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Figure S1 The H2 evolution rate under different sacrificial agent solutions over the optimal NiS/CdS NWs 

prepared at the Ni/Cd feed molar ratio of 0.8. The data were calculated based on the H2 amount generated in the 

first 4 h reaction. Reaction conditions: 5 mg of the catalyst; 100 mL of aqueous solution; 7 °C; and visible light 

irradiation (λ ≥ 420 nm) provided by a 300 W Xe lamp with an UV cut-off filter. This figure reveals that the 

acidic conditions provided by 20 vol.% of lactic acid aqueous solution is beneficial for the photocatalytic H2 

evolution over the present NiS/CdS NWs. 
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Figure S2 The rate of photocatalytic H2 evolution in different concentrations of lactic acid aqueous solution over 

the -NiS modified CdS nanowires (NiS/CdS NWs) prepared at a Ni/Cd feed molar ratio of 0.8 in the synthesis 

reaction. The data were calculated based on the H2 amount generated in the first 4 h of reaction. Reaction 

conditions: 5 mg of the photocatalyst; 100 mL of aqueous solution; 7 ºC; and visible light irradiation (λ ≥ 420 nm) 

provided by a 300 W Xe lamp with an UV cut-off filter. This figure reveals that the optimum concentration of 

lactic acid for the photocatalytic H2 evolution over the as-prepared NiS/CdS NWs is 20 vol.%.
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Figure S3 Typical SEM images of the synthesized pure CdS NWs at low (a) and high (b) magnifications. The 

CdS NWs have an average diameter of about 30 nm and a length of 5-10 m.
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Figure S4 Typical SEM images of the synthesized pure NiS sample at low (a) and high (b) magnifications, 

indicating that it consists of flower-like nanosheets and nanoparticles. 
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Figure S5 (a) low and (b) high magnification STEM images of the optimal NiS/CdS NWs prepared at the Ni/Cd 

feed molar ratio of 0.8. (c) and (d) EDX spectra of the point 1 and 2 as shown in (b), respectively. This figure 

indicates the successful loading of NiS nanoflakes onto CdS NWs.
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Figure S6 XRD patterns of the products prepared at a Ni/Cd feed molar ratio of 0.8 without NaH2PO2∙H2O while 

the Ni/S molar ratio was 1:4 (a) and 1:20 (b), respectively. (c) Typical SEM image of the product prepared at a 

Ni/Cd feed molar ratio of 0.8 and Ni/S feed molar ratio of 1:20 without NaH2PO2∙H2O. (d) The H2 evolution rate 

over the products prepared under different conditions. Among them, Samples A and B were prepared at a Ni/Cd 

feed molar ratio of 0.8 without NaH2PO2∙H2O while the Ni/S molar ratio was 1:4 and 1:20, respectively; and 

Sample C was prepared at a Ni/Cd feed molar ratio of 0.8 with 0.6 mmol of NaH2PO2∙H2O while the Ni/S feed 

molar ratio was 1:4. The data were calculated based on the H2 amount generated in the first 4 h reaction. Reaction 

conditions: 5 mg of the catalysts; 100 mL of aqueous solution containing 20 vol.% lactic acid; 7 °C; and visible 

light irradiation (λ ≥ 420 nm) provided by a 300 W Xe lamp with a cut-off filter. This figure reveals that 

NaH2PO2∙H2O is crucial for the successful loading of -NiS onto CdS NWs to prepare a high-performance 

photocatalyst. 
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Figure S7 Incident photon-to-electron conversion efficiencies (IPCE) of the pure CdS NWs, pure NiS 

nanostructures and optimal NiS/CdS NWs prepared at the Ni/Cd feed molar ratio of 0.8. 

All the IPCE data were calculated by,[S1]

                                                     (1)
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where J is the measured photocurrent, and Ilight is the light intensity at the wavelength λ of 4005, 4205, 4805, 

5205, 5505, 6005, 6505 and 7005 nm, respectively, which is measured by an irradiatometer (FZ-A, 

Photoelectric Instrument Factory of Beijing Normal University, Beijing, China).

As is seen from this figure, under light irradiation in the range of 400-520 nm, pure β-NiS nanostructures 

almost have no ability to photo-to-electron conversion, while pure CdS NWs presented a small photon-to-electron 

conversion efficiency. However, after the loading of β-NiS onto CdS NWs, the photon-to-electron conversion 

efficiency was dramatically enhanced through the present NiS/CdS NWs hybrid structures. Meanwhile, under 

light irradiation after 520 nm, all the three samples (pure CdS, pure NiS and NiS/CdS hybrid structure) have very 

low photon-to-electron conversion efficiency. These results reveal that in the present NiS/CdS NWs hybrids, NiS 

is not a photocatalyst but only serves as a co-catalyst for CdS NWs to effectively promote the separation of photo-

generated electron-hole pairs.
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 Table S1 Practical molar ratios of NiS in the photocatalysts prepared at various Ni/Cd feed molar ratios 

measured by SEM-EDX analysis

Designed Ni/Cd 
feed molar ratio

0:1 (pure CdS) 0.2:1 0.3:1 0.4:1 0.5:1 0.6:1

Practical molar 
percentage of NiS

0% 0.53% 0.96% 2.39% 4.87% 7.01%

Designed Ni/Cd 
feed molar ratio

0.7:1 0.8:1 0.9:1 1:1 1.2:1 1:0

Practical molar 
percentage of NiS

9.89%
11.75
%

13.8% 15.2% 18.6% 100% (pure NiS)
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Table S2 Review on CdS-based noble metal-free photocatalysts for H2 evolution

H2 evolution
Photocatalyst Co-catalyst Light sourcea Aqueousb Tc

Rate (mol∙h-1∙g-1) AQY (%) Fd
Ref.

7 ˚C 118420 57.8 (420 nm) 204
CdS nanowires NiS 300 W Xe (  420 nm) 20 vol% Lactic acid

25 ˚C 158720 74.1 (420 nm) 250
This work

CdS nanorods 0.5 wt% Ni2P 300 W Xe (  420 nm)
1.05 M Na2SO3 + 0.75 
M Na2S

RT 1200000 41 (450 nm) 22 [3]

CdS nanorods Ni LED (447 nm) Ethanol RT 63000 53 (447 nm) [5]
CdS MoP 300 W Xe (  420 nm) 20 vol% Lactic acid 20 ˚C 73333 45 (460 nm) [11]

CdS 15 wt% MoS2 300 W Xe (  420 nm)
0.02 M Na2SO3 + 0.1 
M Na2S

RT 4470 10 [12]

CdS 0.2 wt% MoS2 300 W Xe (  420 nm) 10 vol% Lactic acid RT 5400 36 [13]
CdS nanorods 16.7 wt% MoP 300 W Xe (  420 nm) 10 vol% Lactic acid RT 163200 5.8 (450 nm) 20 [14]
CdS 11 mol% WS2 300 W Xe (  420 nm) 10 vol% Lactic acid RT 1984 16 [15]

CdS 10 wt% WC 500 W Xe (  420 nm)
0.02 M Na2SO3 + 0.1 
M Na2S

RT 1400 23 [16]

CdS 1 wt% WS2 300 W Xe (  420 nm) 10 vol% Lactic acid 105 ˚C 4200 5 (420 nm) 28 [17]
CdS nanorods 6 wt% Co2P 300 W Xe 10 vol% Lactic acid RT 10800 16 [18]
CdS nanowires 6.5 mol% Co(OH)2 300 W Xe (  420 nm) 30 vol% TEOA RT 14430 206 [19]
CdS nanorods 6.8 mol% Co(OH)2 500 W Xe 25 vol% Ethanol RT 61 41 [20]

CdS nanorods 3 mol% Co3O4 300 W Xe (  420 nm)
0.5 M Na2SO3 + 0.5 M 
Na2S

RT 236 33 [21]

CdS nanorods 4.86 wt% Ni3N 300 W Xe (  420 nm)
0.35 M Na2SO3 + 0.25 
M Na2S

RT 88000 ~13 (420 nm) 10 [22]

CdS 13.2 mol% Ni2O3 300 W Xe (  400 nm) 30 vol% Methanol RT 4456 4.1 [23]
CdS 1 mol% NiOx 300 W Xe (  400 nm) 30 vol% Methanol RT 5908 8.6 (400 nm) 117 [24]

CdS 32 mol% NiO
500 W Phoenix tungsten 
halogen lamp

0.25 M Na2SO3 + 0.35 
M Na2S

RT 745 6.02 [25]



CdS nanorods 23 mol% Ni(OH)2 300 W Xe (  420 nm) 25 vol% TEOA RT 5084 28 (420 nm) 145 [26]
CdS 1.2 mol% NiS 300 W Xe (  420 nm) 30 vol% Lactic acid RT 7267 51.3 (420 nm) 34 [27]

CdS nanorods 5 mol% NiS 300 W Xe (  420 nm)
0.25 M Na2SO3 + 0.35 
M Na2S

RT 1131 6.1 (420 nm) 21 [28]

CdS NiS 300 W Xe (  420 nm) 30 vol% Lactic acid 35 ˚C 28600 60.4 (420 nm) ~30 [29]

CdS nanorods 3 mol% CuS 500 W Xe
0.25 M Na2SO3 + 0.35 
M Na2S

RT 332 3.5 [31]

CdS nanorods 0.44 wt% Cu3P 300 W Xe (  420 nm)
1.75 M Na2SO3 + 1.25 
M Na2S

RT 200000 25 (420 nm) 6.6 [32]

CdS nanorods 4 wt% Ni 300 W Xe (  420 nm) 1 M (NH4)2SO3 RT 25848 26.8 (420 nm) [S2]
CdS nanorods 5 wt% Ni 300 W Xe (  400 nm) 50 vol% Lactic acid RT 30048 [S3]

CdS Ni 300 W Xe (  395 nm)
4.6 M Na2SO3 + 3.3 M 
Na2S

RT 2.5 10 [S4]

CdS
0.4 wt% RGO +2 wt% 
MoS2

500 W UV-vis lamp 10 vol% Lactic acid RT 6857 71 [S5]

CdS nanorods 30 wt% Fe2P 300 W Xe (  420 nm) 0.5 M Ascorbic acid RT 186000 15 (450 nm) 31 [S6]

CdS 2 wt% Ni2P simulated solar radiation 20 vol% Lactic acid RT 33480 62 [S7]

CdS nanorods 6 wt% WS2-MoS2 150 W Xe (AM 1.5G) 20 vol% Lactic acid RT 209790 51.4 (425 nm) 83 [S8]
CdS nanowires MoS2 300 W Xe (  400 nm) 50 vol% Lactic acid 5 ˚C 10850 22 (475 nm) 28 [S9]
CdS MoS2 300 W Xe (  420 nm) 20 vol% Lactic acid RT 3875 14.7 (420 nm) 65 [S10]
CdS nanorods 5.0 wt% Cu2MoS4 150 W Xe 20 vol% Lactic acid RT 15560 4.2 [S11]
CdS Ti3C2 300 W Xe (  420 nm) 22 vol% Lactic acid RT 14342 40.1 (420 nm) 136 [S12]
CdS nanorods 6 wt% MoS2 natural solar radiation 20 vol% Lactic acid RT 174000 38.7 (425 nm) 14.5 [S13]

a) Xe: xenon lamp; Hg: mercury lamp 
b) TEOA: triethanolamine 
c) T: reaction temperature; RT: room temperature
d) F: enhancement factor (vs. pure CdS)
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