SUPPLEMENTARY INFORMATION FOR:

Organocatalytic Nitrenoid Transfer: Metal-Free Selective Intermolecular C(sp³)-H Amination Catalysed by an Iminium Salt

Logan A. Combee, Balaram Raya, Daoyong Wang, and Michael K. Hilinski

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States

CONTENTS

I.	General Information	S2
II.	Amination Reactions	S2
III.	Synthesis of Iminium Salts	S 9
IV.	Synthesis of Iminoiodinanes	S 9
V.	Mechanistic Experiments	S10
VI.	Synthesis of Substrates	S13
VII.	References	S14
VIII.	NMR Spectra	S15

I. General Information

Unless otherwise noted, all substrates, reagents and solvents were obtained commercially in reagent grade or better quality and used without further purification. Anhydrous solvents were obtained from an aluminum oxide solvent purification system. Flash column chromatography was performed using silica gel (230 - 400 mesh) purchased from Fisher Scientific. Elution of compounds was monitored by UV or PMA stain. ¹H and ¹³C NMR spectra were measured on a Varian Inova 600 (600 MHz) spectrometer and acquired at 300 K. Chemical shifts are reported in parts per million (ppm δ) referenced to the residual ¹H or ¹³C resonance of the solvent. The following abbreviations are used singularly or in combination to indicate the multiplicity of signals: s - singlet, d - doublet, t - triplet, q - quartet, m - multiplet and br - broad. Gas chromatography yield analysis was performed using an Agilent 7820A GC with FID detector using *n*-dodecane as an internal standard. IR spectra were recorded on a Shimadzu IRAffinity-1S. HRMS data were obtained from the School of Chemical Sciences Mass Spectrometry Laboratory at the University of Illinois at Urbana-Champaign and are accurate to within 5 ppm.

II. Amination Reactions

Representative procedure:

Unless otherwise noted, amination reactions were performed on a 0.5 mmol scale. In a nitrogen temperature, the substrate (0.5 glovebox at room mmol, 1 equiv), [N-(ptolylsulfonyl)imino]phenyliodinane (373 mg, 1 mmol, 2 equiv) and iminium 5a (33 mg, 0.1 mmol, 0.2 equiv) were combined in a vial or Schlenk flask equipped with a stir bar. Anhydrous dichloromethane (2 mL) was then added and the reactions mixture was either left in the glovebox and stirred at room temperature for 20 hours or removed from the glovebox, place under positive pressure of nitrogen, and stirred at room temperature for 20 hours. The reaction mixture was then filtered through a silica gel plug, eluting with EtOAc. After removal of the solvent under reduced pressure, the crude reaction mixture was then purified by flash chromatography using the conditions noted.

4-methyl-N-(1,2,3,4-tetrahydronaphthalen-1-yl)benzenesulfonamide (4)

4

- NHTs Purified by silica gel flash chromatography (5-15% ethyl acetate in hexanes). Vield: 96 mg (0.32 mmol, 64%)
 - ¹**H NMR** (600 MHz, CDCl₃) δ 7.83 (d, J = 7.9 Hz, 2H), 7.35 (d, J = 7.9 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H), 7.08 7.01 (m, 2H), 6.94 (d, J = 7.7 Hz, 1H), 4.62 (d, J = 7.8 Hz, 1H), 4.45 (q, J = 5.7 Hz, 1H), 2.78 2.73 (m, 1H), 2.70 2.63 (m, 1H), 2.46 (s, 1H), 1.87 1.79 (m, 3H), 1.77 1.68 (m, 1H) ppm. ¹³**C NMR** (150 MHz, 150 MHz).

CDCl₃) δ 143.38, 138.12, 137.53,135.57,129.75, 129.20, 128.75, 127.62, 127.12, 126.28, 51.89, 30.75, 28.86, 21.56, 19.09 ppm. NMR spectra are consistent with literature reports.¹

N-(6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-4-methylbenzenesulfonamide (6)

Purified by silica gel flash chromatography (5-20% ethyl acetate in hexanes). Yield: 96 mg (0.3 mmol, 58%)

¹**H** NMR (600 MHz, CDCl₃) δ 7.84 – 7.75 (m, 2H), 7.33 (d, J = 7.9 Hz, 2H), 6.81 (d, J = 8.6 Hz, 1H), 6.60 (dd, J = 8.6, 2.7 Hz, 1H), 6.53 (d, J = 2.7 Hz, 1H), 4.60 (d, J = 7.5 Hz, 1H), 4.44 – 4.31 (m, 1H), 3.73 (s, 3H), 2.71

(dt, J = 17.2, 5.5 Hz, 1H), 2.66 – 2.58 (m, 1H), 2.45 (s, 3H), 1.87 – 1.73 (m, 3H), 1.73 – 1.65 (m, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 158.83, 143.34, 138.96, 138.15, 130.03, 129.73, 127.76, 127.12, 113.39, 112.74, 55.18, 51.44, 30.85, 29.22, 21.55, 18.87 ppm. **HRMS** (ESI): *m/z* calcd for $[C_{18}H_{21}NO_{3}S+Na]^{+}$: 354.1137; found: 354.1140.

N-(6-bromo-1,2,3,4-tetrahydronaphthalen-1-yl)-4-methylbenzenesulfonamide (7)

Yield: 72 mg (0.19 mmol, 37%) ¹**H NMR** (600 MHz, CDCl₃) δ 7.81 (dd, J = 8.2, 6.3 Hz, 2H), 7.35 (dd, J =17.2, 8.0 Hz, 2H), 7.23 - 7.04 (m, 2H), 6.90 - 6.80 (m, 1H), 4.54 (dd, J =15.1, 8.2 Hz, 1H), 4.39 (q, J = 5.8, 4.7 Hz, 1H), 2.79 – 2.68 (m, 1H), 2.66 –

Purified by silica gel flash chromatography (5-15% ethyl acetate in hexanes).

2.57 (m, 1H), 2.45 (s, 3H), 1.78 (ddt, J = 11.6, 8.9, 4.5 Hz, 3H), 1.70 (td, J = 8.9, 8.2, 3.5 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 143.56, 139.66, 134.66, 131.84, 130.51, 129.81, 129.47, 127.07, 126.97, 121.51, 51.45, 30.61, 28.69, 21.56, 18.98 ppm. **HRMS** (ESI): m/z calcd for $[C_{17}H_{18}NO_2SBr+Na]^+$: 402.0138; found: 402.0139.

N-(6-fluoro-1,2,3,4-tetrahydronaphthalen-1-yl)-4-methylbenzenesulfonamide (8)

NHTs Purified by silica gel flash chromatography (5-15% ethyl acetate in hexanes). Yield: 72 mg (0.20 mmol, 41%)

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.37 – 7.33 (m, 2H), 6.96 - 6.92 (m, 1H), 6.79 - 6.74 (m, 1H), 6.73 (dd, J = 9.5, 2.7 Hz, 1H), 4.55 (d, J = 8.0 Hz, 1H), 4.43 (dd, J = 8.2, 4.7 Hz, 1H), 2.78 – 2.70 (m, 1H), 2.68 – 2.61 (m, 1H), 2.46 (s, 3H), 1.84 – 1.76 (m, 3H), 1.74 – 1.68 (m, 1H).

¹³C NMR (151 MHz, Chloroform-d) δ 162.05 (d, J = 246.8 Hz), 143.67, 139.96 (d, J = 7.8 Hz), 138.26, 131.52, 130.85 (d, J = 8.5 Hz), 129.97, 127.26, 115.36 (d, J = 20.7 Hz), 113.77 (d, J =21.4 Hz). 51.52, 30.84, 29.20, 21.73, 19.02.

HRMS (ESI): m/z calcd for $[C_{17}H_{17}NO_2FS]^{-1}$: 318.0964; found: 318.0966.

N-(2,3-dihydro-1H-inden-1-yl)-4-methylbenzenesulfonamide (10)

Purified by silica gel flash chromatography (5-15% ethyl acetate in hexanes).

NHTs

Isolated as a inseparable 8:1 mixture with the corresponding imine. Yield: 66 mg (0.23 mmol, 46%)

¹**H** NMR (600 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 2H), 7.35 – 7.31 (m, 2H), 10 7.23 - 7.15 (m, 2H), 7.13 (td, J = 7.2, 1.6 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H), 4.82(q, J = 7.8 Hz, 1H), 4.67 (d, J = 9.0 Hz, 1H), 2.88 (ddd, J = 16.0, 8.7, 3.6 Hz, 1H), 2.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 1H), 3.73 (dt, J = 16.0, 8.7, 3.6 Hz, 100 Hz16.1, 8.2 Hz, 1H), 2.44 (s, 3H), 2.32 (dtd, J = 13.0, 7.8, 3.7 Hz, 1H), 1.74 (dtd, J = 13.1, 8.5, 7.3 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 143.46, 142.82, 141.93,138.18, 129.77, 128.30, 127.12, 126.86, 124.80, 124.03, 58.72, 34.78, 29.95, 21.54 ppm. Diagnostic imine chemical shifts: ¹**H NMR** (600 MHz, CDCl₃) δ 7.93 (d, J = 8.3 Hz, 2H), 3.45 – 3.41 (m, 2H), 3.22 – 3.19 (m, 2H), 2.45 (s, 3H). NMR spectra are consistent with literature reports.¹

N-(9,10-dihydroanthracen-9-yl)-4-methylbenzenesulfonamide (11)

Purified by silica gel flash chromatography (5-15% ethyl acetate in hexanes). Yield: 101 mg (0.29 mmol. 58%)

¹**H NMR** (600 MHz, CDCl₃) δ 7.66 (d, J = 8.3 Hz, 1H), 7.31 (dd, J = 7.6, 1.2Hz, 1H), 7.26 (s, 2H), 7.21 (td, J = 7.5, 1.5 Hz, 3H), 7.18 – 7.13 (m, 1H), 5.52

(d, J = 6.9 Hz, 1H), 4.79 (d, J = 6.9 Hz, 1H), 4.00 (d, J = 18.0 Hz, 1H), 3.83 (d, J = 18.0 Hz, 1H), 2.41 (s, 2H) ppm. ¹³**C NMR** (150 MHz, CDCl3) δ 143.16, 138.08, 136.76,135.83, 129.46, 127.67, 127.19, 126.97, 126.54, 56.23, 35.15, 21.49 ppm. NMR spectra are consistent with literature reports.²

N-benzhydryl-4-methylbenzenesulfonamide (12)

Purified by silica gel flash chromatography (5-15% ethyl acetate in hexanes). Yield: 67 mg (0.2 mmol, 40%)

¹**H** NMR (600 MHz, CDCl₃) δ 7.55 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 6.5 Hz, 6H), 7.12 (d, J = 8.0 Hz, 2H), 7.10 – 7.05 (m, 4H), 5.56 (d, J = 7.0 Hz, 1H), 5.07 (d, J = 7.1 Hz, 1H), 2.36 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ

143.18, 140.47, 137.30,129.32,128.52, 127.56, 127.33, 127.17, 61.30, 21.45 ppm. NMR spectra are consistent with literature reports.¹

N-((4-methoxyphenyl)(phenyl)methyl)-4-methylbenzenesulfonamide (13)

NHTs Purified b hexanes). Yield: 73 r **H NMR** 3H), 7.16

Purified by silica gel flash chromatography (10-20% ethyl acetate in hexanes).

Yield: 73 mg (0.2 mmol, 40%)

¹**H** NMR (600 MHz, CDCl₃) δ 7.55 (d, J = 8.3 Hz, 2H), 7.22 – 7.17 (m, 3H), 7.16 – 7.11 (m, 2H), 7.11 – 7.06 (m, 2H), 7.02 – 6.95 (m, 2H), 6.76 – 6.68 (m, 2H), 5.51 (d, J = 6.8 Hz, 1H), 4.91 (d, J = 6.8 Hz, 1H), 3.75

(s, 3H), 2.37 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 158.98, 143.12, 140.66, 137.35,132.69, 129.31, 128.58, 128.47, 127.47, 127.24, 127.19, 113.87, 60.79, 55.23, 21.45 ppm. NMR spectra are consistent with literature reports.³

N-((4-bromophenyl)(phenyl)methyl)-4-methylbenzenesulfonamide (14)

Purified by silica gel flash chromatography (5-15% ethyl acetate in hexanes).

Yield: 122 mg (0.3mmol, 59%)

¹**H NMR** (600 MHz, CDCl₃) δ 7.57 – 7.53 (m, 2H), 7.35 – 7.31 (m, 2H), 7.23 (d, J = 5.1 Hz, 3H), 7.16 (d, J = 7.9 Hz, 2H), 7.05 (d, J = 5.2 Hz, 2H), 7.02 – 6.98 (m, 2H), 5.52 (d, J = 6.9 Hz, 1H), 4.96 (d, J = 6.8 Hz,

1H), 2.40 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 143.48, 139.94, 139.39, 137.20,131.57,129.42, 129.09, 128.74, 127.92, 127.25, 127.17, 121.61, 60.80, 21.48 ppm. NMR spectra are consistent with literature reports.³

N-(isochroman-1-yl)-4-methylbenzenesulfonamide (15)

NHTs Purified by silica gel flash chromatography (2-15% acetone in hexanes).

Yield: 104 mg (0.34 mmol, 69%) ¹**H NMR** (600 MHz, CDCl₃) δ 7.85 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.24 - 7.18 (m, 3H), 7.08 (d, J = 7.2 Hz, 1H), 6.10 (d, J = 8.6 Hz, 1H), 5.41 (d, J

15

7.24 - 7.18 (m, 3H), 7.08 (d, J = 7.2 Hz, 1H), 6.10 (d, J = 8.6 Hz, 1H), 5.41 (d, J = 8.6 Hz, 1H), 3.71 - 3.59 (m, 2H), 2.85 (ddd, J = 15.9, 9.7, 5.7 Hz, 1H), 2.61 (dt,

J = 16.6, 3.8 Hz, 1H), 2.44 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 143.34, 138.73, 134.47, 132.77, 129.45, 128.80, 128.41, 127.19, 126.71, 126.44, 79.87, 58.73, 27.53, 21.55 ppm. NMR spectra are consistent with literature reports.⁴

tert-butyl 1-((4-methylphenyl)sulfonamido)-3,4-dihydroisoquinoline-2(1H)-carboxylate (16)

Purified by silica gel flash chromatography (2-15% acetone in hexanes). Yield: 94 mg (.24 mmol, 47%)

Mixture of rotamers: ¹**H NMR** (600 MHz, CDCl₃) δ 7.82 (dd, J = 48.5, 7.9 Hz, 2H), 7.32 (dd, J = 10.8, 7.9 Hz, 2H), 7.26 – 7.19 (m, 2H), 7.15 – 7.08 (m, 1H),

16 6.59 (t, J = 7.3 Hz, 1H), 5.22 (dd, J = 28.9, 7.0 Hz, 1H), 4.00 (ddd, J = 101.0, 13.5, 5.7 Hz, 1H), 3.24 – 2.95 (m, 1H), 2.94 – 2.78 (m, 1H), 2.68 – 2.62 (m, 1H), 2.45 (s, 3H), 1.41 (s, 9H) ppm. ¹³C NMR (201 MHz, CDCl₃) δ 153.67, 153.22, 143.69, 143.53, 143.23, 139.23, 138.72, 138.16, 135.35, 135.04, 134.44, 133.42, 129.83, 129.73, 129.54, 129.45, 129.10, 128.65, 128.45, 128.23, 127.55, 127.05, 126.95, 126.88, 126.80, 126.75, 126.58, 81.26, 80.48, 77.16, 63.32, 62.40, 37.42, 35.77, 28.60, 28.41, 28.29, 28.10, 27.63, 21.67 ppm. HRMS (ESI): *m/z* calcd for $[C_{21}H_{26}N_2O_4S+H]^+$: 403.1692; found: 403.1682.

4-methyl-N-(2-(2,2,2-trifluoroacetyl)-1,2,3,4-tetrahydroisoquinolin-1yl)benzenesulfonamide (17)

Purified by gradient elution on silica gel with acetone (8-20%) in hexanes. Yield: 159 mg (0.4 mmol, 80%)

NHTs

¹**H** NMR (600 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.24 – 7.15 (m, 2H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 6.6 Hz, 1H), 5.56 (d, J = 6.5 Hz, 1H), 3.97 – 3.81 (m, 1H), 3.65 (ddd, J = 14.4, 12.8, 4.2 Hz, 1H), 2.94 (ddd, J = 18.2, 12.9, 5.9 Hz, 1H), 2.80 (dd, J = 16.8, 4.0 Hz,

1H), 2.44 (s, 3H) ppm. ¹⁹**F** NMR (564 MHz, CDCl₃) δ -70.13 ppm. ¹³**C** NMR (150 MHz, CDCl₃) δ 155.75, 155.51, 144.27, 136.80, 133.56, 131.42, 129.78, 129.21, 129.19, 128.36, 127.57, 127.44, 116.99, 115.08, 77.16, 60.98, 38.50, 38.48, 28.70, 21.67 ppm. HRMS (ESI): *m/z* calcd for [C₁₈H₁₇F₃N₂O₃S+Na]⁺: 421.0810; found: 421.0818.

N-(6,7-dimethoxy-2-(2,2,2-trifluoroacetyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-4-methylbenzenesulfonamide (19)

Purified by silca gel flash chromatography (1% methanol in dichloromethane). Yield: 178 mg (0.4 mmol, 80%)

¹**H** NMR (800 MHz, CDCl₃) δ 7.86 (d, J = 8.3 Hz, 1H), 7.41 – 7.38 (m, 1H), 6.80 – 6.76 (m, 1H), 6.59 (d, J = 6.1 Hz, 1H), 5.75 (d, J = 6.5 Hz, 1H), 3.93 (m, 1H), 3.91 (s, 3H), 3.84 (s, 3H), 3.66 (ddd, J = 14.5, 12.9, 4.2 Hz, 1H), 2.95 (ddd, J = 16.4, 12.7, 5.8 Hz, 1H), 2.77

(ddd, J = 16.6, 4.6, 1.3 Hz, 1H), 2.52 (s, 3H) ppm. ¹³C NMR (201 MHz, CDCl₃) δ 155.54 (q, J = 37.5, 36.7 Hz), 149.81, 148.56, 144.30, 137.05, 129.77, 127.53, 125.90, 123.08, 116.03 (q, J = 288.3 Hz), 110.95, 110.07, 77.16, 60.86, 56.09, 56.08, 38.58, 38.56, 28.35, 21.66 ppm. ¹⁹F NMR (564 MHz, CDCl₃) δ -70.06 ppm. **HRMS** (ESI): m/z calcd for [C₂₀H₂₁F₃N₂O₅S+H]⁺: 459.1202; found: 459.1193.

4-methyl-N-(9H-xanthen-9-ylidene)benzenesulfonamide (20)

Purified by silica gel flash chromatography (20 % ethyl acetate in hexanes). Isolated as an inseparable 5.9:1 mixture with the corresponding amine. Yield: 132 mg (0.38 mmol, 76%) ¹**H** NMR (600 MHz, CDCl₃) δ 8.73 (dd, J = 8.3, 1.6 Hz, 2H), 8.02 – 7.98 (m, 2H), 7.74 (ddd, J = 8.5, 7.1, 1.6 Hz, 2H), 7.50 (ddd, J = 8.4, 1.2, 0.4 Hz, 2H), 7.40 (ddd, J = 8.3, 7.1, 1.2 Hz, 2H), 7.37 – 7.34 (m, 2H), 2.46 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 159.33, 154.79, 142.49, 141.02, 135.28, 129.57, 129.30, 126.36, 124.28, 119.31, 117.75, 21.35 ppm. Diagnostic amine chemical shifts: ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 8.3 Hz, 2H), 7.15 (ddt, J = 7.8, 1.7, 0.5 Hz, 2H), 7.08 (dd, J = 8.2, 1.2 Hz, 2H), 6.99 (ddd, J = 7.8, 7.2, 1.2 Hz, 2H), 5.78 (d, J = 8.6 Hz, 1H), 4.92 (d, J = 8.6 Hz, 1H), 2.47 (s, 3H) ppm. NMR spectra are consistent with literature reports. ^{5,6}

4-methyl-N-(9H-thioxanthen-9-ylidene)benzenesulfonamide (21)

Purified by silica gel flash chromatography (20 % ethyl acetate in hexanes). Yield: 158 mg (0.43 mmol, 87%)

¹**H NMR** (600 MHz, CDCl₃) δ 8.62 (dd, J = 8.2, 1.3 Hz, 2H), 7.91 (d, J = 8.2Hz, 2H), 7.63 – 7.53 (m, 4H), 7.46 (td, J = 7.5, 6.9, 1.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H) ppm. ¹³**C NMR** (150 MHz, CDCl₃) δ 165.53, 142.75, 140.24, 136.22, 131.81, 131.81, 131.35, 129.30, 129.12, 126.66,

126.36, 125.58, 21.50 ppm. NMR spectra are consistent with literature reports.⁷

N-((1R,2R,4S)-bicyclo[2.2.1]heptan-2-yl)-4-methylbenzenesulfonamide (22)

Purified by silica gel flash chromatography (5% ethyl acetate in hexanes).

Yield: 74 mg (0.28 mmol, 56%)

¹**H** NMR (600 MHz, CDCl₃) δ 7.76 – 7.71 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 4.49 (d, J = 7.2 Hz, 1H), 3.15 – 3.07 (m, 1H), 2.41 (s, 3H), 2.17 (d, J = 4.4 Hz,

1H), 2.08 (d, J = 4.3 Hz, 1H), 1.60 – 1.56 (m, 1H), 1.44 – 1.34 (m, 2H), 1.30 (dp, J = 10.2, 2.0 Hz, 1H), 1.16 – 1.08 (m, 2H), 1.05 – 0.97 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 143.17, 137.89, 129.62,127.05, 56.63, 42.45, 40.76, 35.55, 35.14, 27.97, 26.29, 21.50 ppm. NMR spectra are consistent with literature reports.⁷

N-((3s,5s,7s)-adamantan-1-yl)-4-methylbenzenesulfonamide (23)

Yield: 108 mg (0.36 mmol, 71%)

NHTs Purified by silica gel flash chromatography (5% EtOAc in hexanes).

23

¹H NMR (600 MHz, CDCl3) δ 7.76 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 4.38 (s, 1H), 2.41 (s, 3H), 2.02 – 1.96 (m, 3H), 1.77 (d, J = 2.9 Hz, 6H), 1.60 – 1.53 (m, 6H) ppm. ¹³C NMR (150 MHz, CDCl3) δ 142.68, 141.05, 129.39,126.89, 55.05, 43.06, 35.82, 29.45, 21.48 ppm. NMR spectra are consistent with literature reports.⁸

2,2,2-trichloroethyl ((3s,5s,7s)-adamantan-1-yl)sulfamate (24)

NHTces Purified on silica gel by gradient elution with 3-8% acetone in hexanes.

Yield: 20 mg (0.055 mmol, 55%) on 0.1 mmol scale.

24

¹**H** NMR (598 MHz, CDCl₃) δ 4.62 (s, 2H), 4.51 (br s, 1H), 2.14 (d, *J* = 3.3 Hz, 3H), 1.99 (d, *J* = 2.9 Hz, 6H), 1.69 – 1.65 (m, 6H) ppm. ¹³C NMR (201 MHz, CDCl₃) δ 93.54, 78.15, 56.17, 42.54, 35.80, 29.56 ppm. HRMS (ESI): *m/z* calcd for [C₁₂H₁₇NO₃SCl₃]: 359.9995; found: 359.9990.

N-(isochroman-1-vl)-4-methylbenzenesulfonamide (25)

Purified on silica gel by gradient elution with 3-10% acetone in hexanes.

Yield: 17.3 mg (0.05 mmol, 50%) on 0.1 mmol scale.

¹H NMR (598 MHz, CDCl₃) δ 7.35 – 7.33 (m, 1H), 7.32 – 7.26 (m, 2H), 7.18 – 7.15 (m, 1H), 6.11 (s, 1H), 4.82 (d, J = 10.8 Hz, 1H), 4.75 (d, J = 10.9 Hz, 1H), 4.06 - 4.02 (m, 2H), 2.97 (ddd, J = 15.6, 8.9, 6.1 Hz, 1H), 2.77 (dt, J = 16.6, 3.9 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 134.77, 131.70, 129.16,

129.12, 127.20, 126.98, 93.66, 80.73, 78.69, 77.16, 59.83, 27.74 ppm. HRMS (ESI): m/z calcd for [C₁₁H₁₁NO₄SCl₃]: 357.9474; found: 357.9481.

2,2,2-trichloroethyl (6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)sulfamate (26)

NHTces MeO

hexanes. Yield: 50 mg (0.13 mmol, 53%) on 0.25 mmol scale.

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 (d, J = 8.6 Hz, 1H), 6.76 (dd, J = 8.6,

Purified on silica gel by gradient elution with 10-20% ethyl acetate in

2.8 Hz, 1H), 6.60 (d, J = 2.7 Hz, 1H), 4.74 (dd, J = 8.6, 4.1 Hz, 2H), 4.67 26 (d, J = 4.2 Hz, 2H), 3.77 (s, 3H), 2.85 - 2.63 (m, 2H), 2.17 - 1.98 (m, 2H), 1.92 - 1.78 (m, 2H)ppm. ¹³C NMR (150 MHz, CDCl₃) δ 159.22, 139.07, 130.54, 126.58, 113.60, 112.97, 93.59, 78.03, 55.25, 53.04, 30.30, 29.16, 18.73 ppm. NMR spectra are consistent with literature reports.9

N-((3s,5s,7s)-adamantan-1-yl)-4-methylbenzenesulfonamide (27)

Purified on silica gel by gradient elution with 2-15% acetone in hexanes. NHSO₂Ph

Yield: 16.7 mg (0.057 mmol, 57%) on 0.1 mmol scale.

27

¹**H NMR** (600 MHz, CDCl₃) δ 7.93 – 7.89 (m, 2H), 7.55 – 7.52 (m, 1H), 7.51 – 7.46 (m, 2H), 4.59 (br s, 1H), 2.00 (t, J = 3.4 Hz, 3H), 1.79 (d, J = 2.9 Hz, 6H), 1.63 – 1.53 (m, 6H) ppm. ¹³C NMR (201 MHz, CDCl3)) δ 144.11, 132.21, 128.96, 127.01, 126.96, 77.16, 55.33, 43.21, 35.96, 29.61 ppm. NMR spectra are

consistent with literature reports.¹⁰

N-(2,3-dihydro-1H-inden-1-yl)benzenesulfonamide (28)

Purified on silica gel by gradient elution with 5-15% ethyl acetate in hexanes.

Isolated as an inseparable 8:1 mixture with the corresponding imine. Yield: 30 mg, (0.11 mmol, 44%) on 0.25 mmol scale.

28 ¹**H NMR** (600 MHz, CDCl₃) δ 7.98 – 7.88 (m, 2H), 7.62 – 7.59 (m, 1H), 7.57 - 7.52 (m, 2H), 7.23 - 7.16 (m, 2H), 7.15 - 7.09 (m, 1H), 7.03 (d, J = 7.6 Hz, 1H), 4.85 (q, J = 7.7 Hz, 1H), 4.64 (d, J = 9.1 Hz, 1H), 2.90 (ddd, J = 15.9, 8.8, 3.7 Hz, 1H), 2.74 (dt, J = 16.1, 8.1 Hz, 1H), 2.34 (dtd, J = 13.0, 7.7, 3.8 Hz, 1H), 1.76 (dq, J = 13.1, 8.2 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 142.08, 141.06, 140.42, 131.93, 128.43, 127.60, 126.29, 126.13, 124.07. 123.23, 58.04, 34.01, 29.19 ppm. Diagnostic chemical shifts for the imine: ¹H NMR (600 MHz, CDCl3) δ 8.08 – 8.05 (m, 2H), 3.48 – 3.44 (m, 2H), 3.24 – 3.21 (m, 2H) ppm. NMR spectra are consistent with literature reports.¹⁰

N-(6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)benzenesulfonamide (29)

NHSO₂Ph MeO 29

Ή

Ŵе

Н

30

ме

NHTs

O

Purified on silica gel by gradient elution with 10-20% ethyl acetate in hexanes.

Yield: 43 mg, (0.13 mmol, 54%) on 0.25 mmol scale.

¹**H NMR** (600 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.62 – 7.58 (m, 1H), 7.56 - 7.53 (m, 2H), 6.76 (d, J = 8.6 Hz, 1H), 6.59 (dd, J = 8.5, 2.8 Hz, 1H), 6.54 (d, J = 2.7 Hz, 1H), 4.59 (d, J = 7.6 Hz, 1H), 4.43 –

4.40 (m, 1H), 3.73 (s, 3H), 2.71 (dt, J = 17.2, 5.3 Hz, 1H), 2.65 – 2.59 (m, 1H), 1.85 – 1.82 (m, 1H), 1.80 - 1.75 (m, 2H), 1.70 (ddd, J = 10.0, 4.9, 2.9 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃) & 158.85, 141.15, 138.95, 132.60, 129.99, 129.15, 127.64, 127.05, 113.41, 112.74, 55.18, 51.52, 30.88, 29.20, 18.85 ppm. **HRMS** (ESI): *m/z* calcd for [C₁₇H₁₈NO₃S]⁻: 316.1007; found: 316.0999.

4-methyl-N-((3aR,5aS,9aS,9bR)-3a,6,6,9a-tetramethyldodecahydronaphtho[2,1-b]furan-2vl)benzenesulfonamide (30) Me, ^{Me}

Purified on silica gel by gradient elution with acetone (2-15%) in hexanes. Yield: 190.5 mg (0.469 mmol, 47%) as an inseparable 1.5:1 mixture of diastereomers (major diastereomer shown) on a 1.0 mmol scale.

¹**H NMR** (600 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 7.8Hz, 2H), 5.31 – 5.24 (m, 1H), 5.19 (d, J = 9.4 Hz, 1H), 2.41 (s, 3H), 1.76 (dt, J = 11.7, 3.2 Hz, 1H), 1.72 - 1.51 (m, 3H), 1.45 - 1.35 (m, 3H), 1.32 - 1.51 (m, 3H), 1.32 - 1.51 (m, 3H), 1.45 - 1.35 (m, 3H), 1.32 - 1.51 (m, 3H), 1.45 - 1.35 (m, 3H), 1.32 - 1.51 (m, 3H), 1.45 - 1.35 (m, 3H), 1.32 - 1.51 (m, 3H), 1.45 - 1.35 (m, 3H), 1.32 - 1.51 (m, 3H), 1.45 - 1.51 (m, 3H), 1.45 - 1.51 (m, 3H), 1.32 - 1.51 (m, 3H), 1.45 - 1.51 (m, 3H), 1.32 - 1.51 (m, 3H), 1.45 - 1.51 (m, 3H), 1.45 - 1.51 (m, 3H), 1.51 (m1.09 (m, 4H), 1.01 (s, 3H), 0.98 – 0.85 (m, 3H), 0.83 (s, 3H), 0.78 (s, 3H)

dr = 1.5:1 ppm. ¹³C NMR (201 MHz, CDCl₃) δ 143.22, 143.17, 138.69, 138.61, 129.53, 129.46, 127.33, 127.23, 84.13, 83.09, 82.74, 81.76, 77.16, 60.11, 58.16, 57.20, 57.00, 42.42, 42.41, 39.98, 39.91, 39.84, 39.78, 36.12, 33.57, 33.54, 33.14, 31.44, 31.39, 23.91, 23.89, 22.16, 21.67, 21.65, 21.14, 20.65, 20.47, 18.38, 15.31, 15.14 ppm. HRMS (ESI): m/z calcd for $[C_{23}H_{35}NO_{3}S+Na]^{+}$: 428.2235; found: 428.2240.

N-((1S,4aR,10aS)-1-((1,3-dioxoisoindolin-2-yl)methyl)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-9-yl)-4-methylbenzenesulfonamide (31)

Purified on silica gel by gradient elution with 20% EtOAc in hexanes.

105 mg, (0.18 mmol, 36%) as an inseparable 1:1 Yield: mixture of diastereomers.

¹**H NMR** (600 MHz, CDCl₃) δ 8.05 (d, J = 7.9 Hz, 1H), 7.91 (d, J = 7.8 Hz, 2H), 7.83 (dddd, J = 14.7, 11.2, 8.8, 5.8 Hz, 5H), 7.71 (ddt, J = 8.9, 6.0, 3.6 Hz, 5H), 7.36 (d, J = 8.2 Hz, 1H), 7.32 (d, J = 7.9 Hz, 3H), 7.10 – 6.99 (m, 3H), 6.96 (d, J = 12.9

Hz, 1H), 6.80 (s, 1H), 5.81 (d, J = 7.9 Hz, 1H), 4.79 (q, J = 8.9 Hz, 1H), 4.65 (d, J = 8.8 Hz, 1H), 4.58 (t, J = 6.3 Hz, 1H), 3.55 (d, J = 13.9 Hz, 1H), 3.37 - 3.32 (m, 1H), 3.31 - 3.23 (m, 2H), 2.76 (p, J = 7.0 Hz, 1H), 2.71 - 2.64 (m, 1H), 2.43 (d, J = 4.8 Hz, 3H), 2.37 (s, 3H), 2.30 (d, J = 7.8 Hz, 3H), 2.37 (s, 3H), 2.30 (d, J = 7.8 Hz, 3H), 3.31 (s, 30 Hz, 30Hz, 1H), 2.22 - 2.13 (m, 2H), 1.94 - 1.91 (m, 1H), 1.69 - 1.63 (m, 2H), 1.43 (q, J = 12.4, 11.1 Hz, 4H), 1.36 (d, J = 7.4 Hz, 2H), 1.24 (d, J = 2.6 Hz, 3H), 1.20 (s, 3H), 1.14 (dd, J = 7.0, 4.6Hz, 6H), 1.09 - 1.04 (m, 6H), 0.95 (s, 3H), 0.92 - 0.89 (m, 3H), 0.82 (t, J = 3.8 Hz, 2H), 0.78 - 1000.75 (m, 1H), 0.70 (dd, J = 6.5, 3.8 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 169.37, 169.15, 147.32, 146.49, 143.28, 143.15, 138.67, 138.38, 134.30, 134.07, 133.88, 133.36, 131.94,

131.78, 129.70, 129.64, 129.49, 128.05, 127.51, 127.46, 126.14, 125.86, 125.82, 123.93, 123.58, 123.44, 123.37, 123.29, 53.97, 51.20, 48.37, 48.32, 44.16, 41.43, 39.00, 38.82, 37.88, 37.72, 37.59, 37.41, 36.09, 33.41, 33.40, 29.67, 29.55, 26.81, 26.24, 24.94, 23.90, 23.64, 23.52, 21.43, 19.20, 19.06, 18.19, 18.17 ppm. HRMS (ESI): *m/z* calcd for [C₃₅H₃₉N₂O₂S]⁻: 583.2631; found: 583.2630.

III. Synthesis of Iminium Salts

Iminium salts **5a-5g** were synthesized according to previously reported methods.¹¹

IV. Synthesis of Iminoiodinanes

[N-(p-tolenesulfonyl)imino]phenyliodinane: p-Toluenesulfonamide (2.8 g, 16.4 mmol) and potassium hydroxide (2.32 g, 41 mmol) were dissolved in 60 mL of methanol and cooled to -10 °C. То this mixture, (diacetoxy)iodosobenzene (5.3 g, 16.5 mmol) was added slowly. The resulting mixture was stirred 30 minutes at -10 °C then 3 hours at room temperature at which time 100 mL ice cold water was added and

the mixture was cooled to 0 °C until a fine white precipitate had formed. The precipitate was collected by filtration, washed with cold methanol (20 mL) then ethyl acetate (100 mL) to yield the title compound as fine, pale, yellow crystals: 4.4 g (12.21 mmol, 74%).

¹**H NMR** (598 MHz, DMSO- d_6) δ 7.69 (dd, J = 8.4, 1.1 Hz, 2H), 7.47 – 7.42 (m, 3H), 7.29 (m, 2H), 7.06 (dd, J = 8.5, 0.7 Hz, 2H), 2.27 (s, 3H) ppm. NMR spectra are consistent with literature reports.12

[N-(2,2,2-trichloroethoxysulfonyl] imino]-phenyliodinane: 2,2,2-trichloroethylsulfamate (3.66 g, 16.5 mmol) and potassium hydroxide (2.32 g, 41 mmol) N_S'O were dissolved in 60 mL of methanol and cooled to -10°C. To this mixture, (diacetoxy)iodosobenzene (5.3 g, 16.5 mmol) was added slowly. The resulting mixture was stirred 30 minutes at -10°C then 3 hours at room temperature at which time 100 mL cold water was

added and the mixture was cooled to 0°C. Stirring was continued until a fine white precipitate had formed. The precipitate was collected by filtration, washed with cold methanol (20 mL) then ethyl acetate (100 mL) to yield the title compound as fine, pale, yellow crystals: 4.1 g (9.6 mmol, 60%).

¹**H** NMR (600 MHz, DMSO- d_6) δ 8.10 (dd, J = 8.3, 1.2 Hz, 2H), 7.64 – 7.60 (m, 1H), 7.51 (t, J) = 7.7 Hz, 2H), 4.22 (s, 2H) ppm. NMR spectra are consistent with literature reports.⁹

[N-(benzenesulfonyl)imino]phenyliodinane: Benzenesulfonamide (2.6 g, 16.5 mmol) and

potassium hydroxide (2.32 g, 41 mmol) were dissolved in 60 mL of methanol cooled -10°C. and to То this mixture. (diacetoxy)iodosobenzene (5.3 g, 16.5 mmol) was added slowly. The resulting mixture was stirred 30 minutes at -10°C then 3 hours at room temperature at which time 100 mL ice cold water was added and the

mixture was cooled to 0°C until a fine white precipitate had formed. The precipitate was

collected by filtration, washed with cold methanol (20 mL) then ethyl acetate (100 mL) to yield the title compound as fine, pale, yellow crystals: 3.0 g (8.4 mmol, 51%).

¹**H** NMR (600 MHz, DMSO-*d*₆) δ 7.72 (dd, J = 8.3, 1.2 Hz, 2H), 7.58 – 7.55 (m, 2H), 7.47 – 7.43 (m, 1H), 7.37 – 7.32 (m, 1H), 7.32 – 7.25 (m, 3H), 7.19 (dd, J = 8.2, 7.5 Hz, 1H) ppm. NMR spectra are consistent with literature reports.¹³

V. Mechanistic Experiments

V(a). Kinetic Isotope Effect Determination

Isochroman (13.6 μ L, 0.11 mmol) and Isochroman-1,1-d₂ (13.6 μ L, 0.11 mmol) were combined with N-(p-toleunesulfonyl)phenyliminoiodinane (37.3 mg, 0.1 mmol) and iminium **1a** (6.6 mg, 0.02 mmol) in anhydrous DCM under N₂. The reaction was stirred 24 hours at room temperature before being filtered through silica with EtOAc. Ratio of H:D was determined by ¹H NMR. Reactions were performed in triplicate.

V(b). LCMS Detection of Diaziridinium

In a nitrogen glovebox at room temperature, [N-(p-tolylsulfonyl)imino]phenyliodinane (373 mg, 1 mmol, 2 equiv) and iminium **5a** (33 mg, 0.1 mmol, 0.2 equiv) were combined in a vial. Anhydrous dichloromethane (2 mL) was then added and the reaction mixture was stirred at room temperature for 20 hours. The reaction mixture was then filtered through a silica gel plug, eluting with EtOAc. After removal of the solvent under reduced pressure, the crude reaction mixture was analyzed by reverse phase ESI-LCMS using positive ionization mode. The mass spectrum of the major peak was evaluated and a parent ion peak (m/z = 411) and major fragments [(M-CH₃+H)⁺ and (M-CH₃-F)⁺] consistent with the presence of diaziridinium **37** were observed (Figure S1).

Figure S1. Mass spectrum of the mixture produced from the reaction of 5a with PhINTs.

V(c). Representative procedure for Hammett Correlation Experienment

In a nitrogen glovebox at room temperature, the substrate 1,2,3,4-tetrahydronaphthalene (262 mg, 2 mmol, 10 equiv.) and 6-substituted 1,2,3,4-tetrahydronaphthalene (2 mmol, 10 equiv.), [N-(p-tolylsulfonyl)imino]phenyliodinane (75 mg, 0.2 mmol, 1 equiv.) and iminium **5a** (13 mg, 0.04 mmol, 0.2 equiv.) were combined in a 20 mL black cap vial equipped with a stir bar. Anhydrous dichloromethane (0.4 mL) was then added and the reactions mixture was stirred at room temperature in the glovebox under positive pressure of nitrogen, and stirred at room temperature for 20 hours. The reaction mixture was then filtered through a silica gel plug, eluting with EtOAc. After removal of the solvent under reduced pressure, the ratio of products in the crude reaction mixture was determined by gas chromatography compared to an authentic standard.

Hammett plots:

For Ar = 6-R-tetralin (para to site of amination)

<u>R</u>	$\underline{\sigma}_{p}$	$\underline{\sigma}^+$	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>product ratio Ar/tetralin</u>
MeO	-0.27	-0.78	+0.23	5:1
F	+0.06	-0.07	-0.02	1:1.8
Br	+0.23	+0.15	-0.52	1:3.3

Hammett plot fit against σ_p values

Hammett plot fit against σ^+ values

V(d). Experimental procedure for aziridination reaction of *trans*-stillbene

In a nitrogen glovebox at room temperature [N-(p-tolylsulfonyl)imino]phenyliodinane (75 mg, 0.2 mmol, 1 equiv.) and iminium **5a** (13 mg, 0.04 mmol, 0.2 equiv.) were combined in a 25 mL

schlenk flask equipped with a stir bar. Anhydrous dichloromethane (0.4 mL) was then added and the flask was removed from the glove box and the flask was transferred to the ice bath under positive pressure of nitrogen. The substrate *trans*-stillbene (36 mg, 0.2 mmol, 1 equiv.) was added to the schlenk flask using microliter syringe. The reaction mixture was stirred at 0 °C for 1 h and was transferred at -4 °C. The reaction was further stirred at -4 °C for 20 h. The reaction mixture was then filtered through a silica gel plug, eluting with EtOAc. After removal of the solvent under reduced pressure, the crude reaction mixture was then purified by flash chromatography using 20 % EtOAc/Hexane to provide aziridine **35** (36 mg, 51%) as a 10:1 mixture with the N-tosyl imine derived from 2,2-diphenylacetaldehyde. Spectral data matched literature values.

VI. Synthesis of Substrates

N-tert-butylcarbonyl-1,2,3,4-tetrahydro-5,6-dimethoxyisoquinoline

N-trifluoroacetyl-1,2,3,4-tetrahydroisoquinoline

Prepared according to previously reported procedures.¹⁵

N-trifluoroacetyl-1,2,3,4-tetrahydro-5,6-dimethoxyisoquinoline

Prepared according to previously reported procedures.¹⁶

Ν

COCF₃

(+)-(N-phthaloyl)dehydroabietylamine

Prepared according to previously reported procedures.¹⁷

VII. References

- ¹ Zhang, Y.; Feng, B.; Zhu, C.; Org. Biomol. Chem., 2012, 10, 9137.9141.
- ²Bagchi, V.; Paraskevopoulou, P.; Das, P.; Chi, L.; Wang, Q.; Choudhury, A.; Mathieson, J. S.; Cronin, L.; Pardue,
- D. B.; Cundari, T. R; J. Am. Chem. Soc., 2014, 136(32), 11362-11381.
- ³ Beisel, T.; Manolikakes, G.; Org. Lett., **2015**, 17(12), 3162-3165.
- ⁴ He, L.; Yu, J.; Zhang, J.; Yu, X-Q.; Org. Lett., **2007**, 9(12), 2277-2280.
- ⁵ Mloston, G.; Warkentin, J.; Linden, A.; Heimgartner, H.; *Hel. Chim. Acta* **2007**, *90*(10), 2024-2036.
- ⁶ Liu, Y.; Guan, X.; Wong, E. L.-M.; Liu, P.; Huang, J.-S.; Che, C.-M.; *J. Am. Chem. Soc.*, **2013**, *135*(19), 7194-7204.
- ⁷ Liu, P. N.; Xia, F.; Zhao, Z. L.; Wang, Q. W.; Ren, Y. J.; *Tet. Lett.*, **2011**, *52*(46), 6113-6117.
- ⁸ Lamar, A. A.; Nicholas, K. M.; J. Org. Chem., 2010, 75 (22), 7644-7650.
- ⁹ Fiori, K. W.; Du Bois, J.; J. Am. Chem. Soc., 2007, 129(3), 562-568
- ¹⁰ Pelletier, G.; Powell, D. A.; Org. Lett., 2006, 8(26), 6031-6034.
- ¹¹ Wang, D.; Shuler, W. G.; Hilinski, M. H.; Org. Lett., **2016**, 18 (15), 3826–3829.
- ¹² Ito, M.; Tanaka, A.; Higuchi, K.; Sugiyama, S.; Eur. J. Org. Chem., 2017, 9, 1272-1276.
- ¹³ Taylor, S.; Gukkick, J.; McMorn, P.; Bethell, D.; Page, P. C. B.; Hancock, F. E.; King, F.; Hutchings, G. J.; *J. Chem. Soc., Perk. Trans.* 2, 2001, *11*, 2234.
- ¹⁴Yan, C.; Liu, Y.; Wang, Q.; RSC Adv. **2014**, 4(104), 60075-60078.
- ¹⁵Busujima, T.; Tanaka, H.; Shirasaki, Y.; Munetomo, E.; Saito, M.; Kitano, K.; Minagawa, T.; Yoshida, K.; Osaki,
- N.; Sato, N.; Bioorg. & Med. Chem., 2015, 23(17), 5922-5931.
- ¹⁶ Okano, K.; Tokuyama, H.; Fukuyama, T.; J. Am. Chem. Soc., 2006, 128(22), 7136-7137.
- ¹⁷Malkowsky, I. M.; Nieger, M.; Kataeva, O.; Waldvogel, S. R.; Synthesis, 2007, 5, 773-778.
- ¹⁸Wan, Miao; Meng, Zhilin; Lou, Hongxiang; Liu, L.; Angew. Chem., Int. Ed., 2014, 53(50), 13845-13849.

VIII. NMR Spectra

S16

I.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

NOE and ¹HNMR obtained at 10°C

