mmol) in anhydrous THF (3 mL) was added a solution of freshly prepared LiHMDS (0.61 M, 0.75 mmol, 1.23 mL) dropwise at -78 °C (dry ice/acetone bath) under N₂. The solution was stirred at -78 °C for 2 hours and allyl bromide (104 µL, 1.2 mmol) was added in one portion. The solution was warmed to room temperature over 16 hours and was quenched with saturated aqueous NH₄Cl (3 mL). The organic layer was separated and the aqueous was extracted with diethyl ether (3 x 10 mL). The organics were combined, washed with brine, dried (Na₂SO₄) and the solvent removed *in vacuo*. The crude oil was purified by flash column chromatography (gradient elution: 5% EtOAc in P.E. to 25% EtOAc in P.E.) to afford the product as a colourless oil (86.8 mg, 79%). IR v_{max}/cm⁻¹ (film): 2942, 2866, 1744, 1640, 1463, 1417, 1383, 1100, 1060. ¹H NMR (400 MHz, CDCl₃) δ : 5.91 – 5.83 (1 H, m), 5.06 – 5.02 (2 H, m), 3.95 (1 H, d, *J* = 9.9 Hz), 3.83 (1 H, d, *J* = 9.9 Hz), 2.78 (3 H, s), 2.49 (1 H, app. dd, *J* = 6.6, 14.5 Hz), 2.32 (1 H, app. dd, *J* = 7.8, 14.5 Hz), 2.03 (1 H, app. dd, 5.9, 12.4 Hz), 1.70 (1 H, dt, *J* = 3.4, 12.7 Hz), 1.65 – 1.39 (6 H, m), 1.09 – 1.05 (21 H, m). ¹³C NMR (101 MHz, CDCl₃) δ : 172.6, 134.5, 117.7, 67.3, 64.3, 57.7, 35.5, 26.0, 25.6, 23.4, 18.1, 17.8, 16.3, 12.0. m/z HRMS found [M + H]⁺ 366.2824, C₂₁H₄₀NO₂Si requires 366.2823.

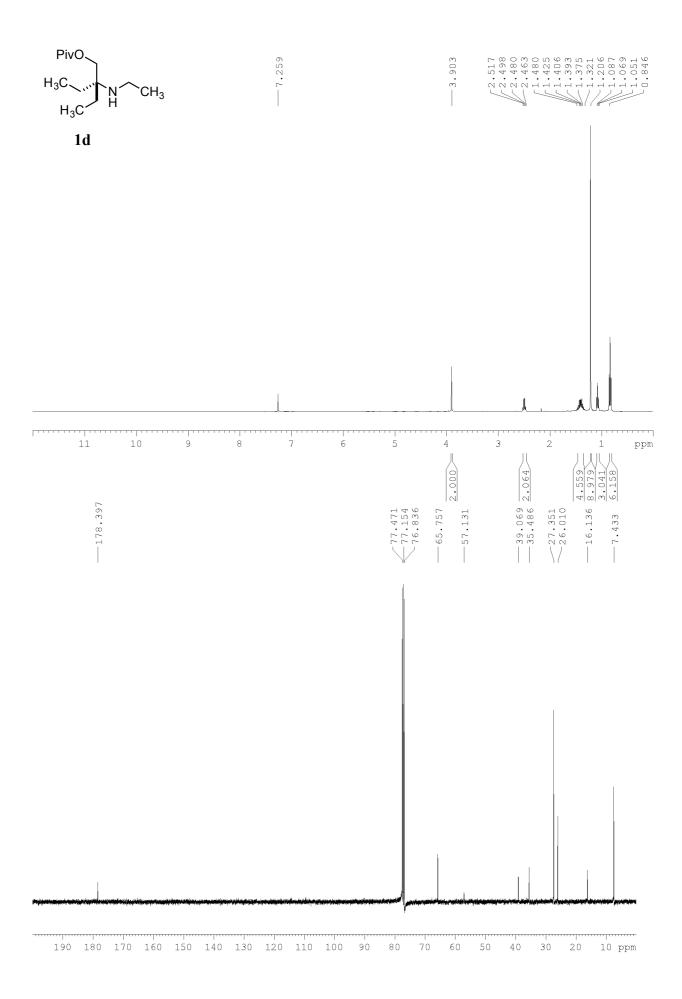

cis-7-methyl-7-azabicyclo[4.2.0]octan-6-yl)methanol (4b)

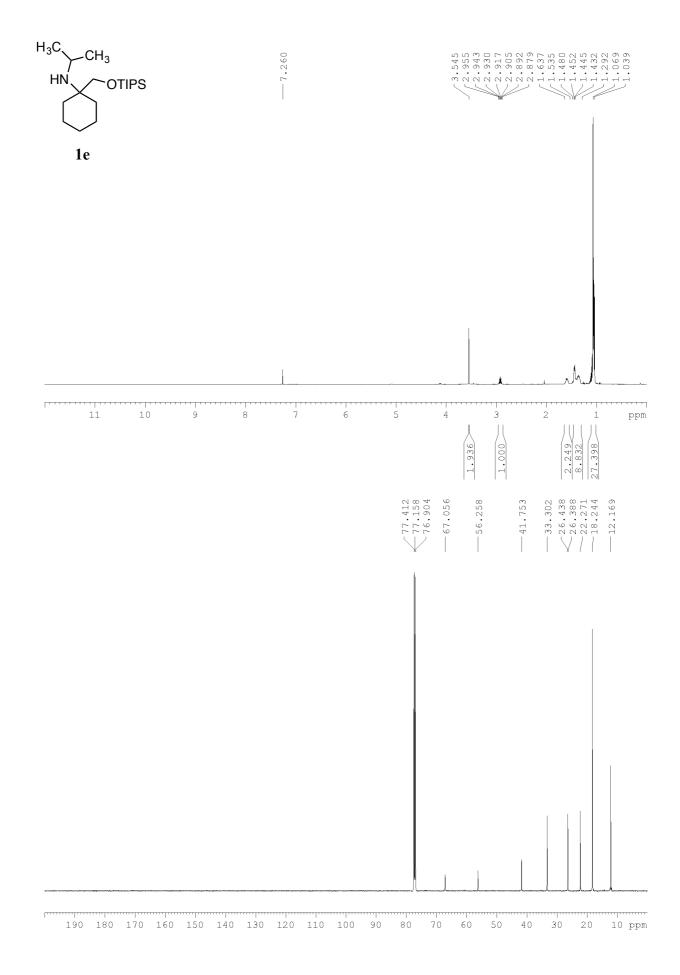
To a solution of AlCl₃ (120 mg, 0.9 mmol) in anhydrous Et₂O (2 mL) was added LiAlH₄ (34 mg, 0.9 mmol) carefully at 0 °C under N₂. The reaction mixture was stirred at 0 °C for 10 min and subsequently refluxed for 30 min. (\pm)-*cis*-7-methyl-6-(((triisopropylsilyl)oxy)methyl)-7-azabicyclo[4.2.0]octan-8-one (97.6 mg, 0.3 mmol) in anhydrous Et₂O (2 mL) was added dropwise and refluxed for 4 h. The reaction was cooled to room temperature and quenched with 10% NaOH (1 mL).

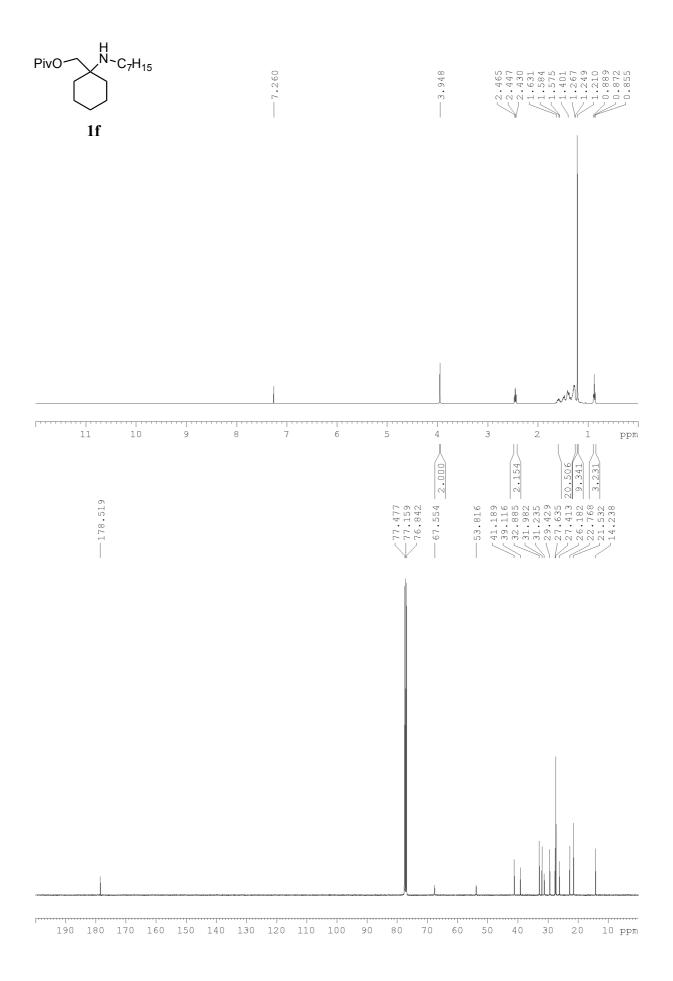

The aqueous was extracted with Et₂O (3 x 50 mL), dried over Na₂SO₄ and the solvent removed *in vacuo (Volatile!)* to obtain the title compound as a colorless oil (41.9 mg, 90%). IR v_{max} /cm⁻¹ (film): 3366 (br), 2926, 2855, 1481, 1450, 1374, 1339, 1274, 1186, 1158, 1120, 1087, 1063. ¹H NMR (400 MHz, CDCl₃) δ : 3.33 (1 H, d, *J* = 11.3 Hz), 3.21 (1 H, dd *J* = 5.8, 7.3 Hz), 3.09 (1 H, d, *J* = 11.3 Hz), 2.79 (1 H, dd *J* = 5.8, 9.7 Hz), 2.74 – 2.69 (1 H, m), 2.11 (3 H, s), 1.89 (1 H, td, *J* = 4.2, 13.6 Hz), 1.70 – 1.65 (1 H, m), 1.59 – 1.54 (1 H, m), 1.51 – 1.47 (1 H, m), 1.43 – 1.32 (2 H, m), 1.25 – 1.23 (1 H, m), 1.04 – 1.96 (1 H, m). ¹³C NMR (101 MHz, CDCl₃) δ : 67.8, 64.1, 54.2, 48.3, 35.1, 29.9, 23.8, 23.7, 22.2, 21.4. m/z HRMS found [M + H]⁺ 156.1382, C₉H₁₈NO requires 156.1383

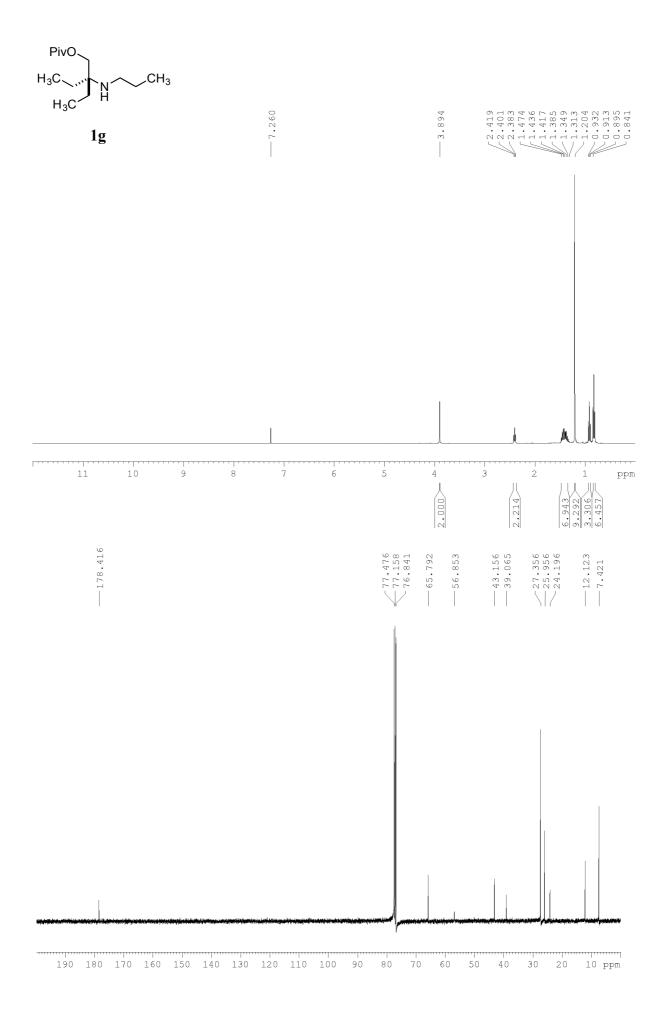

(cis -8-oxo-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (4c)

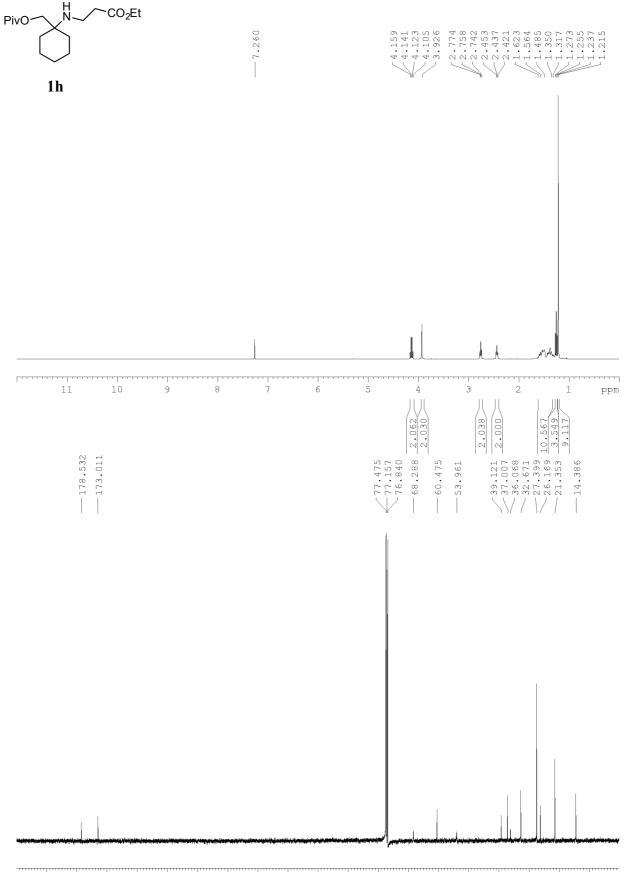


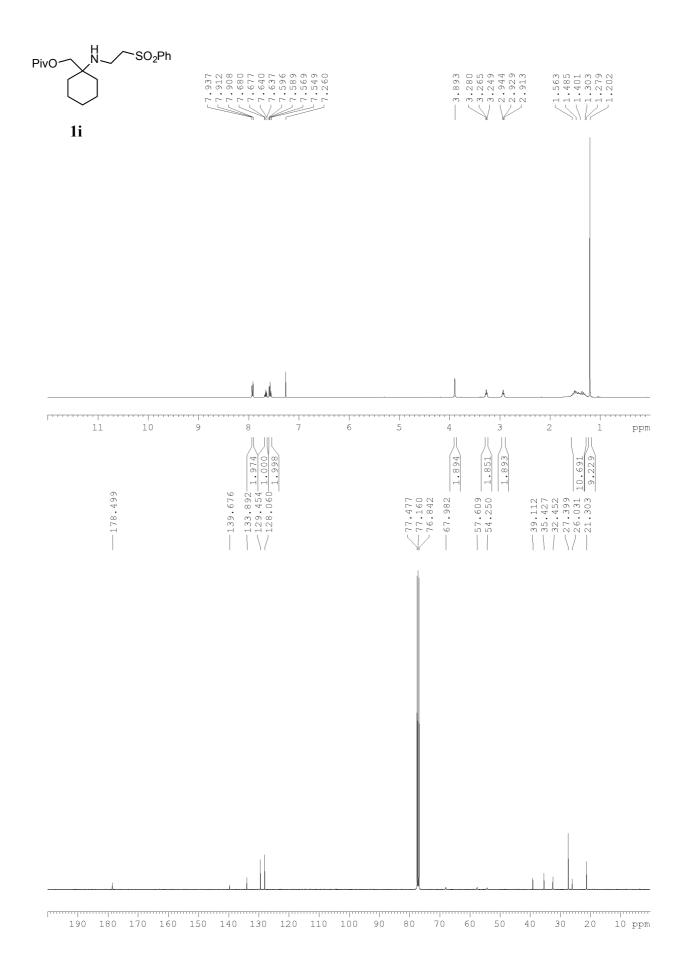

(*cis* -8-oxo-7-(2-(phenylsulfonyl)ethyl)-7-azabicyclo[4.2.0]octan-6-yl)methyl pivalate (123 mg, 0.3 mmol) was dissolved in THF (4.5 mL) and the solution cooled to -78 °C. Freshly prepared lithium *bis*(trimethylsilyl)amide (0.61 M in THF, 737 μ L, 0.45 mmol) was added drop-wise and the reaction stirred at -78 °C for 30 minutes, then allowed to warm to room temperature over 30 minutes. The reaction mixture was quenched with water (5 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash column chromatography (35% EtOAc in P.E.) afforded the title compound as a white solid (57 mg, 79%). m.p: 96–98 °C; IR v_{max}/cm⁻¹ (film): 3202 (br), 2937, 2865, 1740, 1719, 1479, 1451, 1395, 1312, 1286, 1157, 1082, 1039, 1017; ¹H NMR (400 MHz, CDCl₃) δ : 5.79 (1 H, br s, N-H), 4.32 (1 H, d, *J* = 11.6 Hz), 3.95 (1 H, d, *J* = 11.6 Hz), 3.09 – 2.97 (1 H, m), 1.96 – 1.85 (1 H, m), 1.80 – 1.63 (5 H, m), 1.60 – 1.44 (2 H, m), 1.21 (9 H, s); ¹³C NMR (101 MHz, CDCl₃) δ : 178.5, 170.6, 67.9, 55.5, 50.1, 39.1, 27.8, 27.3, 20.0, 18.9, 17.5; m/z HRMS found [M + H]⁺ 240.1595, C₁₃H₂₂NO₃ requires 240.1594.

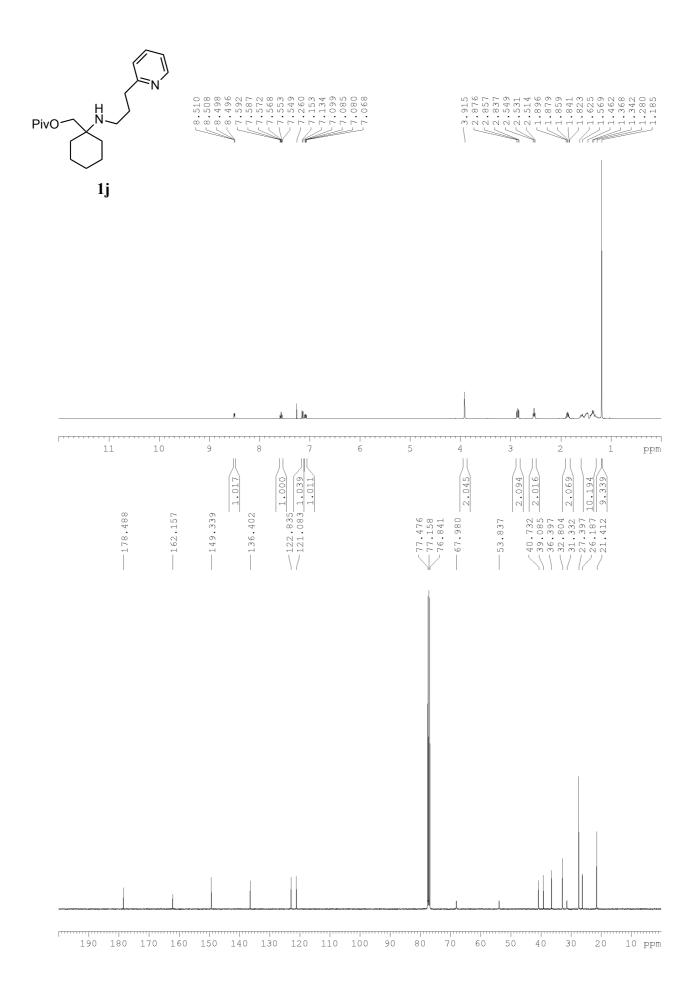

NMR of Staring Amines

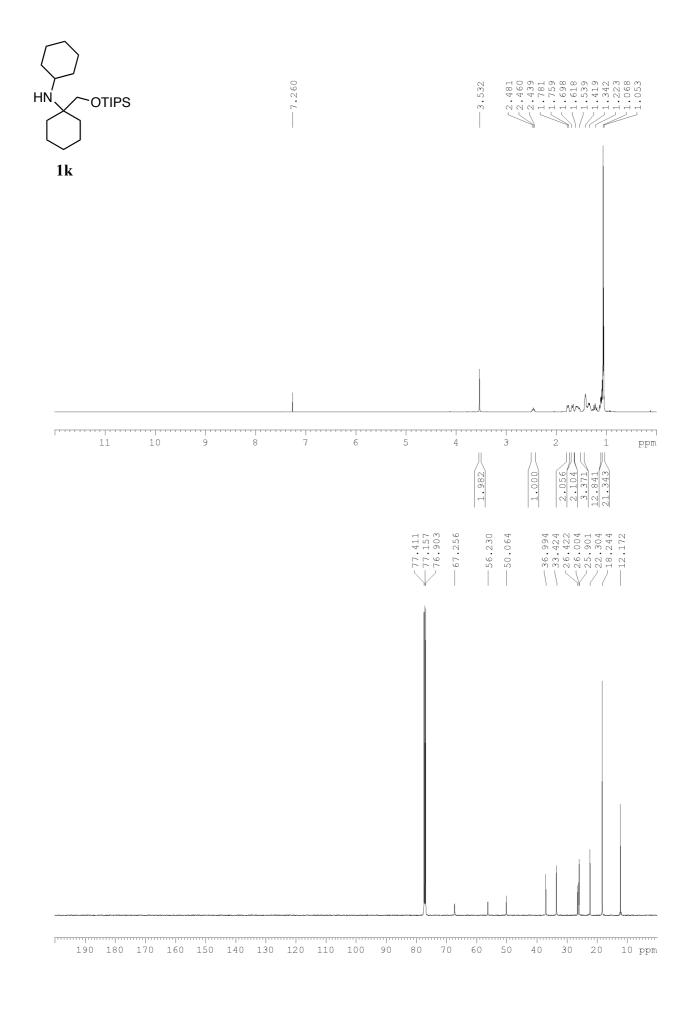


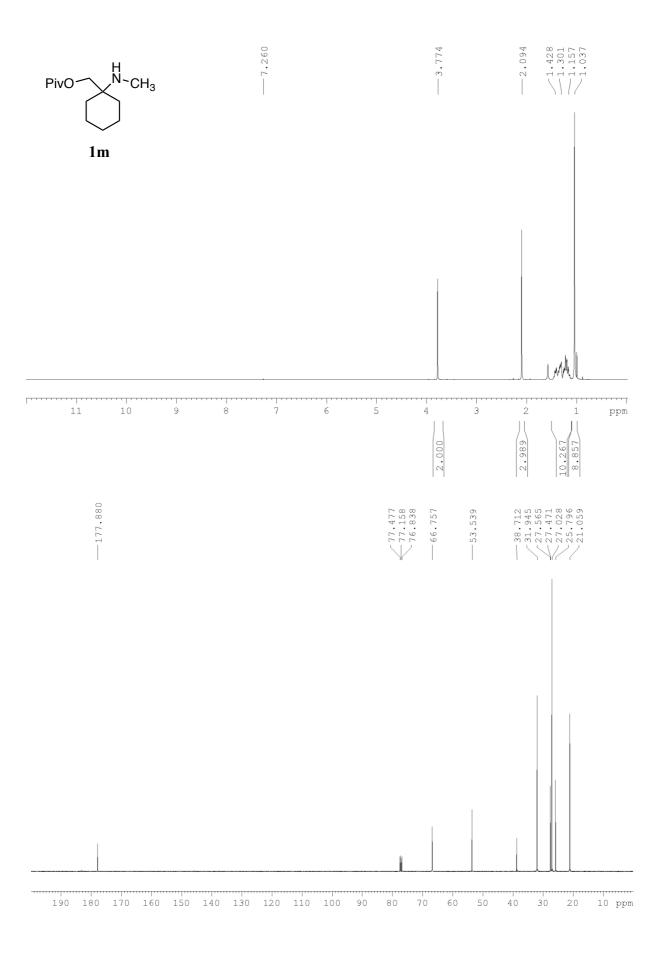


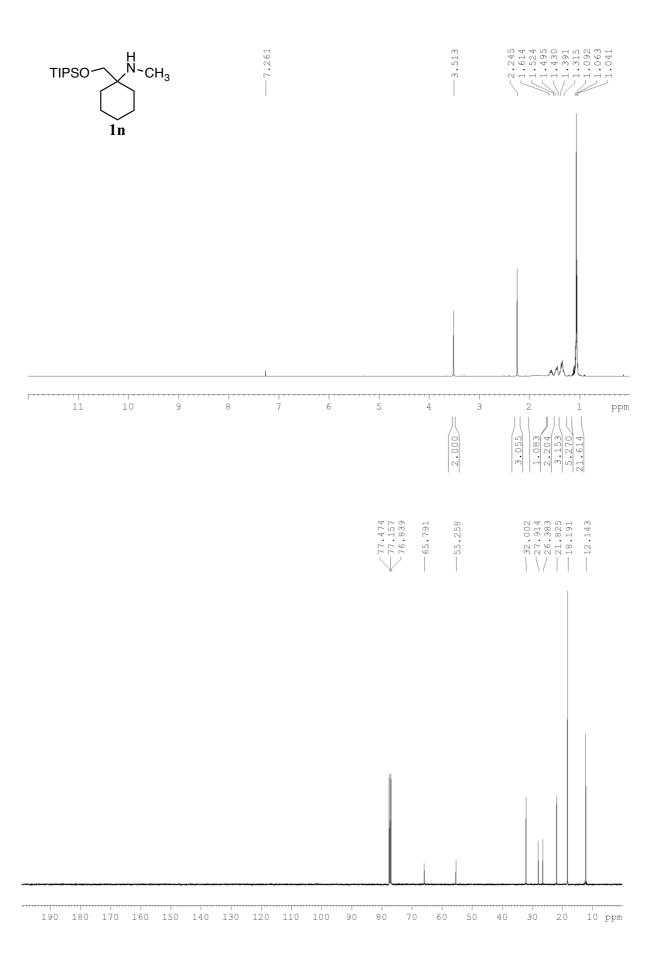


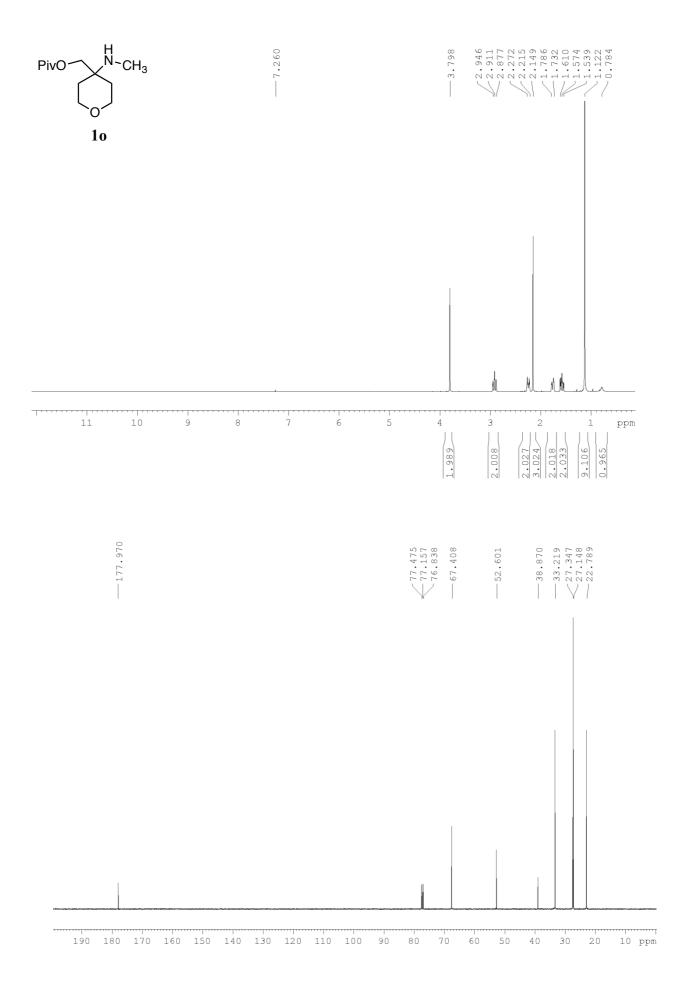


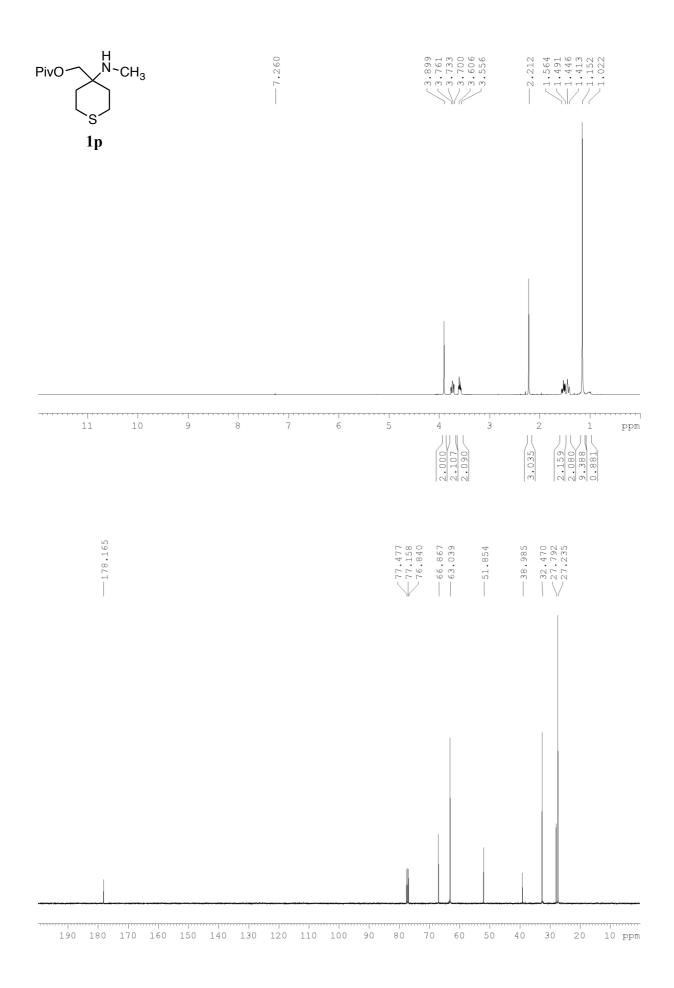


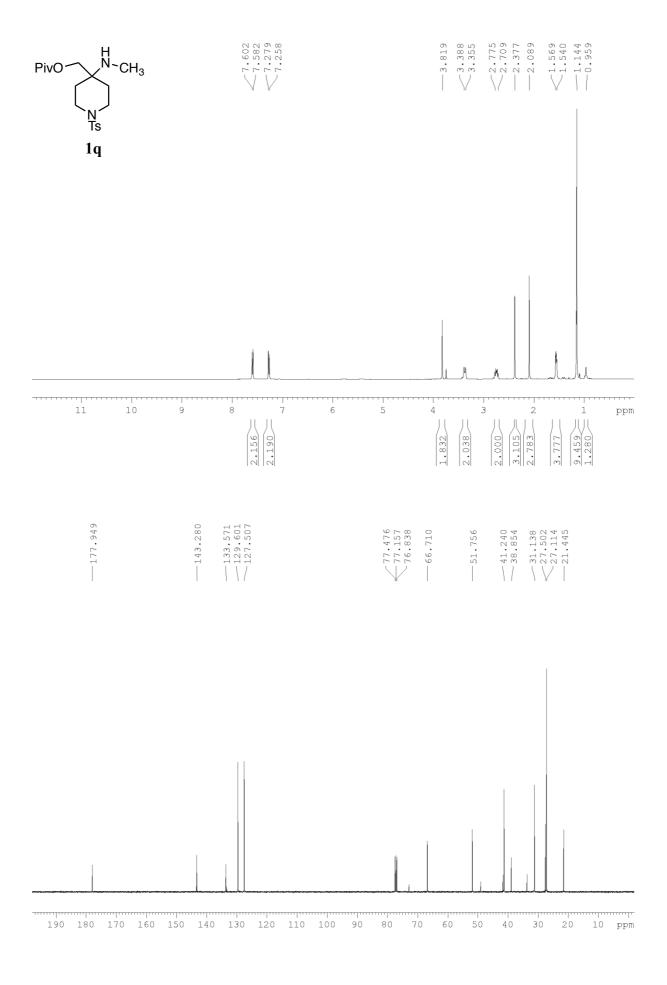


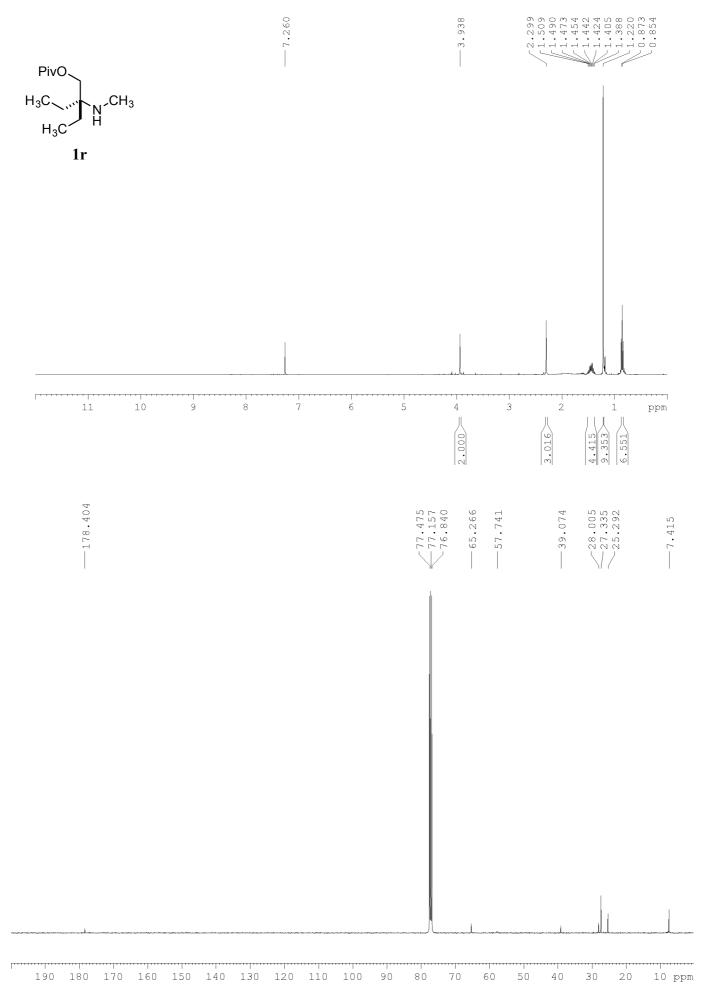


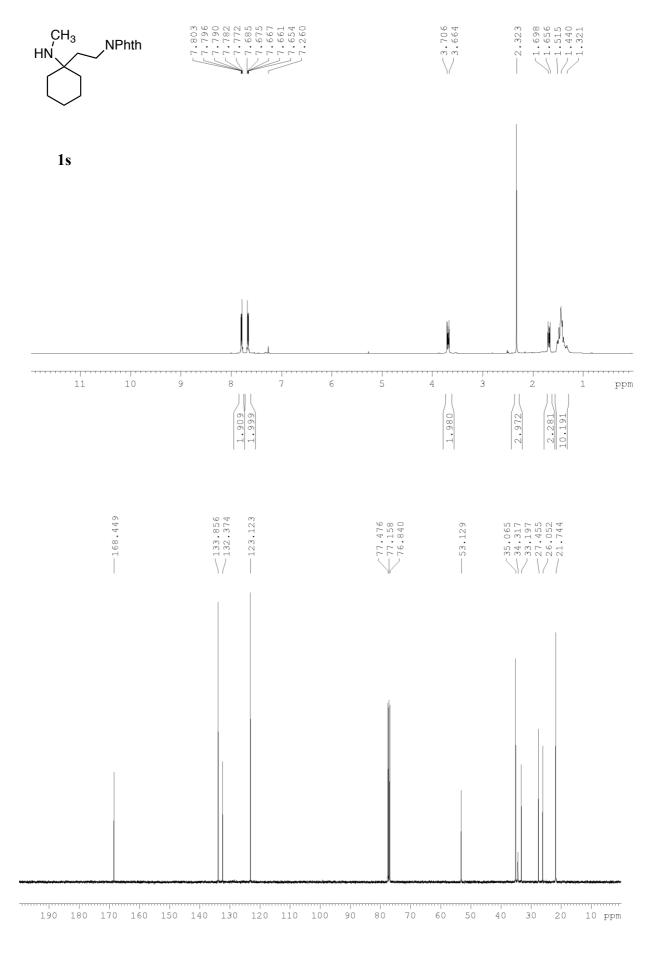

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

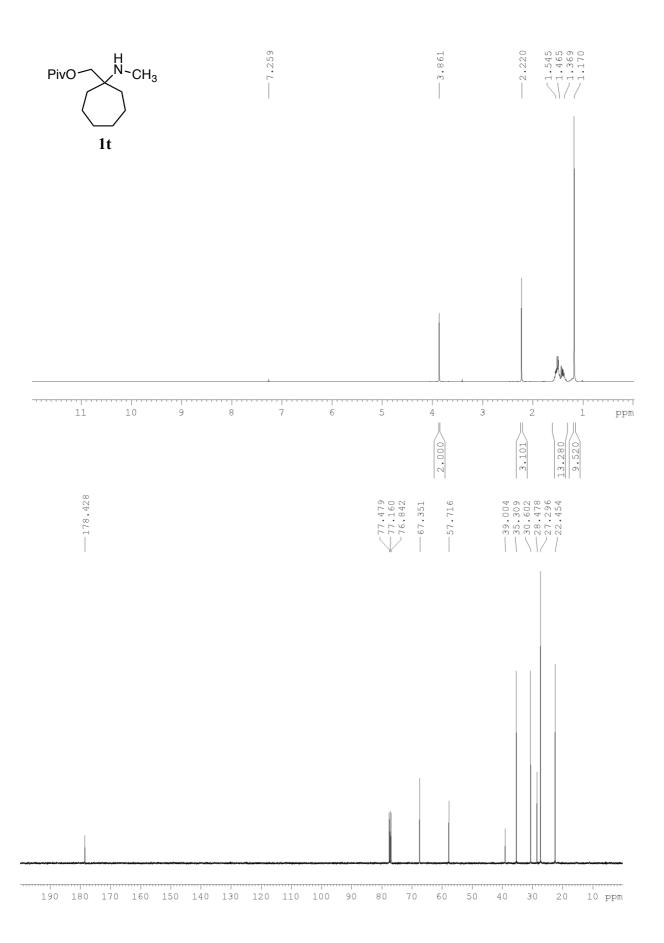


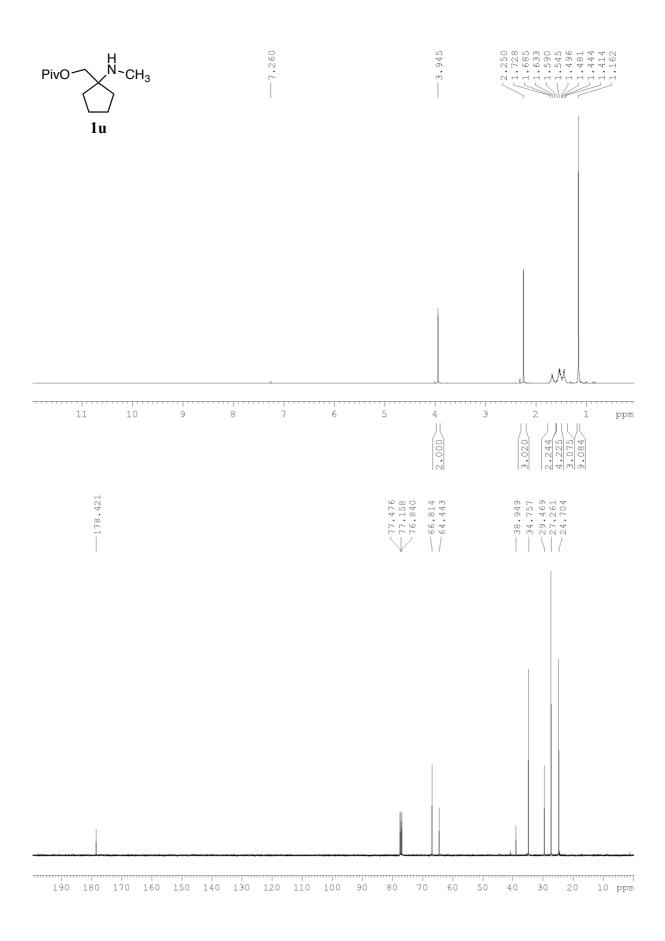


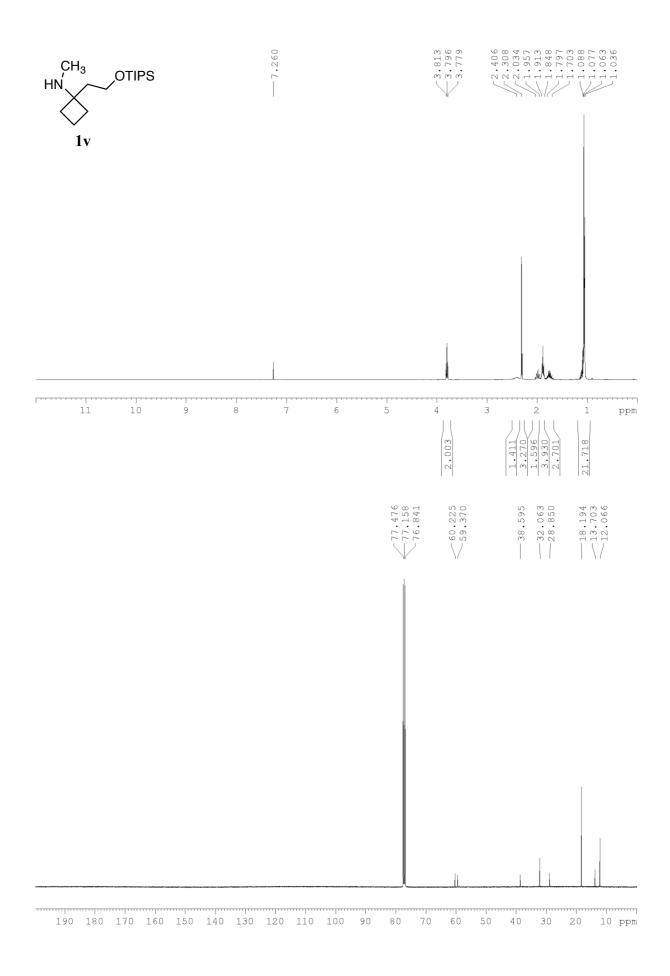


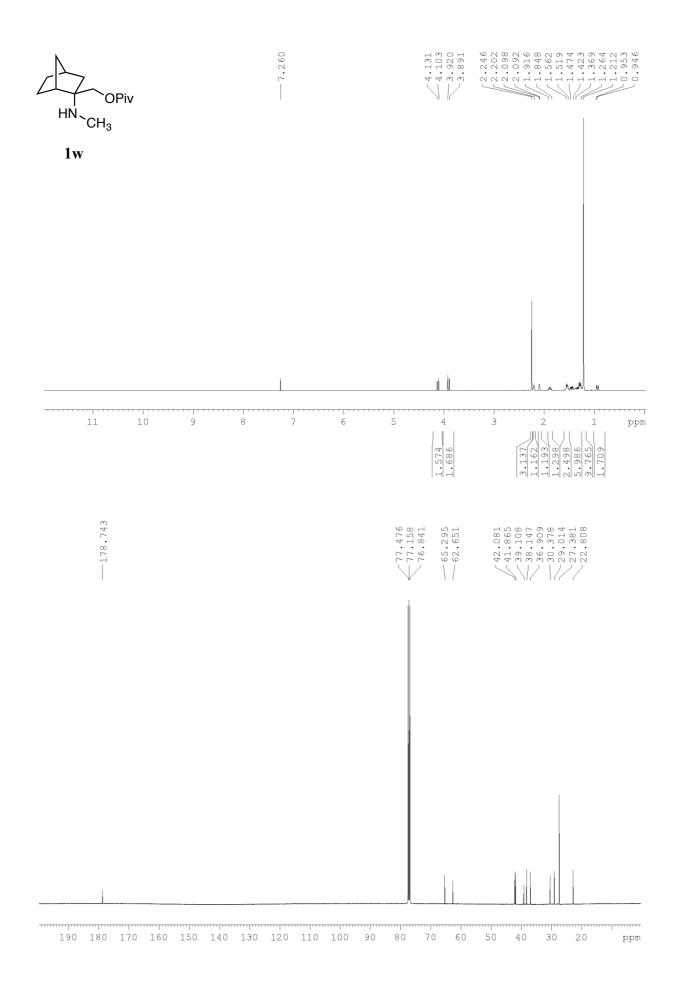


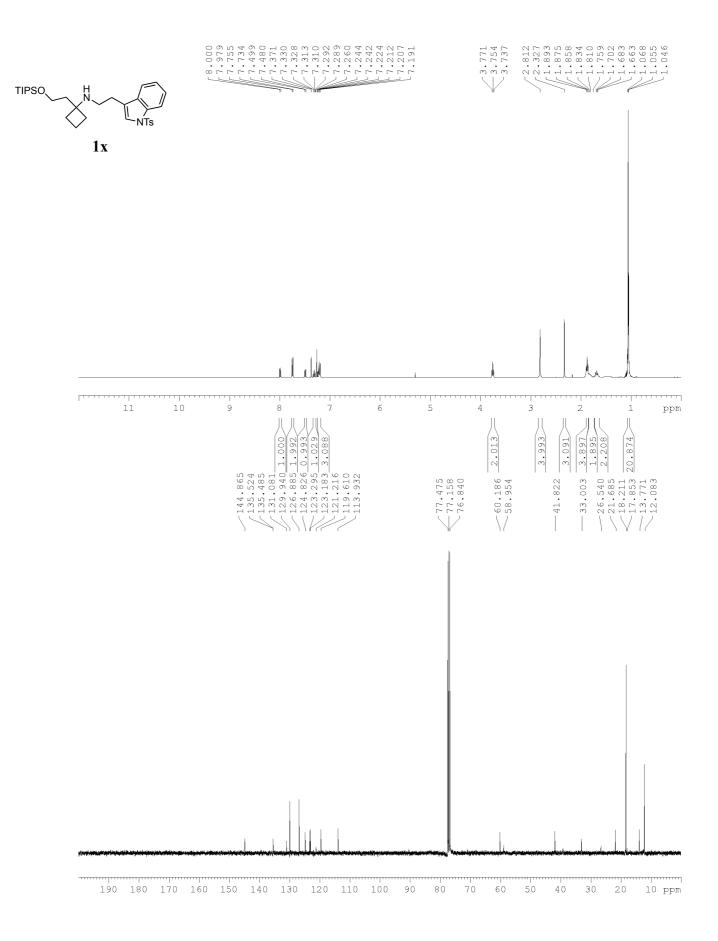


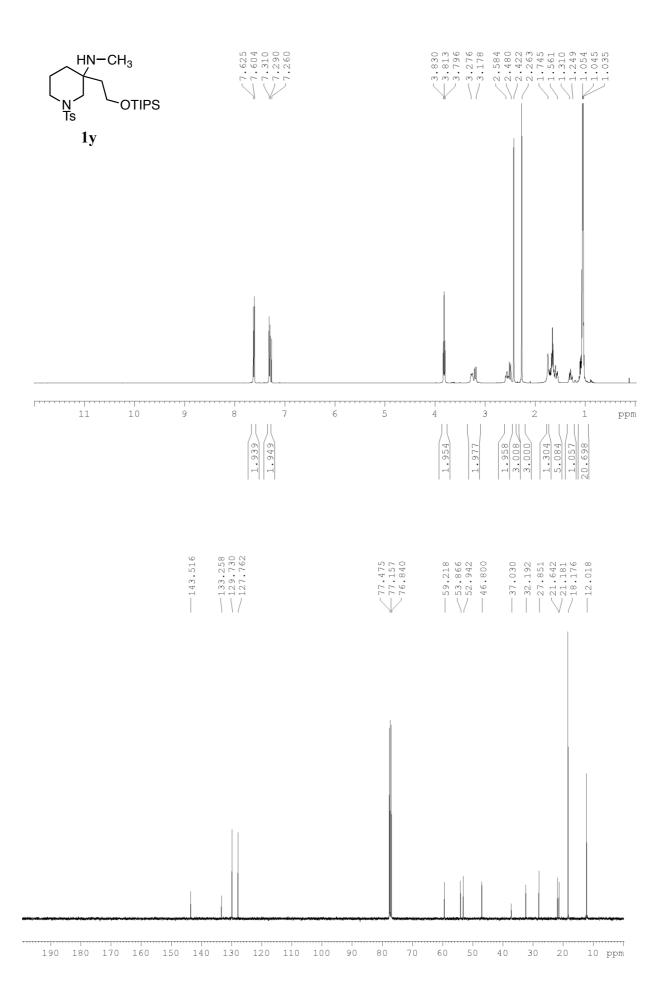


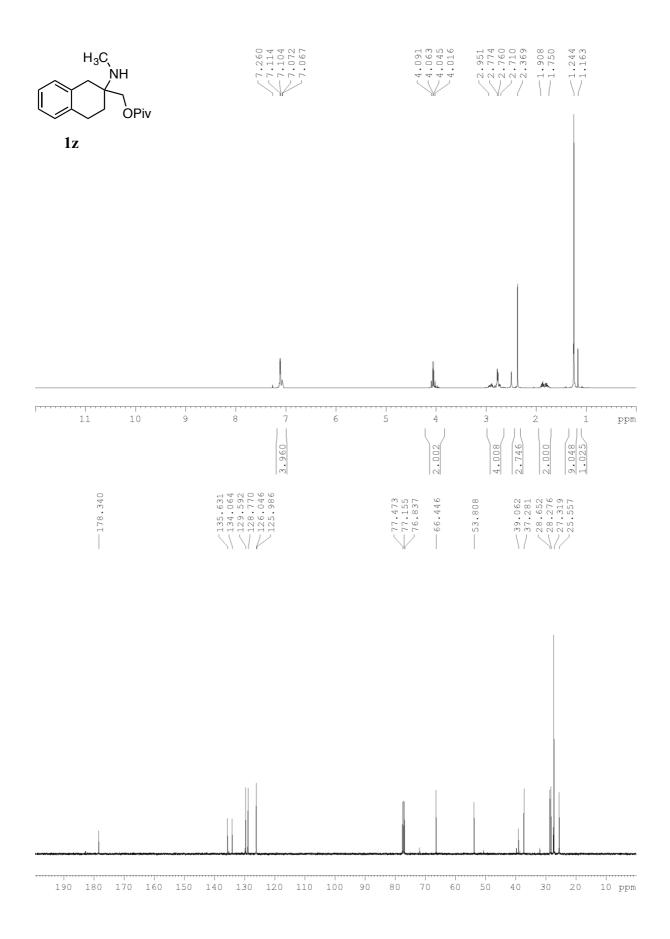


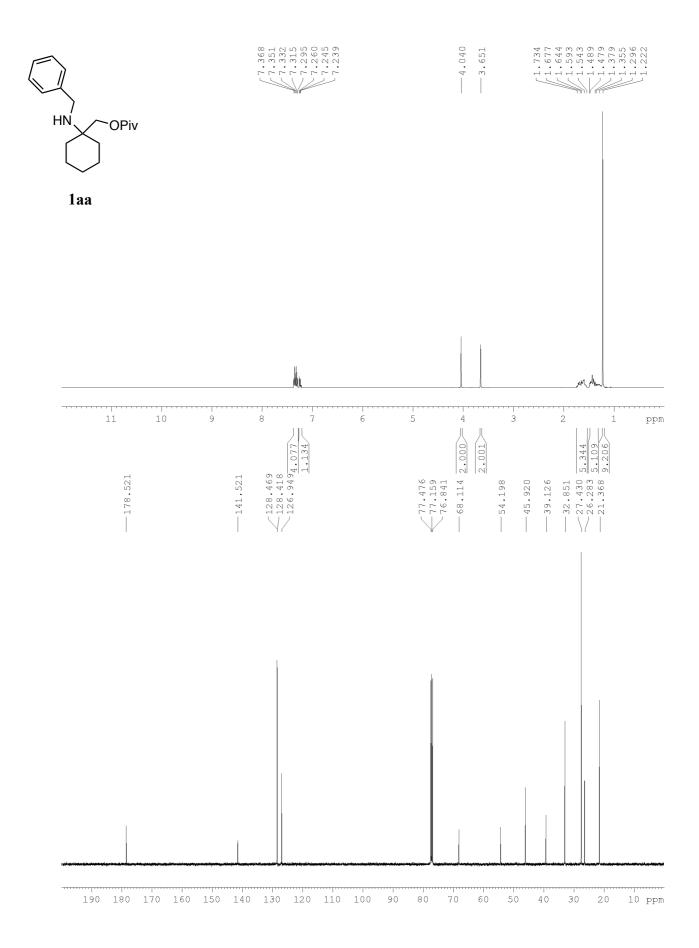


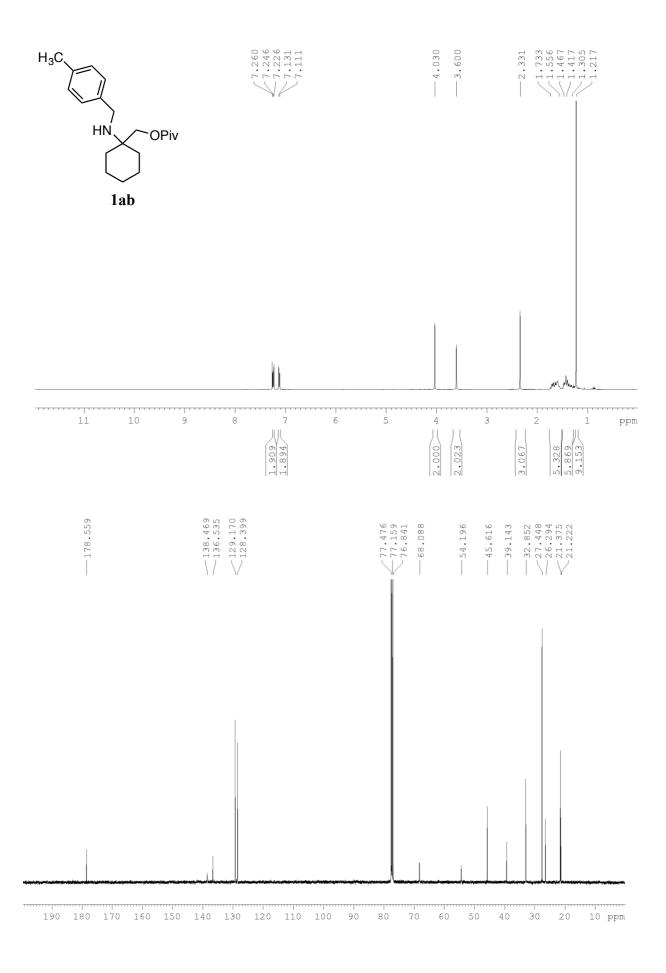


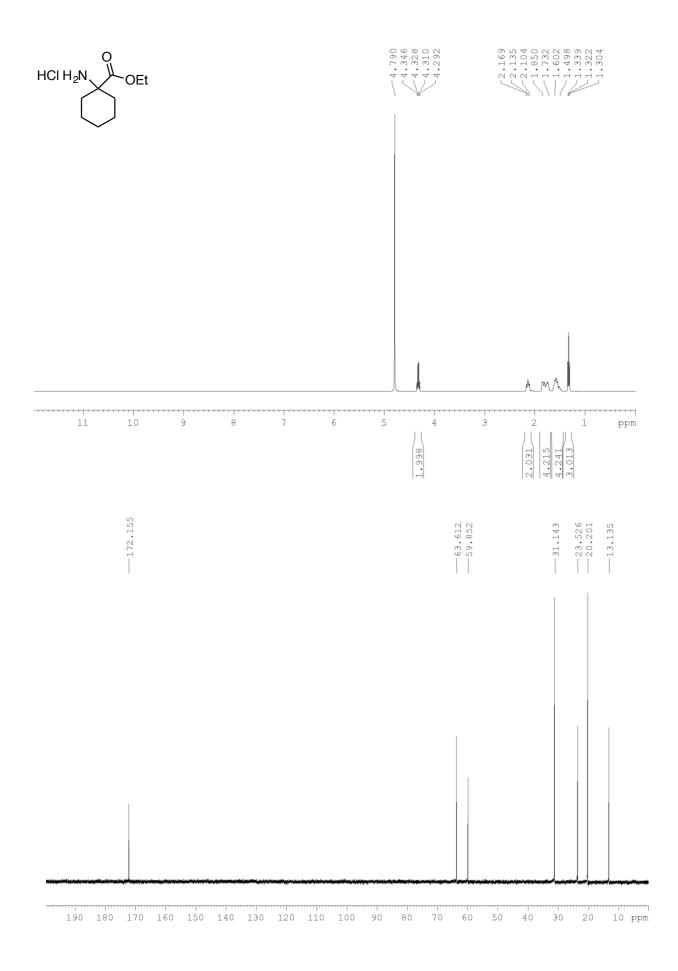


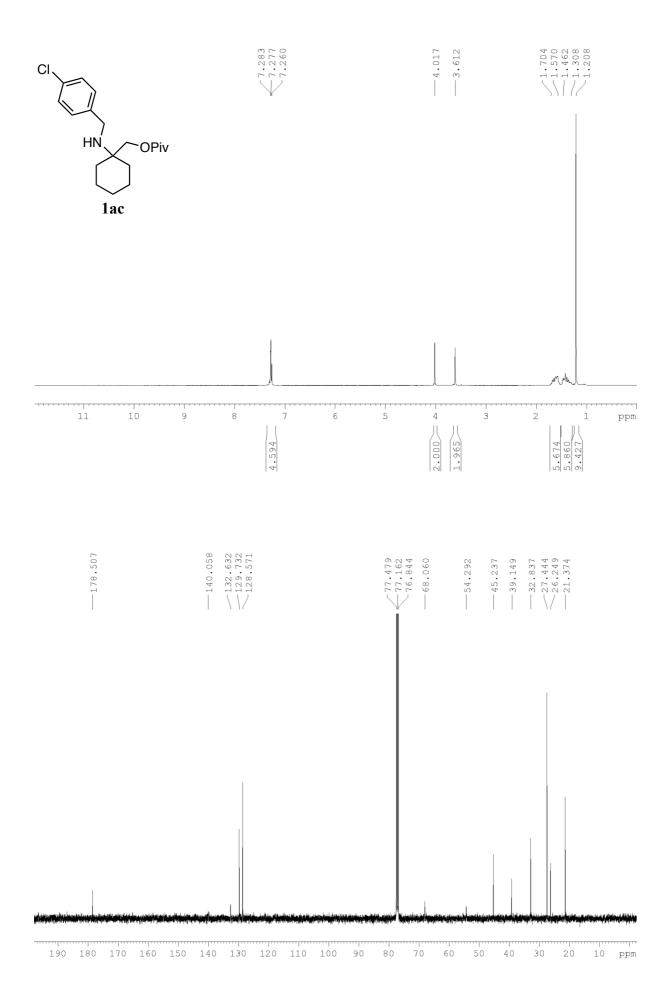


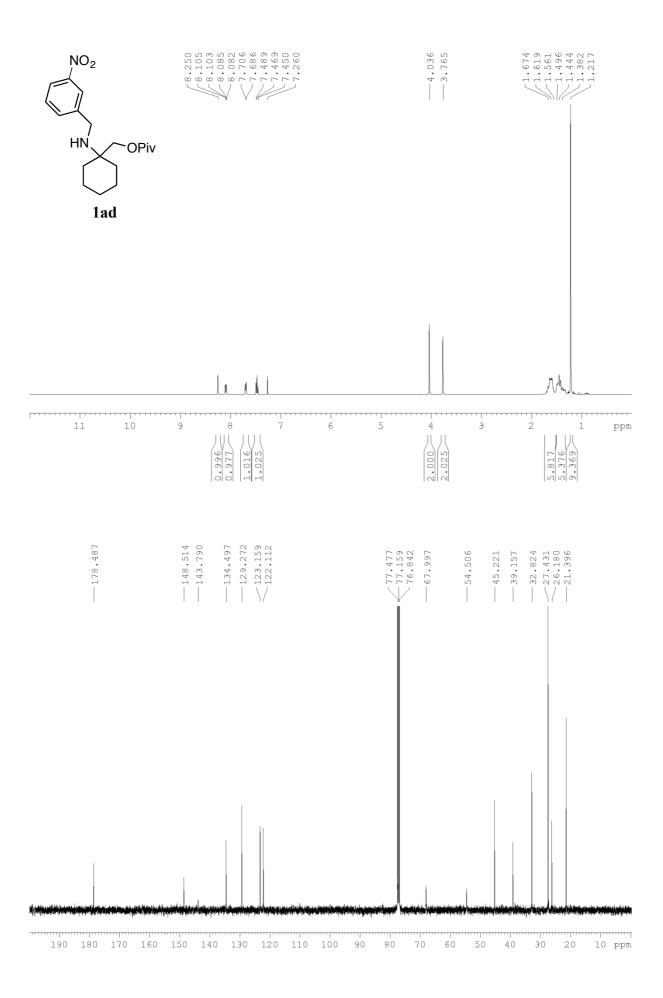


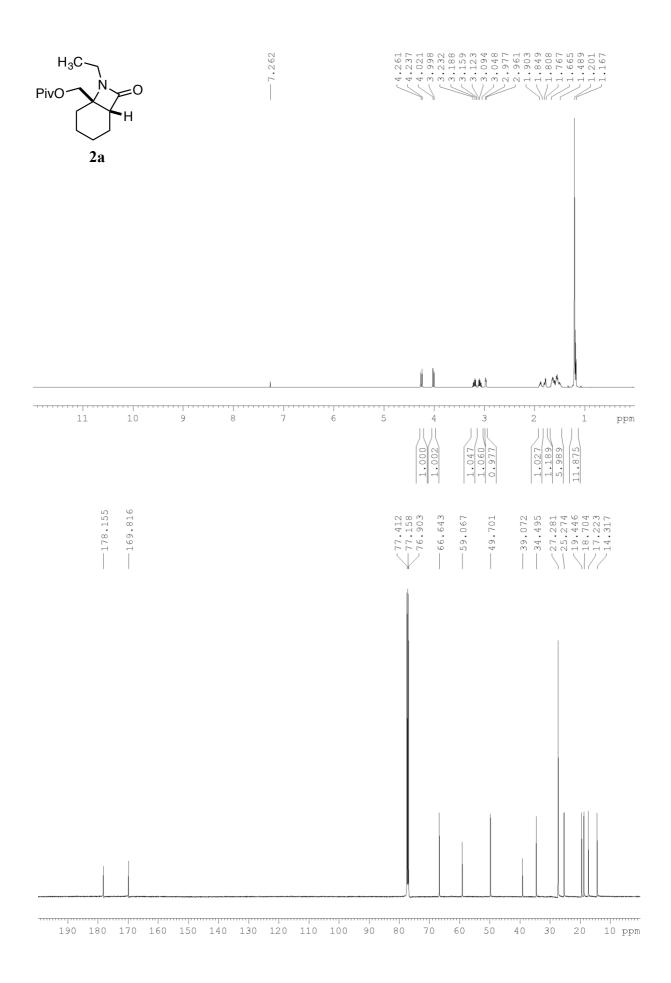


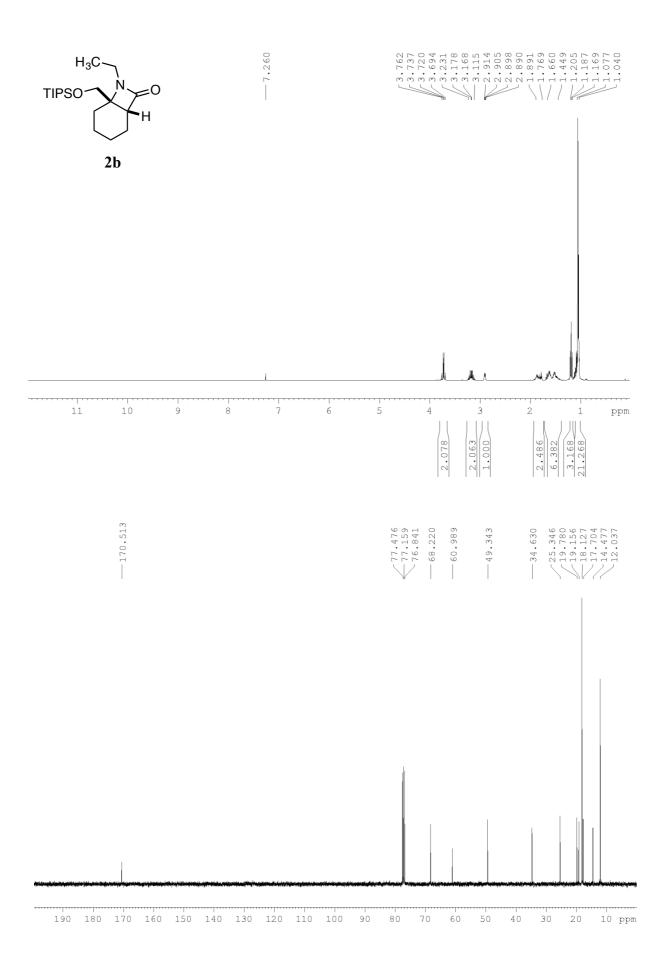


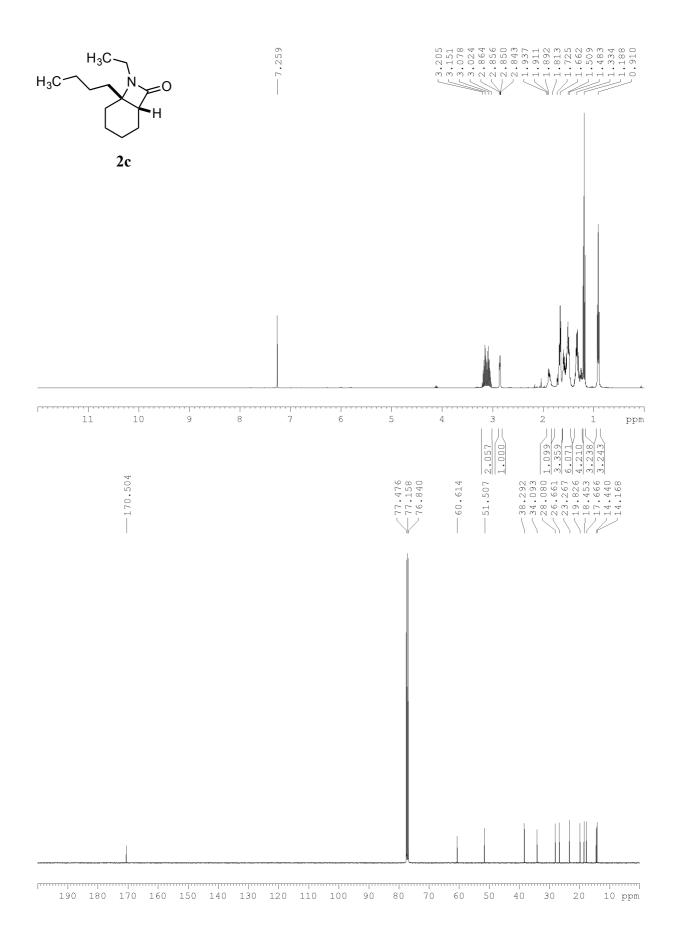


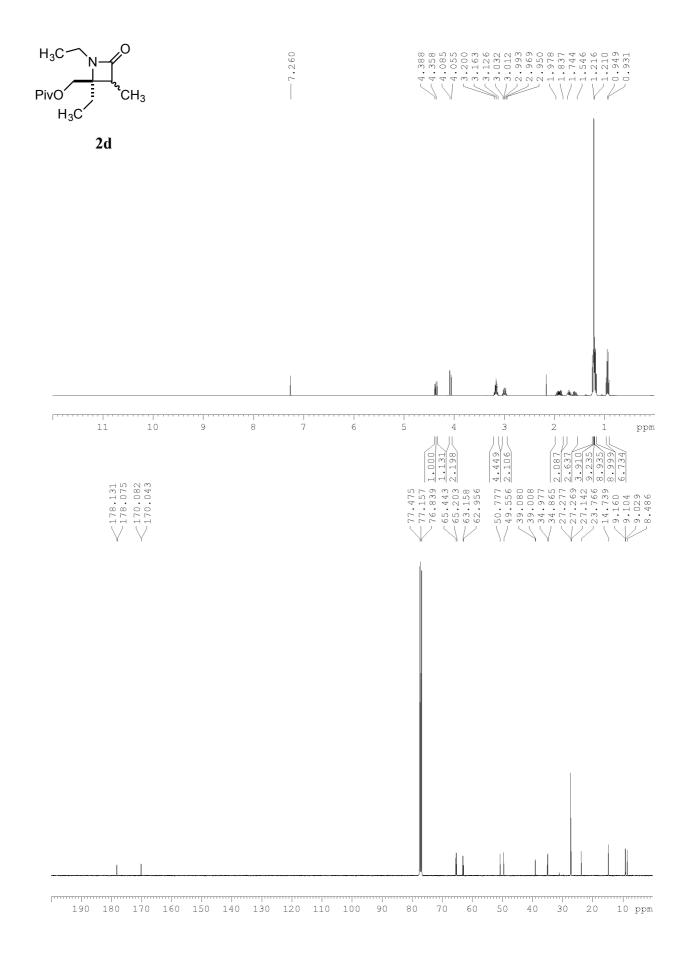


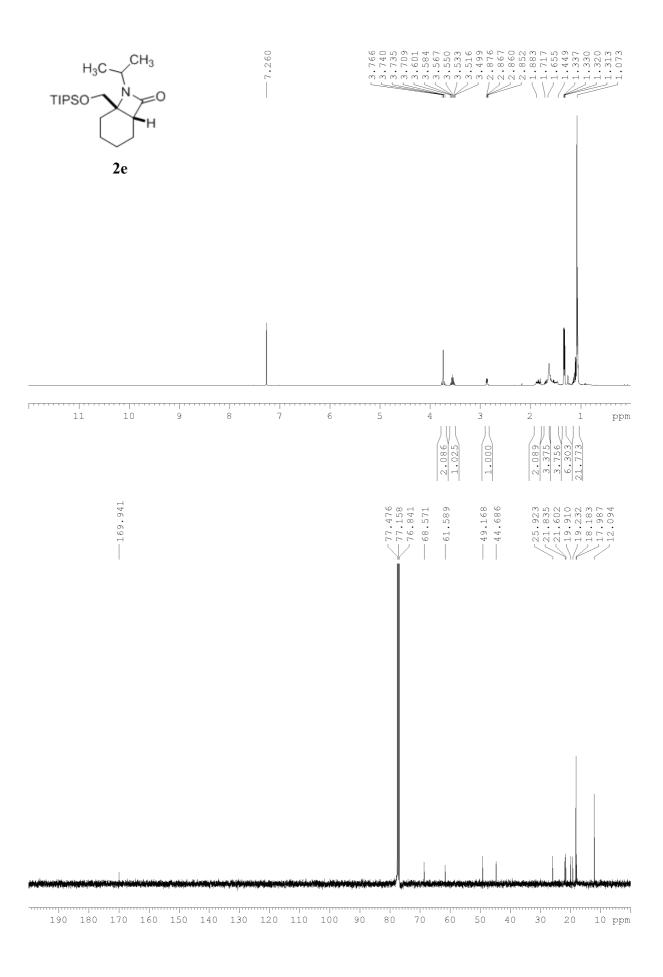


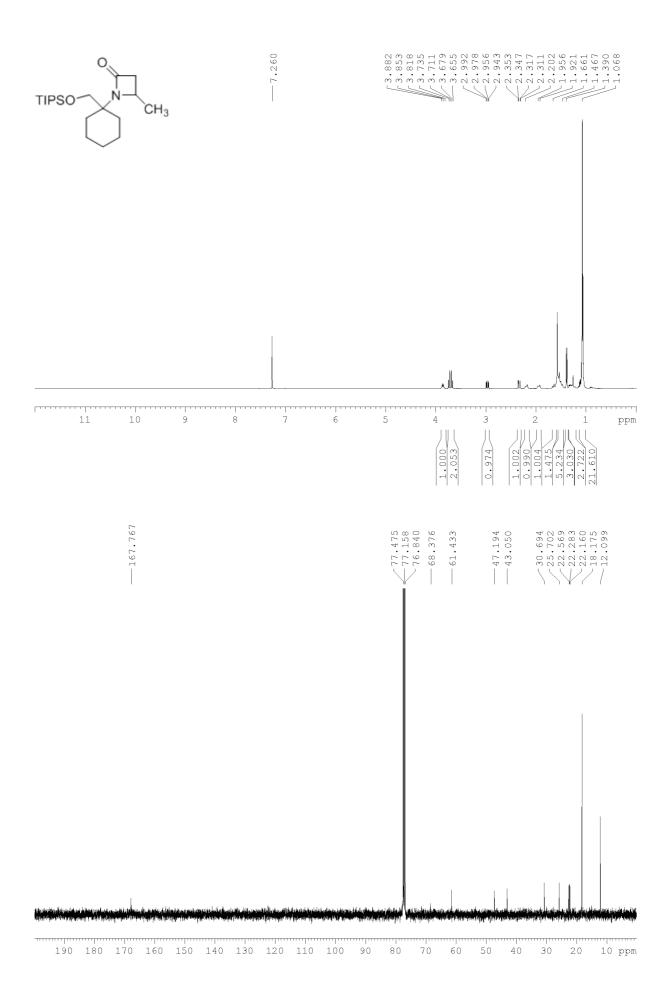


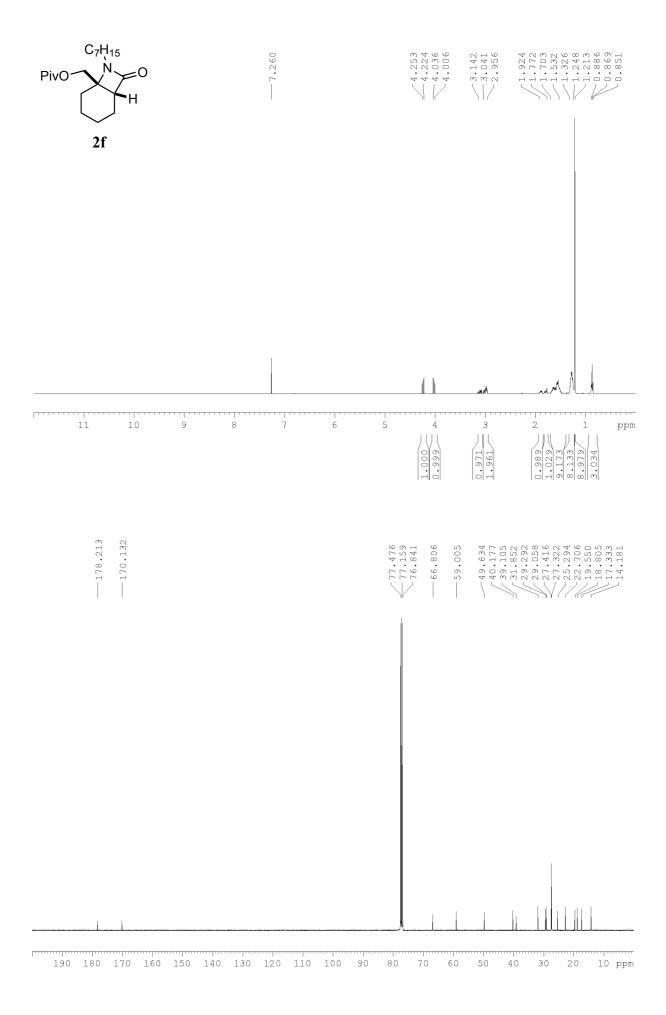


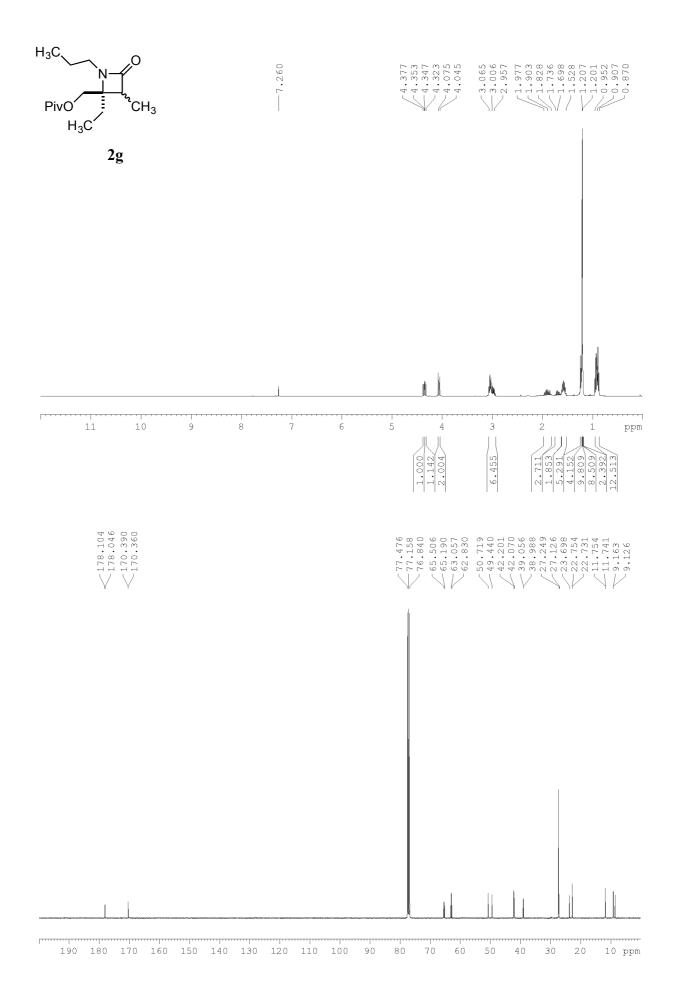


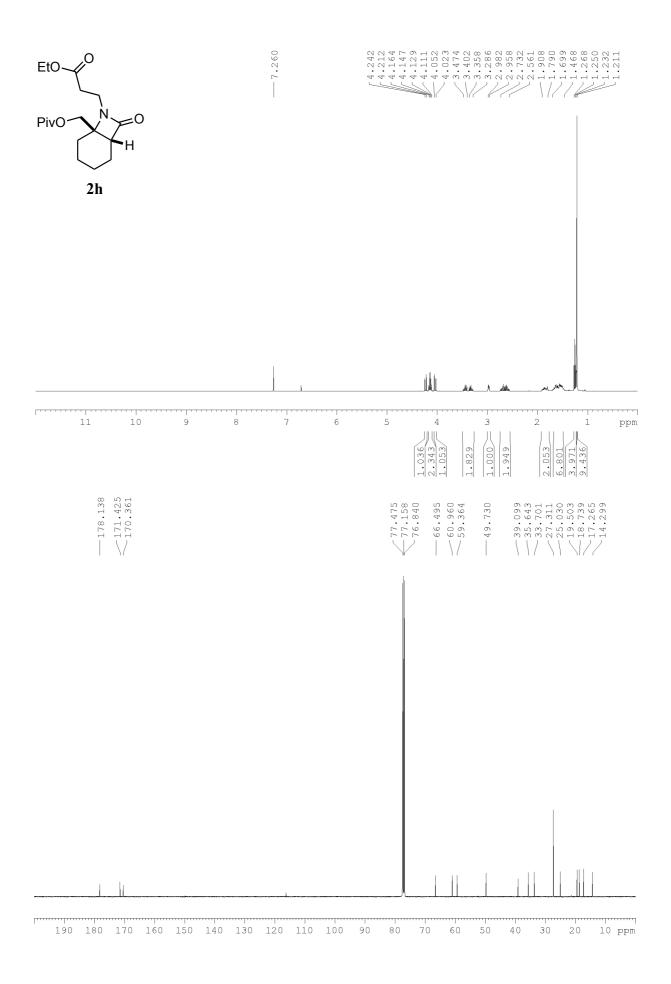


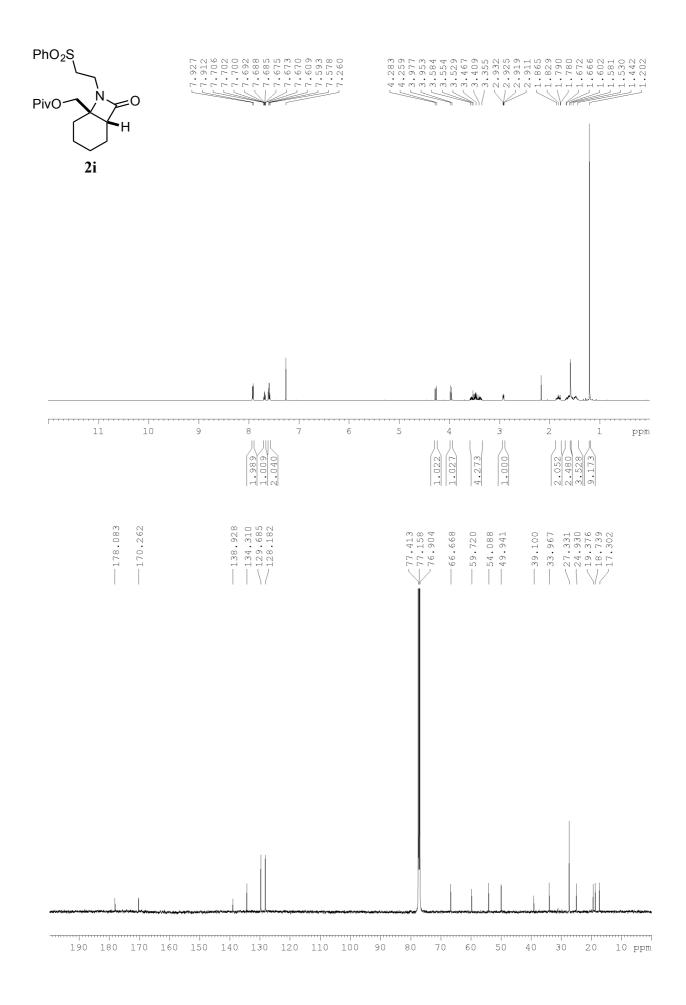

NMR of β-Lactam Products

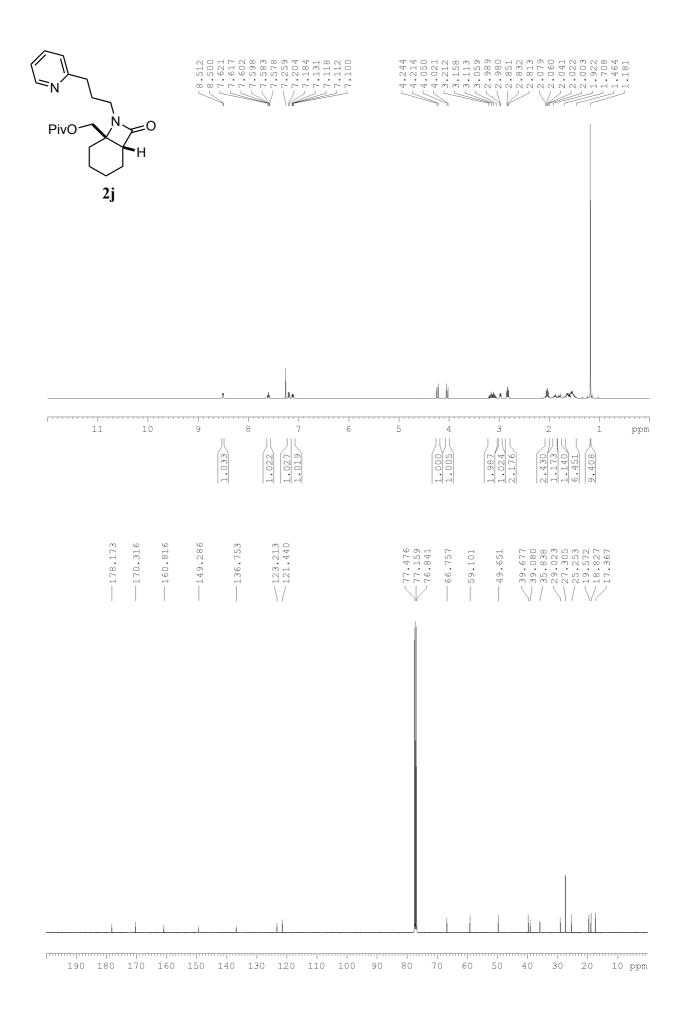


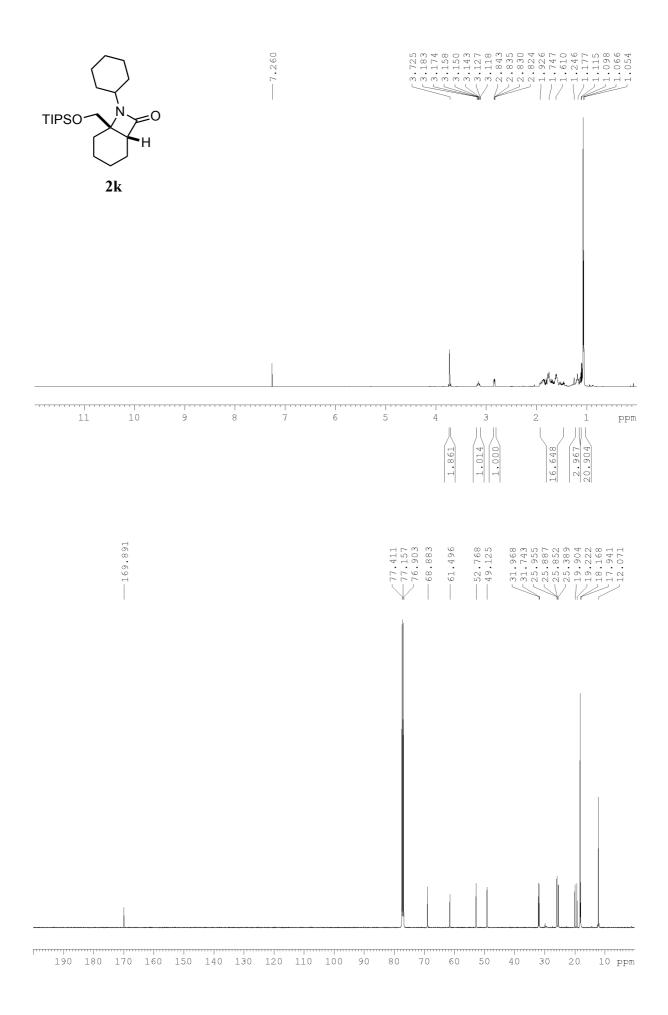


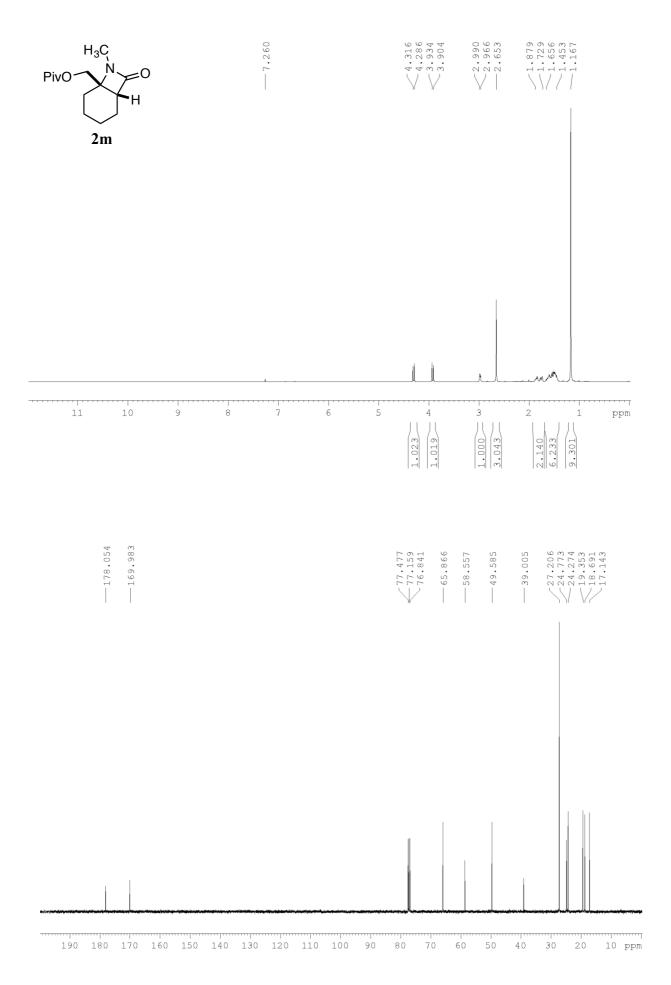


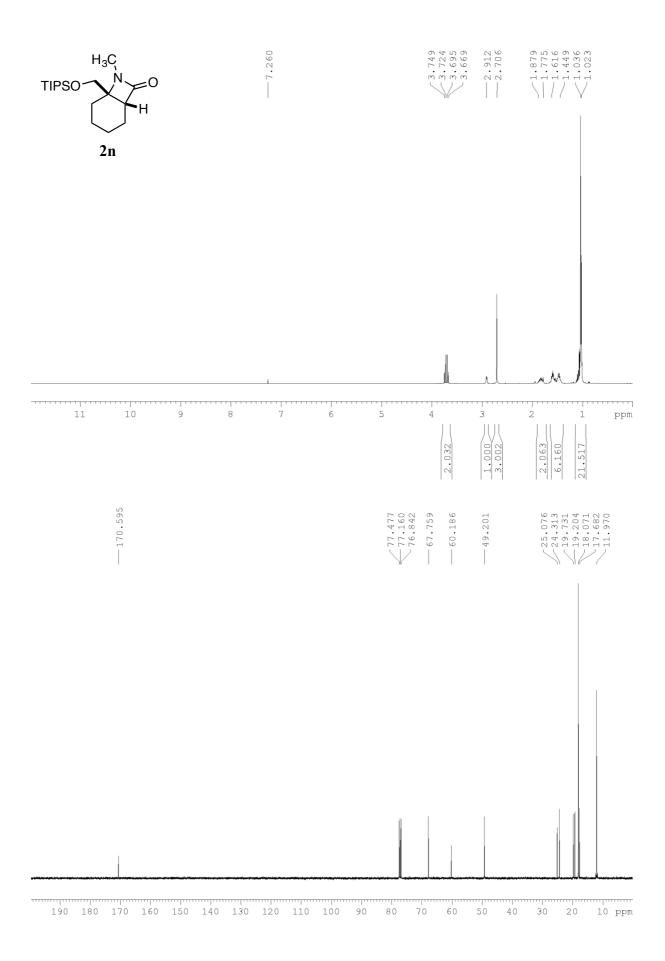


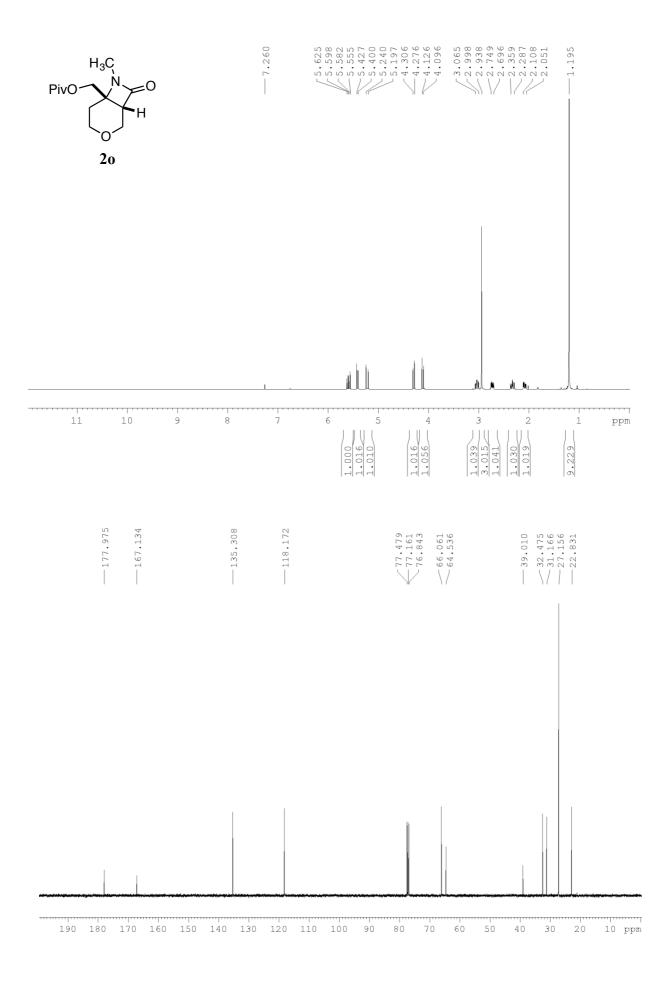


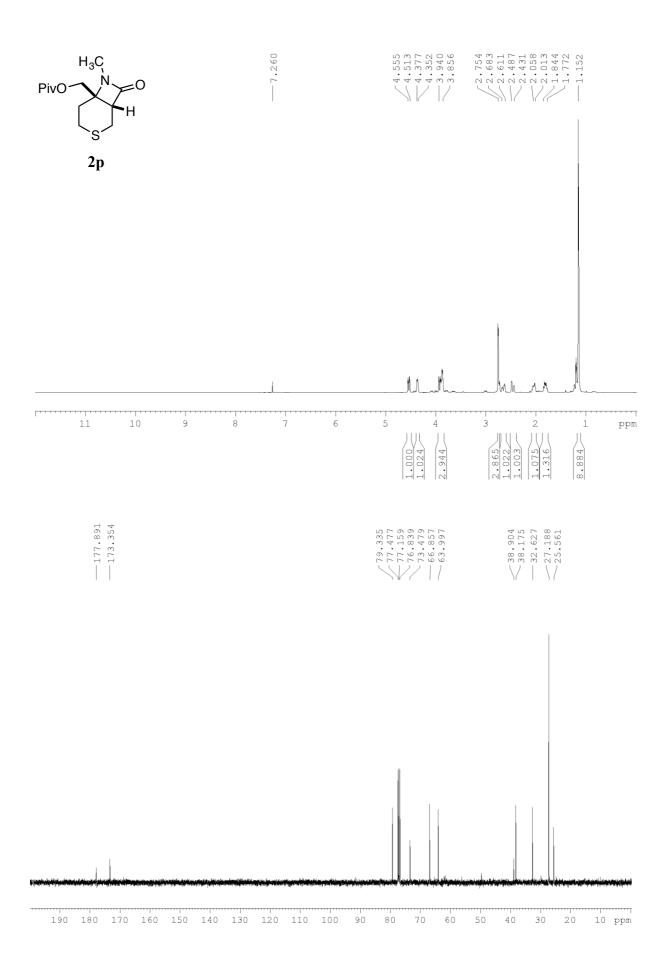


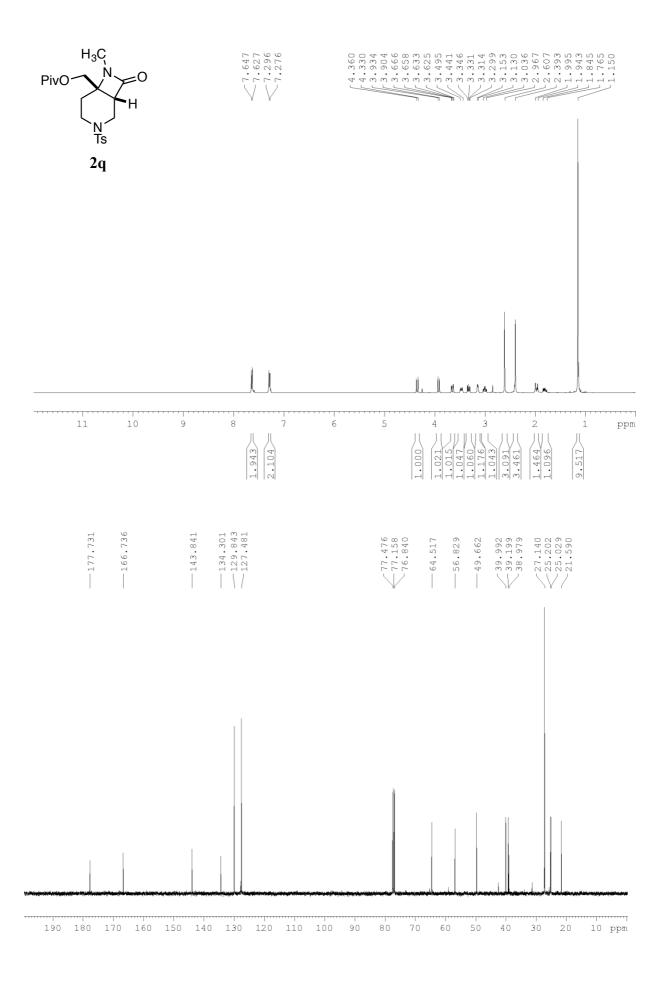


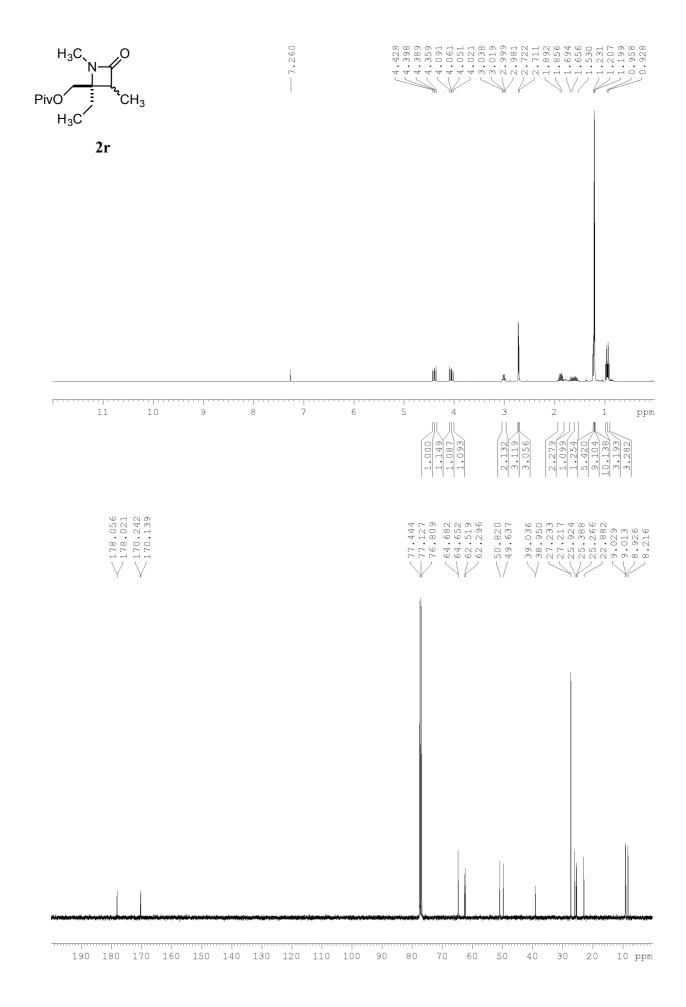


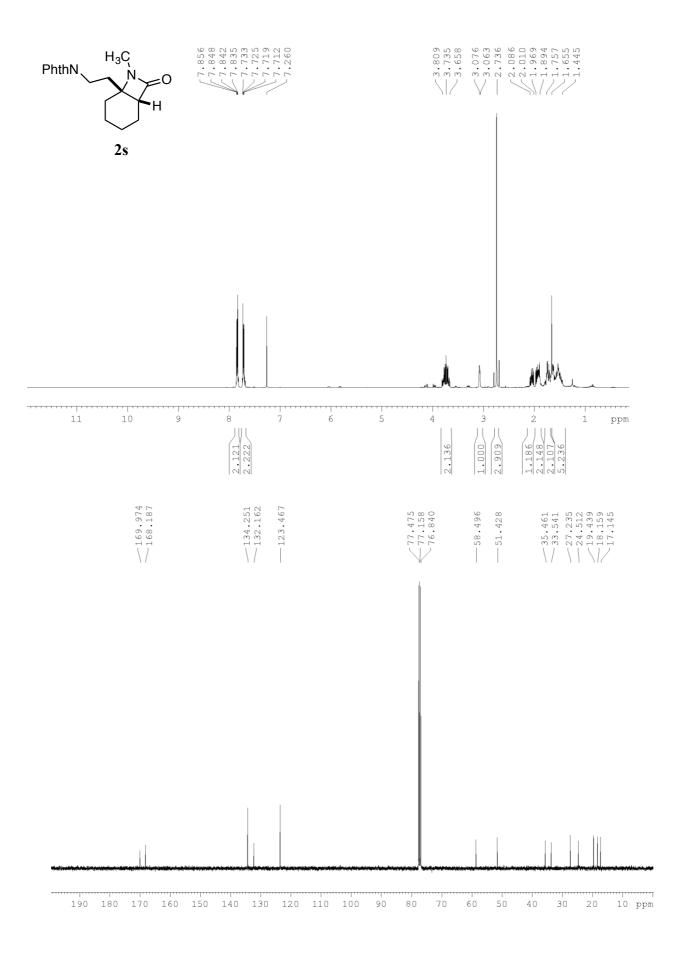


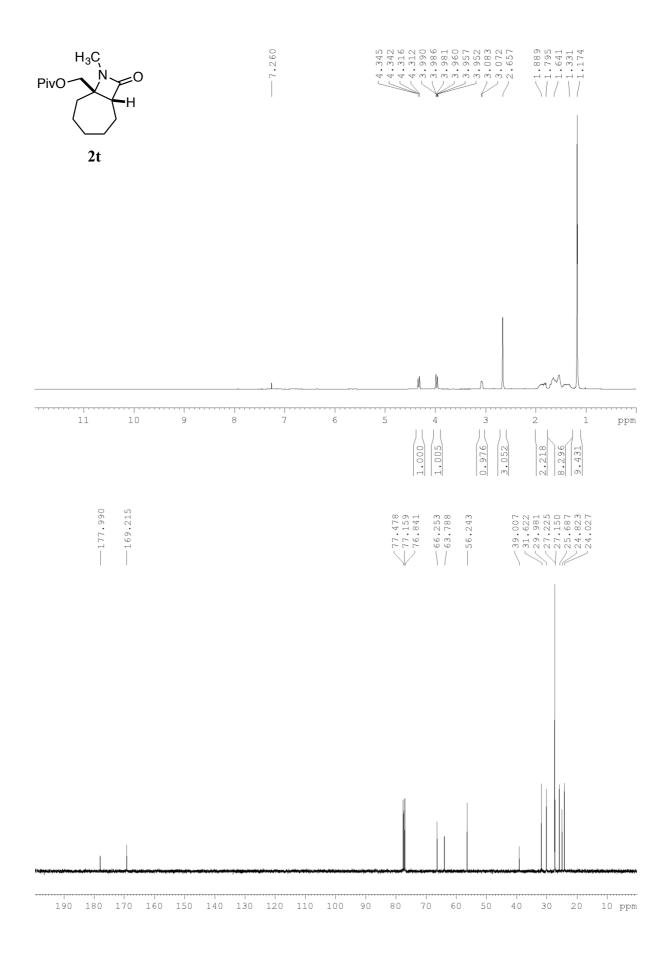


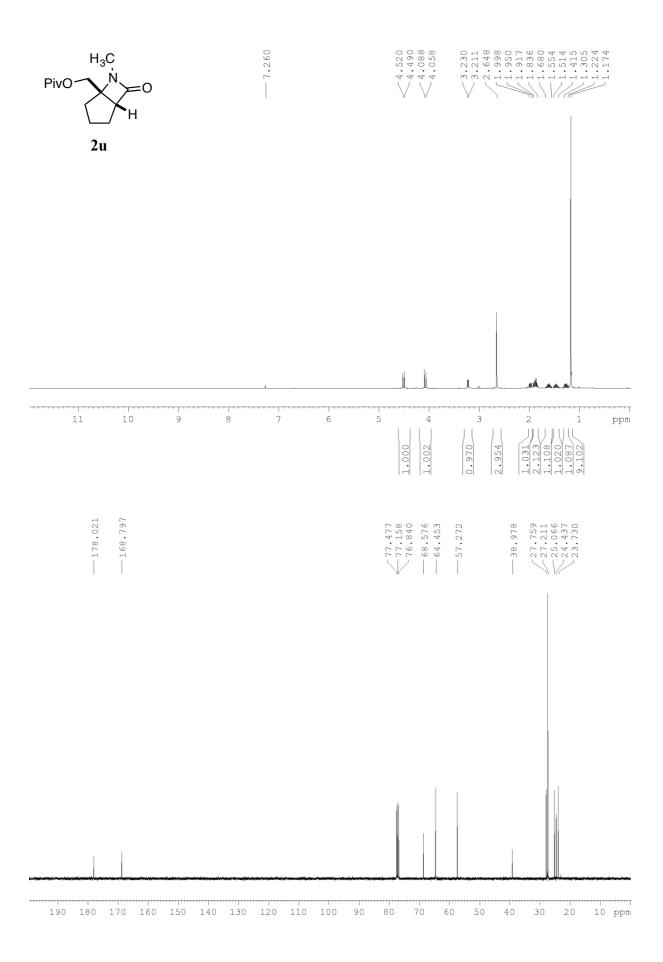


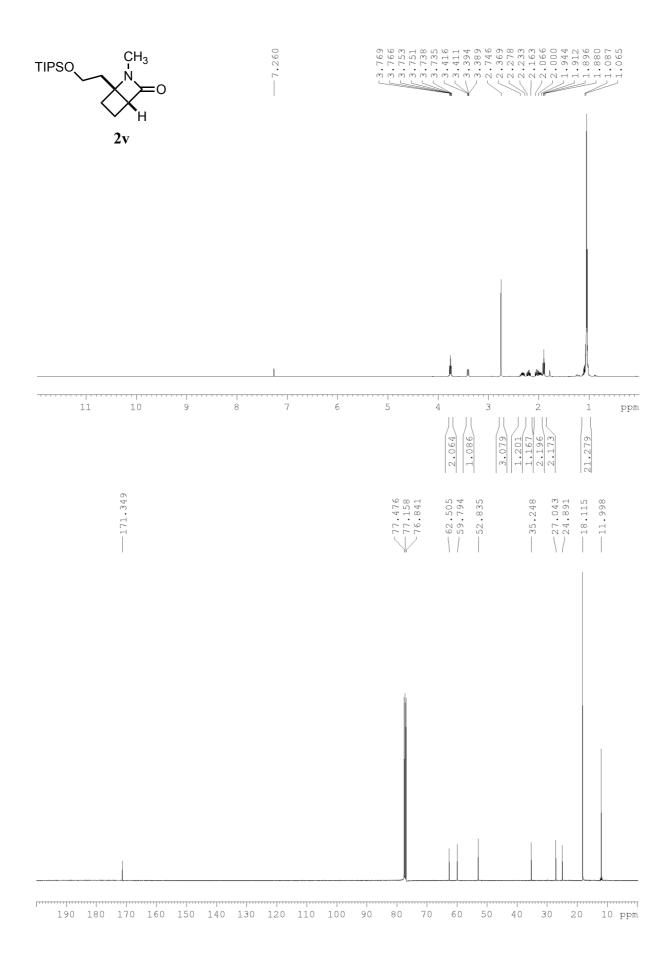


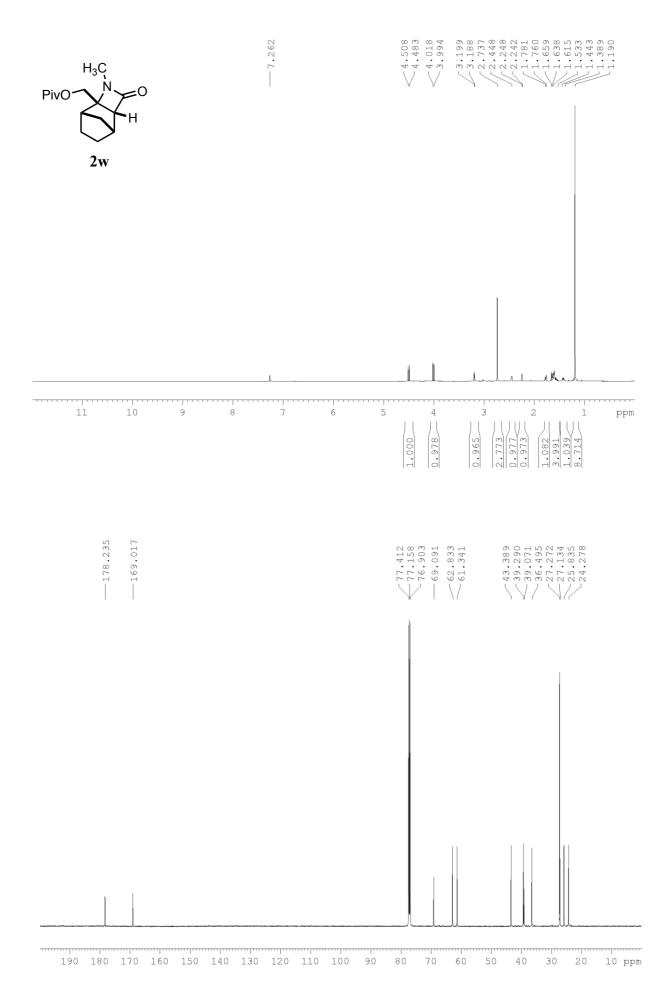


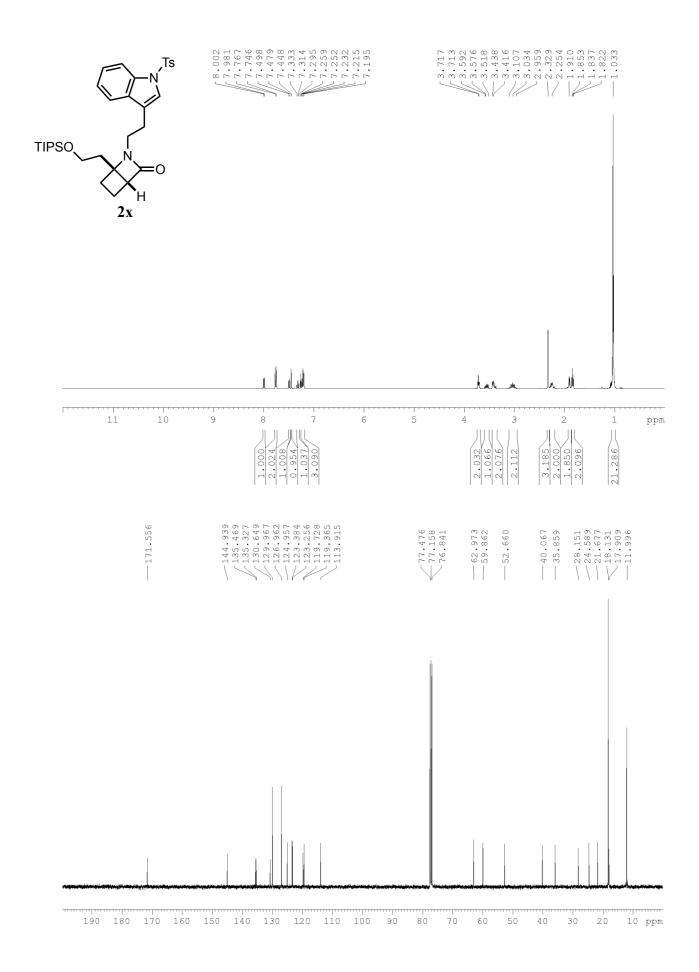


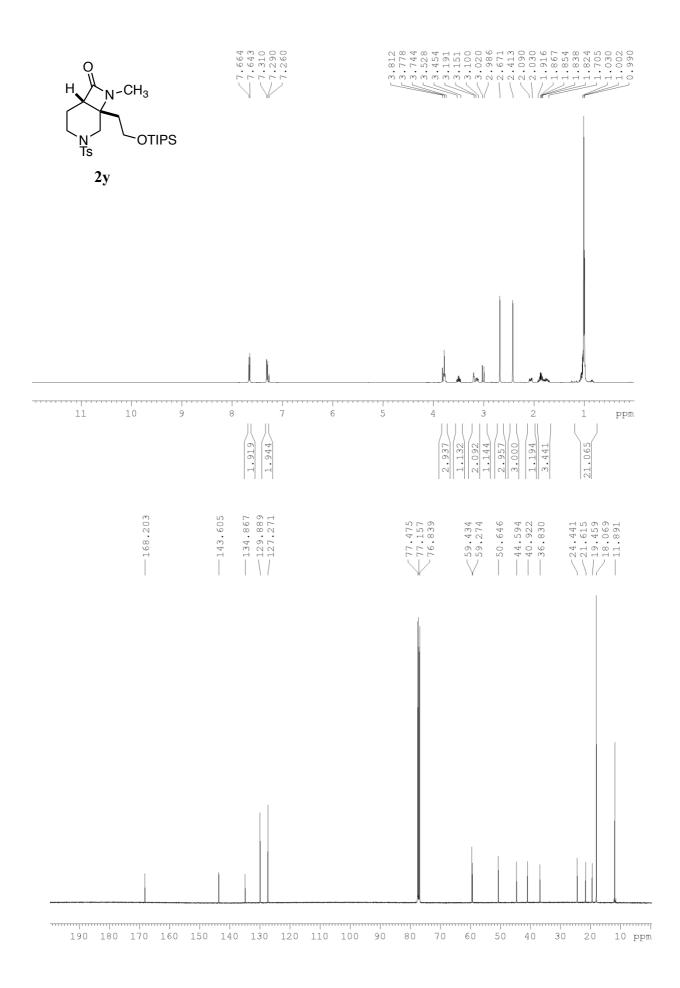


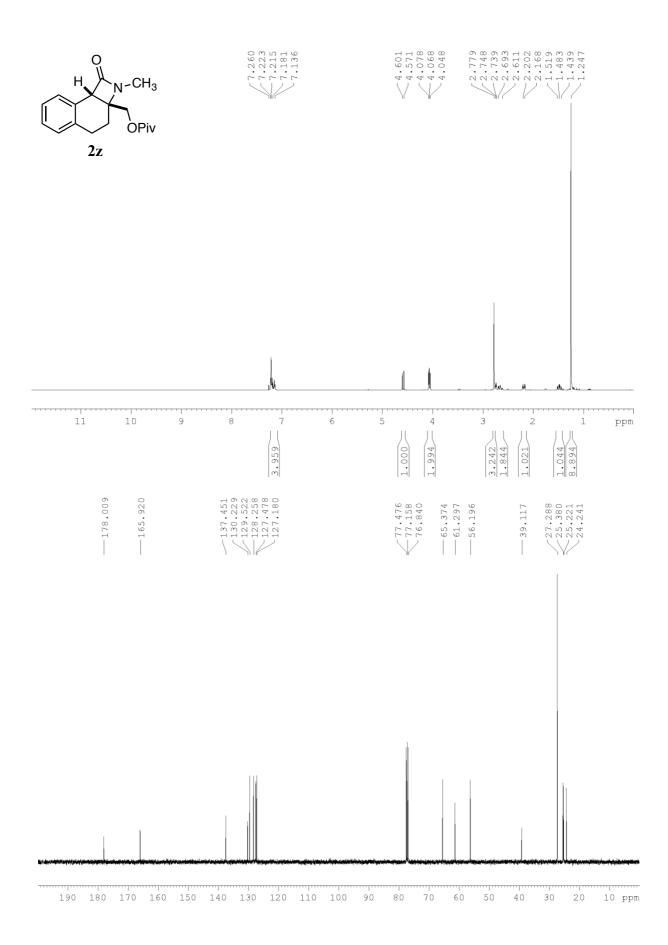


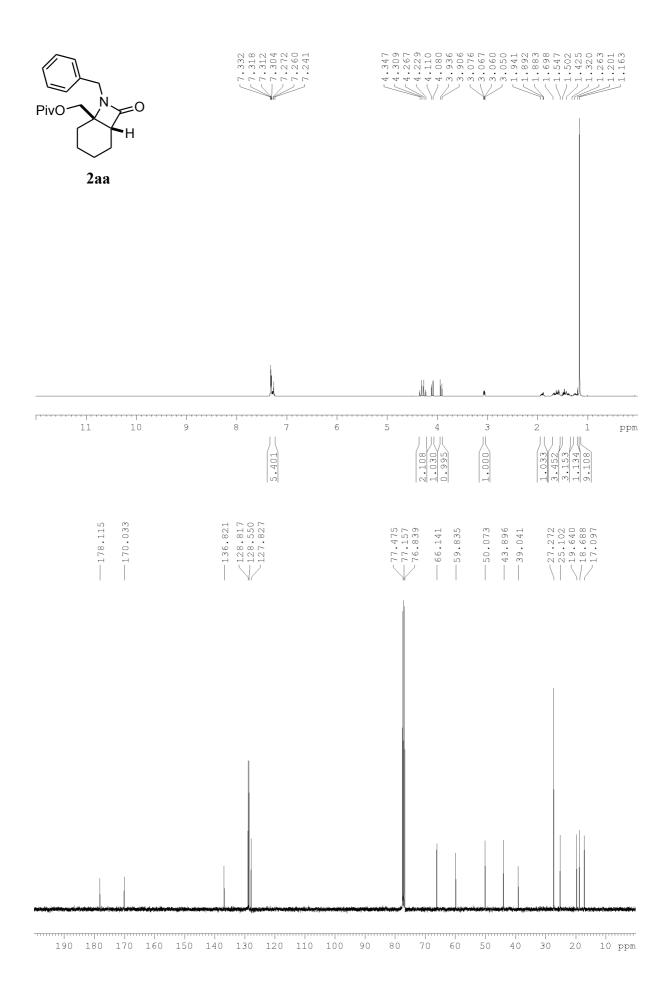


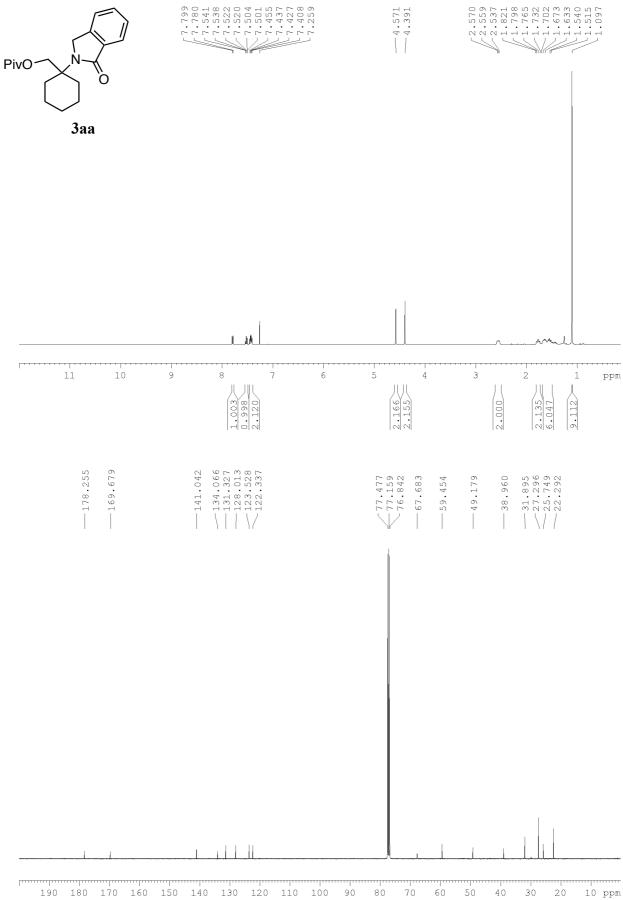


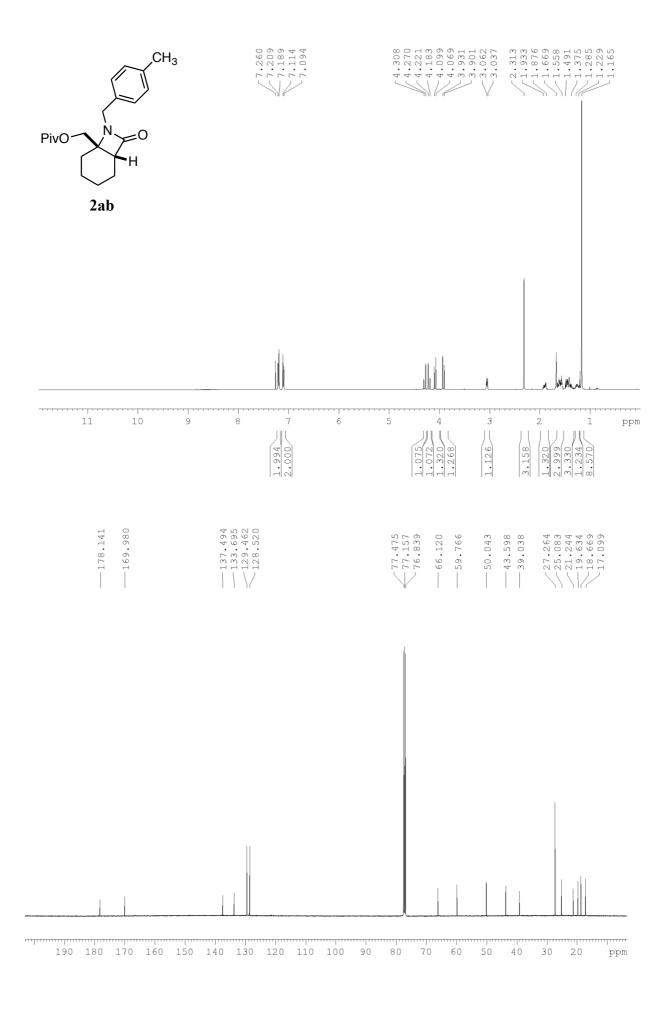


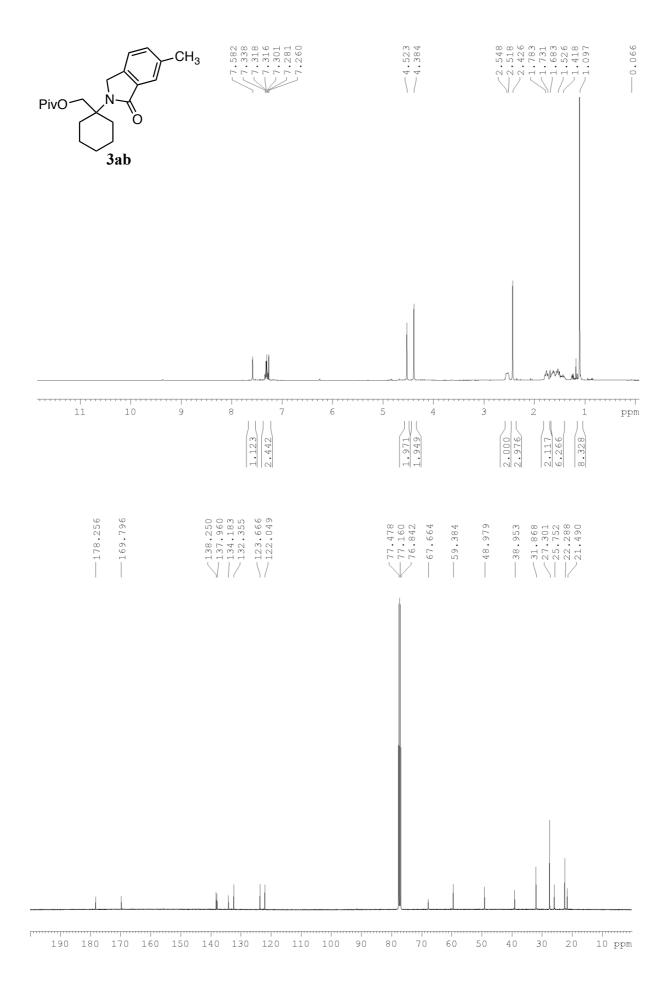


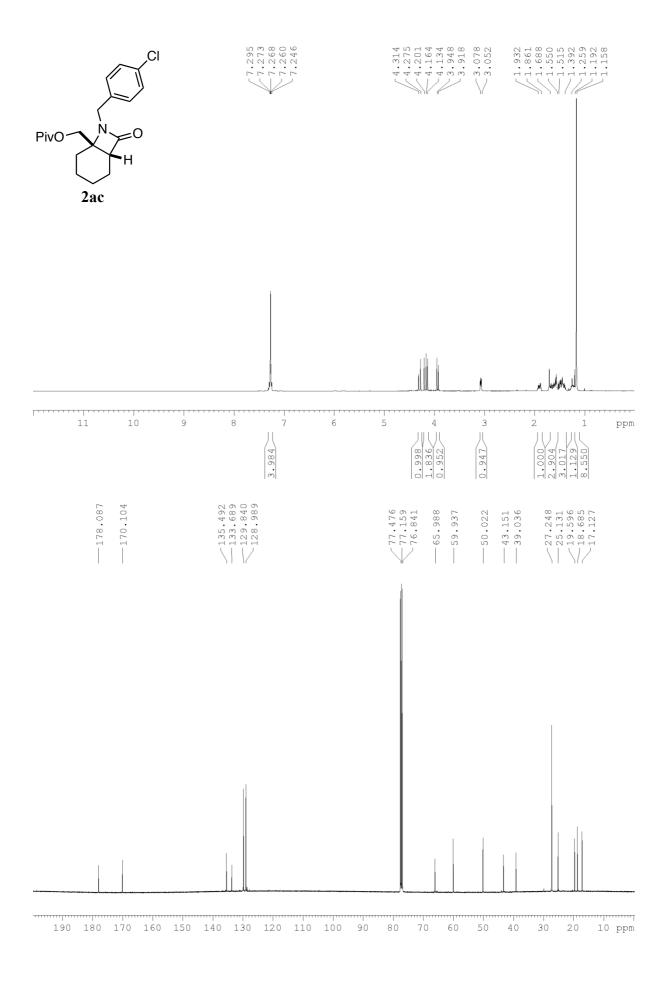


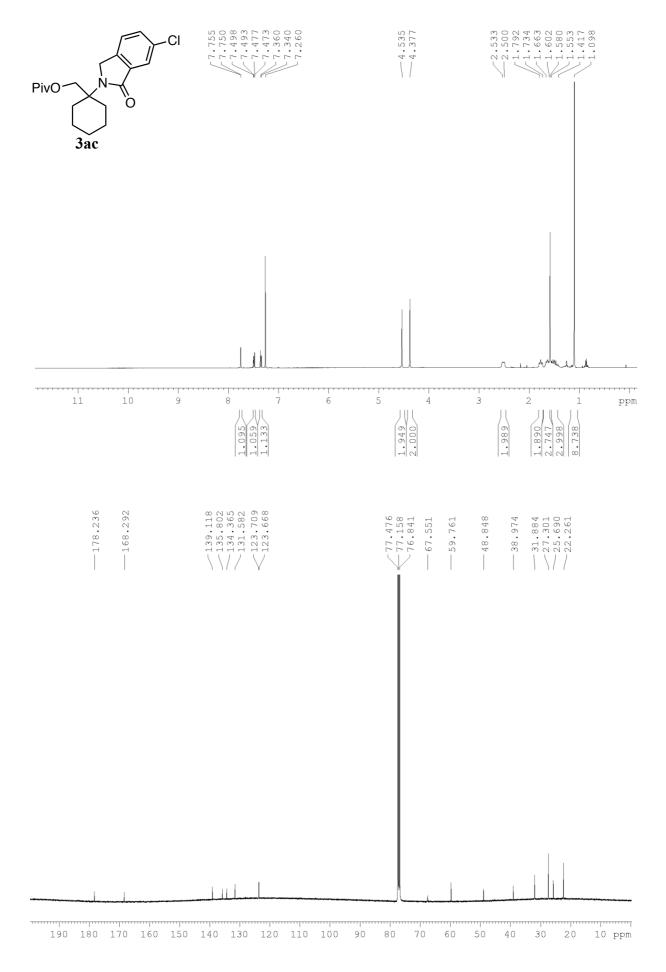


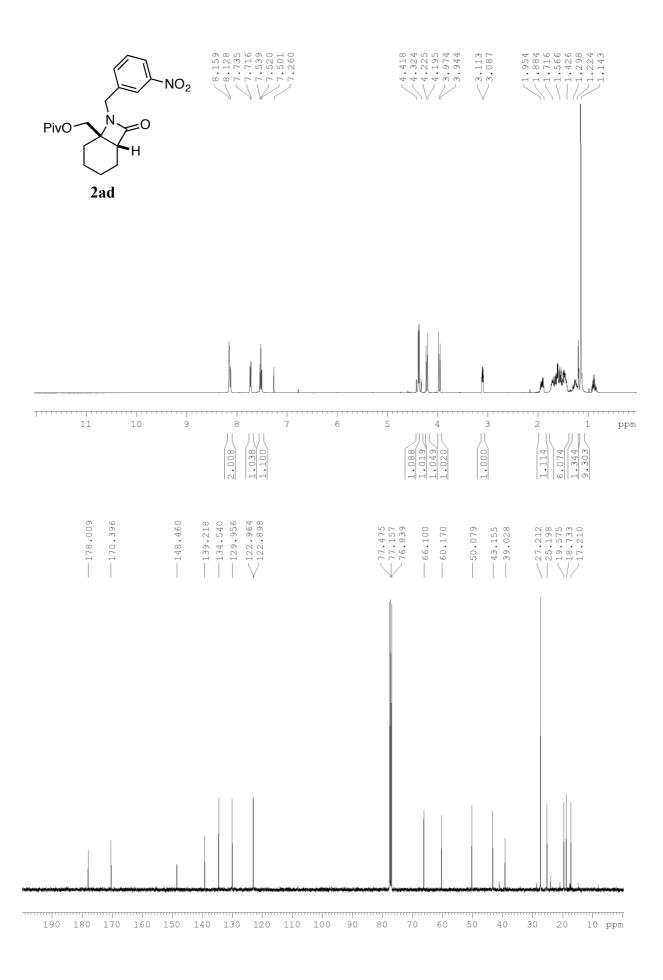


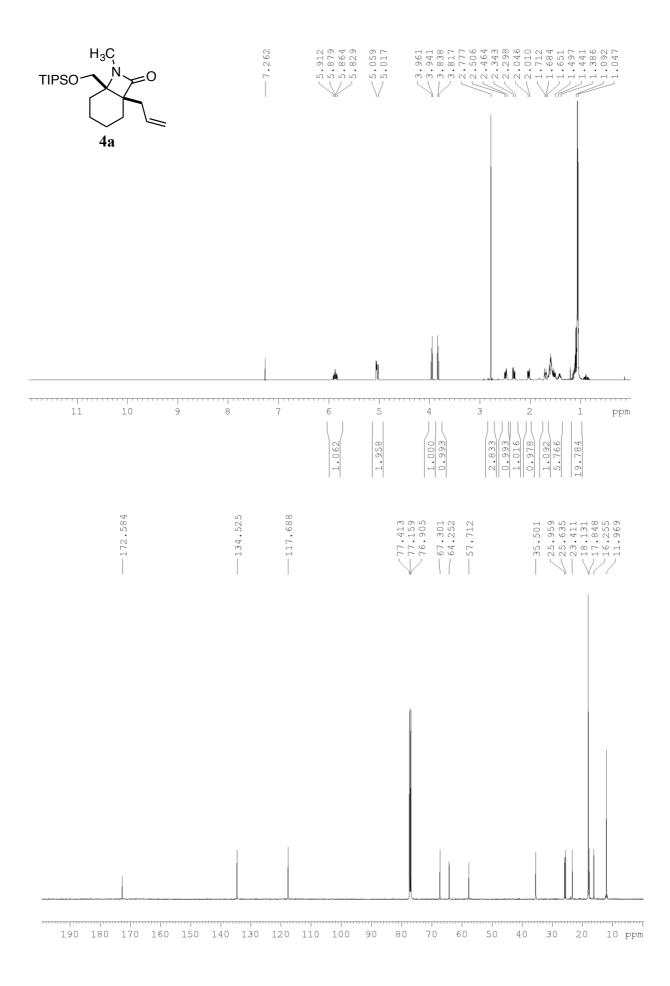


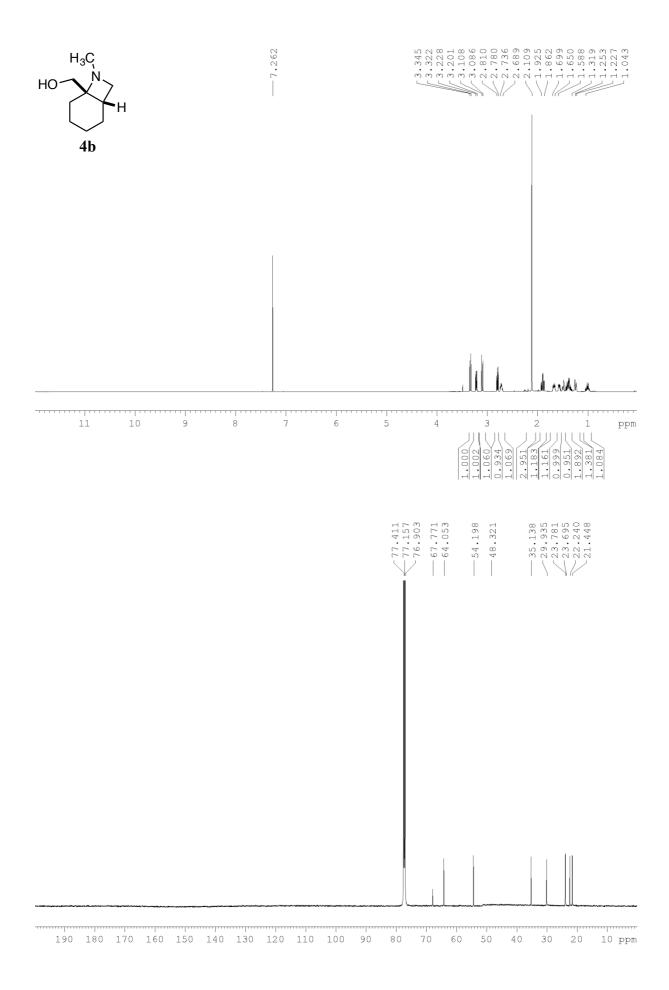


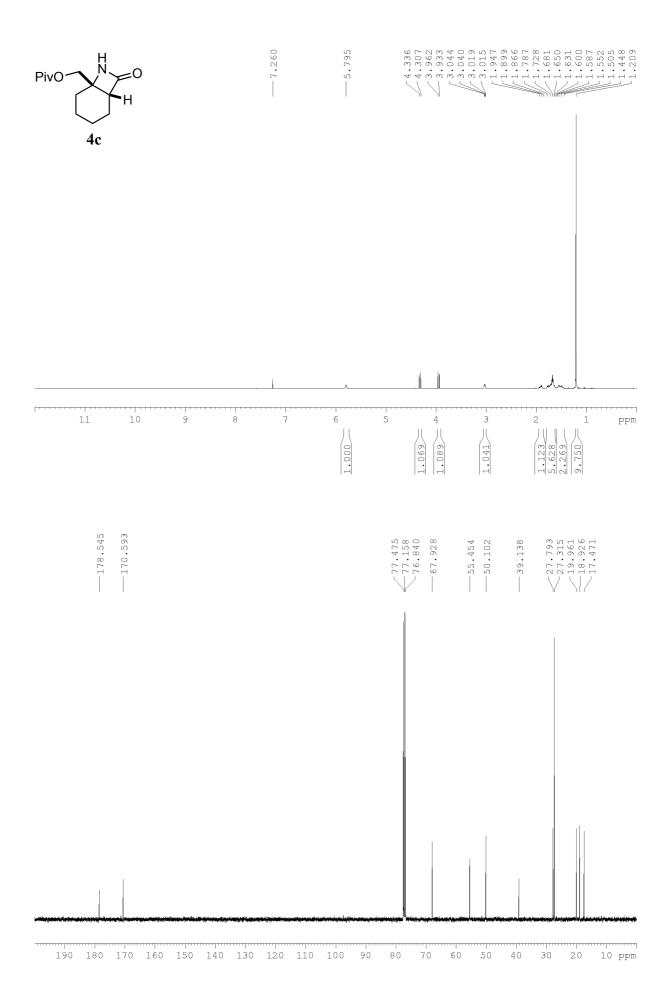





10 ppm







NMR of Functionalized Products

