Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Supporting Information

The New Lewis Superacid Al[N(C₆F₅)₂]₃ and its Higher Homolog Ga[N(C₆F₅)₂]₃ -Structural Features, Theoretical Investigation and Reactions of a Metal Amide with Higher Fluoride Ion Affinity than SbF₅

Julius F. Kögel, Denis A. Sorokin, Alexander Khvorost, Martin Scott, Klaus Harms, Daniel Himmel, Ingo Krossing, Jörg Sundermeyer*

Table of Contents

Synthetic Procedures	S2
Crystallographic Information	S6
Quantumchemical Calculations	S9
References	S23

Synthetic Procedures

All reactions were carried out under inert atmosphere using standard Schlenk techniques. Moisture and air sensitive substances were stored in a conventional nitrogen-flushed glovebox. Solvents were purified according to literature procedures and kept under an inert atmosphere. $HN(C_6F_5)_2$ was prepared from the reaction of hexafluorobenzene with lithium amide¹ and deprotonated with *n*-butyllithium to obtain $LiN(C_6F_5)_2$.² Commercially available aluminum trichloride was sublimed prior to use.

Spectra were recorded on the following spectrometers: NMR: BRUKER ARX300, BRUKER DRX400, BRUKER, DRX500; IR: ATR-FT-IR; MS: LTQ-FT or QStarPulsar i (FINNIGAN); elemental analysis: CHN-Rapid (HERAEUS).

Preparation of Al[N(C₆F₅)₂]₃: A solution of *n*-butyllithium (1.6 M, 8.0 mL, 12.8 mmol, 3.1 eq.) in hexane was added dropwise over 1 min to a solution of HN(C₆F₅)₂ (4.48 g, 12.8 mmol, 3.1 eq.) in toluene (45 mL) at -50 °C. The formed suspension of LiN(C₆F₅)₂ was stirred for 20 min at -50 °C and a suspension of finely pesteled aluminum trichloride (0.55 g, 4.1 mmol) in toluene (20 mL) was added. The reaction mixture was allowed to reach room temperature and stirred for 18 h at 75 °C. The hot suspension was filtered and large colorless crystals grew from the filtrate after 12 h at room temperature. The crystals were separated from the supernatant by decantation, recrystallized from toluene, washed with pentane and dried *in vacuo* to give Al[N(C₆F₅)₂]₃ (2.06 g, 1.9 mmol, 47%) as a white solid. The yield strongly depends on the grain size of the used AlCl₃. Single crystals suitable for structure determination were obtained by layering a saturated solution in toluene with pentane at -30 °C.

M. p. 167.8 °C (decomposition); ¹³C NMR (101 MHz, [D₆]benzene, 25 °C, TMS): δ =143.8 (dm, ¹*J*(C,F) = 240.2 Hz, *o*-C_{Ar}), 138.3 (dm, ¹*J*(C,F) = 255.4 Hz, *p*-C_{Ar}), 137.8 (dm, ¹*J*(C,F) = 241.2 Hz, *m*-C_{Ar}), 120.7 ppm (s, *ipso*-C_{Ar}); ¹⁹F NMR (188.2 MHz, [D₆]benzene, 25 °C, CFCl₃): δ =-153.1 (d, ³*J*(F,F) = 20 Hz, 12F, *o*-F), -158.6 (t, ³*J*(F,F) = 21 Hz, 6F, *p*-F), -161.1 ppm (t, ³*J*(F,F) = 21 Hz, 12F, *m*-F); IR: $\tilde{\nu}$ =440 (m), 453 (w), 507 (w), 619 (w), 638 (w), 683 (m), 764 (m), 802 (br m), 990 (s), 1030 (br s), 1096 (br m), 1182 (w), 1211 (m), 1507 (s), 1520 (s) cm⁻¹; elemental analysis calcd (%) for C₃₆AlF₃₀N₃: C 40.36, N 3.92; found: C 39.48, N 3.73.

Al[N(C₆F₅)₂]₃ can also be prepared from the reaction of AlMe₃ with HN(C₆F₅)₂: AlMe₃ (0.21 g, 3.10 mmol, 1.0 eq.) was added dropwise to a solution of HN(C₆F₅)₂ (3.10 g, 8.89 mmol, 3.0 eq.) in *o*-xylene (25 mL) and the reaction mixture was stirred for 90 h at 130 °C. After allowing the solution to reach room temperature, big brownish crystals precipitated. They were separated from the supernatant, recrystallized from toluene and dried *in vacuo* to give Al[N(C₆F₅)₂]₃ (0.31 g, 0.29 mmol, 9%) as a white solid.

The reaction of Al[N(SiMe₃)₂]₃ with HN(C₆F₅)₂ in toluene at 90 °C did not yield the desired Al[N(C₆F₅)₂]₃.

Preparation of $[Cs(Tol)_3]^+[FAl(N(C_6F_5)_2)_3]^-: Al[N(C_6F_5)_2]_3$ (0.360 g, 0.33 mmol, 1.0 eq.) and cesium fluoride (0.102 g, 0.66 mmol, 2.0 eq.) were suspended in toluene (10 mL) and the reaction mixture was stirred for 20 h at 100 °C. The hot solution was filtered to separate remaining CsF and the filtrate was cooled to room temperature and set aside for crystallization. Colorless crystals formed that were separated from the supernatant by filtration, washed with pentane and dried in the argon stream to yield $[Cs(Tol)_3]^+[FAl(N(C_6F_5)_2)_3]^-$ (0.330 g, 0.22 mmol, 67%) as a white crystalline solid.

M. p. 124.7 °C; ¹H NMR (200 MHz, [D₆]benzene, 25 °C, TMS): δ =6.98-7.17 (m, 15H, C₆H₅), 2.10 ppm (s, 9H, CH₃); ¹⁹F-NMR (188 MHz, [D₆]benzene, 25 °C, CFCl₃): δ =-150.4 (br s, 12F, *o*-F), -157.4 (br s, 1F, Al-F), -164.0 (t, ³*J*(F,F) = 20 Hz, 6F, *p*-F), -166.3 ppm (t, ³*J*(F,F) = 22 Hz, 12F, *m*-F); elemental analysis calcd (%) for C₅₇H₂₄AlCsF₃₁N₃: C 45.65, H 1.61, N 2.80; found: C 44.89, H 1.68, N 2.76.

Preparation of [CPh₃]*[FAl(N(C₆F₅)₂)₃]*: A solution of [Ph₃C]*[BF₄]* (0.31 g, 0.94 mmol, 1.0 eq.) in dichloromethane (10 mL) was added dropwise to a suspension of Al[N(C₆F₅)₂]₃ (1.00 g, 0.94 mmol, 1.0 eq.) in toluene (30 mL). The reaction mixture changed color to red. A pH indicator paper in the argon stream of the reaction mixture changes color to red indicating the formation of BF₃. All volatiles were removed *in vacuo* and the residue was suspended in toluene (20 mL) and filtrated. Hexane (30 mL) was added to the filtrate leading to the precipitation of a yellow solid. It was filtered off, washed with pentane and dried *in vacuo*. It decomposes after 24 h, but is stable for at least three days in toluene solution. A NMR spectroscopically identical compound could be obtained directly from the reaction between Al[N(C₆F₅)₂]₃ and trityl fluoride in C₆D₆. ¹H NMR (200 MHz, [D₆]benzene, 25 °C, TMS): δ =7.38 (t, ³*J*(H,H) = 7.5 Hz, 3H, C₆H₅), 7.08 (t, ³*J*(H,H) = 7.8 Hz, 6H, C₆H₅), 6.78 ppm (d, ³*J*(H,H) = 7.5 Hz, 6H, C₆H₅); ¹⁹F NMR (188 MHz, [D₆]benzene, 25 °C, CFCl₃): δ =-148.8 (d, ³*J*(F,F) = 22 Hz, 12F, *o*-F), -164.8 (t, ³*J*(F,F) = 22 Hz, 6F, *p*-F), -166.3 (t, ³*J*(F,F) = 21 Hz, 12F, *m*-F), -170.8 ppm (br s, 1F, Al-F).

Reaction of Al[N(C₆F₅)₂]₃ with [Ph₄P]⁺[SbF₆]⁻: A solution of [Ph₄P]⁺[SbF₆]⁻ (75 mg, 0.13 mmol, 1.0 eq.) in toluene (1 mL) was added dropwise to a suspension of Al[N(C₆F₅)₂]₃ (140 mg, 0.13 mmol, 1.0 eq.) in toluene (2 mL). The reaction mixture was slowly heated under dissolution of Al[N(C₆F₅)₂]₃. A color change to yellow was observed at 100 °C and a white precipitate was formed. It was separated by filtration and dried *in vacuo*. A ¹⁹F NMR spectrum was measured: ¹⁹F NMR (188 MHz, [D₆]benzene, 25 °C, CFCl₃): δ =-149.6 ppm (br s, ³*J*(F,F) = 22 Hz, 12F, *o*-F), -166.2 (t, ³*J*(F,F) = 22 Hz, 6F, *p*-F), -167.5 (t, ³*J*(F,F) = 21 Hz, 12F, *m*-F), -172.3 (br s, 1F, Al-F).

Reaction of Al[N(C₆F₅)₂]₃ with [Ph₃C]⁺[FB(C₆F₅)₃]⁻: [Ph₃C]⁺[FB(C₆F₅)₃]⁻ (10 mg, 0.013 mmol, 1 eq.) was added to a solution of Al[N(C₆F₅)₂]₃ (15 mg, 0.014 mmol, 1.1 eq.) in [D₆]benzene (0.7 mL). The yellow reaction mixture was heated to 80 °C and changed color to yellowish brown under dissolution of Al[N(C₆F₅)₂]₃. The ¹⁹F NMR spectrum revealed the signals of B(C₆F₅)₃, [FAl(N(C₆F₅)₂)₃]⁻ and excess

Al[N(C₆F₅)₂]₃. ¹⁹F NMR (188 MHz, [D₆]benzene, 25 °C, CFCl₃): [FAl(N(C₆F₅)₂)₃]⁻: δ =-170.8 (br s, 1F, Al-F), -166.3 (t, ³*J*(F,F) = 21 Hz, 12F, *m*-F), -164.8 (t, ³*J*(F,F) = 22 Hz, 6F, *p*-F), -148.8 ppm (d, ³*J*(F,F) = 22 Hz, 12F, *o*-F); B(C₆F₅)₃: δ =-160.3 (t, ³*J*(F,F) = 22 Hz, 6F, *m*-F), -141.8 (t, ³*J*(F,F) = 20 Hz, 3F, *p*-F), -129.1 ppm (d, ³*J*(F,F) = 22 Hz, 6F, *o*-F).

Reaction of Al[N(C₆F₅)₂]₃ with F₂ClC-CCl₂F: F₂ClC-CCl₂F (2 mL, freshly distilled from P₄O₁₀) was added to Al[N(C₆F₅)₂]₃ (100 mg, 0.1 mmol). The reaction mixture was stirred for 5 min at 50 °C. The solution turned dark and a black solid precipitated indicating decomposition of the reactant.

Reaction of Al[N(C₆F₅)₂]₃ with C₆F₆: C₆F₆ (2 mL, freshly distilled from P₄O₁₀) was added to Al[N(C₆F₅)₂]₃ (100 mg, 0.1 mmol). The reaction mixture was stirred for 5 min at 60 °C. The ¹⁹F NMR spectrum of the solution did not show any reaction. A black precipitate formed after stirring the reaction mixture for 2 h at 65 °C indicating decomposition of the reactant.

Preparation of [CPh₃]⁺[((C₆F₅)₂N)₃AlF-Li-FAl(N(C₆F₅)₂)₃]⁻: A solution of *n***-butyllithium in hexane (0.200 mmol, 2.0 eq.) was added dropwise to a solution of** *in situ* **generated [CPh₃]⁺[FAl(N(C₆F₅)₂)₃]⁻ (533.5 mg, 0.400 mmol, 1.0 eq.) in toluene (10 mL) at -80 °C. The red solution changed color to orange and the reaction mixture was allowed to slowly reach room temperature. Cooling the solution again led to the precipitation of orange crystals that were collected and dried** *in vacuo***. [CPh₃]⁺[((C₆F₅)₂N)₃AlF-Li-FAl(N(C₆F₅)₂)₃]⁻ (287 mg, 0.118 mmol, 59%) was obtained as an orange crystalline solid. M. p. 195.7 °C; ¹H NMR (200 MHz, [D₆]benzene, 25 °C, TMS): \delta=7.14 (t, ³***J***(H,H) = 7.5 Hz, 1H, C₆H₅), 7.04 (t, ³***J***(H,H) = 7.8 Hz, 2H, C₆H₅), 6.94 ppm (d, ³***J***(H,H) = 7.5 Hz, 2H, C₆H₅); ¹⁹F-NMR (188 MHz, [D₆]benzene, 25 °C, CFCl₃): \delta=-149.6 (br s, 24F,** *o***-F), -162.3 (t, ³***J***(F,F) = 22 Hz, 12F,** *p***-F), -164.2 (t, 24F, ³***J***(F,F) = 21 Hz,** *m***-F), -179.3 ppm (q, ¹***J***(F,Li) = 94 Hz, 2F, Al-F); elemental analysis calcd (%) for C₉₁H₁₅Al₂F₆₂LiN₆: C 44.96, H 0.62, N 3.46; found: C 44.53, H 0.65, N 3.34.**

Preparation of $[Cp_2ZrMe]^+$ [FAl(N(C₆F₅)₂)₃]⁻: A solution of Cp₂ZrMe₂ (39 mg, 0.16 mmol, 1.0 eq.) in toluene (3 mL) was added dropwise to a *in situ* generated solution of $[CPh_3]^+$ [FAl(N(C₆F₅)₂)₃]⁻ (210 mg, 0.16 mmol, 1.0 eq.) in toluene (7 mL) at -50 °C. The reaction mixture decolorized, was warmed to room temperature and stirred at that temperature for 1 h. All volatiles were removed *in vacuo* and the residue was washed with pentane and recrystallized from hot benzene. After drying *in vacuo*, $[Cp_2ZrMe]^+$ [FAl(N(C₆F₅)₂)₃]⁻ (153 mg, 0.12 mmol, 73%) was obtained as a white crystalline solid. M. p. 107.5 °C (decomp.); ¹H NMR (200 MHz, [D₆]benzene, 25 °C, TMS): δ =5.81 (s, 10H, C₅H₅), 0.12 ppm (br s, 3H, Zr-Me); ¹⁹F-NMR (188 MHz, [D₆]benzene, 25 °C, CFCl₃): δ =-148.1 (br s, 1F, AlF), -149.4 (br s, 12F, *o*-F), -160.6 (t, ³*J*(F,F) = 22 Hz, 6F, *p*-CF), -163.5 ppm (t, ³*J*(F,F) = 20 Hz, 12F, *m*-F); elemental analysis calcd (%) for C₄₇H₁₃AlF₃₁N₃Zr: C 42.55, H 0.99, N 3.17; found: C 41.76, H 1.08, N 3.31.

Preparation of Ga[N(C₆F₅)₂]₃: A solution of gallium trichloride (0.330 g, 1.878 mmol, 1.0 eq.) in toluene (10 mL) was added to a suspension of LiN(C₆F₅)₂ (2.000 g, 5.633 mmol, 3.0 eq.) in toluene (40 mL). The reaction mixture was stirred for 16 h at 90 °C and the hot suspension was filtered over Celite[®]. The filter cake was extracted twice with toluene (20 mL) and the filtrate was evaporated to dryness *in vacuo*. The white residue was washed twice with hexane (40 mL). After drying *in vacuo* Ga[N(C₆F₅)₂]₃ (1.120 g, 1.005 mmol, 54%) was obtained as a white solid. Single crystals suitable for structure determination were obtained by cooling a saturated solution in toluene from 90 °C to -30 °C.

¹³C NMR (126 MHz, [D₆]benzene, 25 °C, TMS): δ =142.8 (dd, ¹*J*(C,F) = 246.5 Hz, ²*J*(C,F) = 11.5 Hz, *o*-C_{Ar}), 138.9 (dt, ¹*J*(C,F) = 256.3 Hz, ²*J*(C,F) = 13.5 Hz, *p*-C_{Ar}), 137.9 (dt, ¹*J*(C,F) = 256.3 Hz, ²*J*(C,F) = 12.9 Hz, *m*-C_{Ar}), 120.8 ppm (t, ²*J*(C,F) = 9.3 Hz, *ipso*-C_{Ar}); ¹⁹F NMR (376 MHz, [D₆]benzene, 25 °C, CFCl₃): δ =-151.8 (d, ³*J*(F,F) = 20.6 Hz, 12F, *o*-F), -158.1 (dt, ³*J*(F,F) = 21.7 Hz, ⁴*J*(F,F) = 4.8 Hz, 6F, *p*-F), -161.4 ppm (t, ³*J*(F,F) = 21.1 Hz, 12F, *m*-F); IR: $\tilde{\nu}$ =410 (w), 498 (w), 573 (w), 639 (m), 669 (w), 712 (w), 725 (w), 806 (w), 837 (m), 987 (s), 1026 (s), 1140 (w), 1191 (w), 1264 (w), 1322 (w), 1369 (w), 1501 (s), 1632 (w) cm⁻¹; elemental analysis calcd (%) for C₃₆F₃₀GaN₃: C 38.81, N 3.77; found: C 38.21, N 3.67.

Preparation of $[AsPh_4]^+[ClGa(N(C_6F_5)_2)_3]^-$: A solution of Ga $[N(C_6F_5)_2]_3$ (200 mg, 0.180 mmol, 1.0 eq.) in dichloromethane (7.5 mL) was added to a solution of tetraphenylarsonium chloride (75 mg, 0.180 mmol, 1.0 eq.) in dichloromethane (7.5 mL). The reaction mixture was stirred for 1 h at room temperature and evaporated to dryness in vacuo. The remaining solid was washed with pentane (15 mL) and dried in vacuo. $[AsPh_4]^+[ClGa(N(C_6F_5)_2)_3]^-$ (242 mg, 0.158 mmol, 88%) was obtained as a white solid. Single crystals suitable for structure determination were obtained by layering a saturated solution in diethylether with pentane at -30 °C. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C, TMS): δ =7.87 (t, ³J(H,H) = 7.5 Hz, 4H, p-H), 7.75 (t, ${}^{3}J(H,H) = 7.8$ Hz, 8H, m-H), 7.61 ppm (d, ${}^{3}J(H,H) = 7.5$ Hz, 8H, o-H); ${}^{13}C$ NMR (101 MHz, CD₂Cl₂, 25 °C, TMS): δ =145.6 (dm, ¹*J*(C,F) = 245.2 Hz, *p*-C), 139.1 (dm, ¹*J*(C,F) = 247.2 Hz, CF_{Ar}), 135.4 (*p*-C_{Ph}), 133.3 (C_{Ph}), 131.7 (C_{Ph}), 126.6 (*ipso*-C), 120.8 ppm (*ipso*-C_{Ph}) (the remaining carbon atoms belonging to the C_6F_5 groups were not detected due to signal overlay); ¹⁹F NMR $(282 \text{ MHz}, \text{CD}_2\text{Cl}_2, 25 \text{ °C}, \text{CFCl}_3)$: $\delta = -147.7 \text{ (d}, {}^{3}J(\text{F},\text{F}) = 18.1 \text{ Hz}, 6\text{F}, \text{F}_{\text{Ar}}), -165.4 \text{ (t}, {}^{3}J(\text{F},\text{F}) = 21.7 \text{ Hz},$ 3F, *p*-F), -167.0 ppm (t, ${}^{3}J(F,F) = 19.9$ Hz, 6F, F_{Ar}); ESI-MS (CH₂Cl₂): *m/z* (%): 383 (100) [*M*]⁺, HRMS (ESI): *m/z* calcd for C₂₄H₂₀As⁺: 383.0775 [*M*]⁺; found: 383.0774, (-)-ESI-MS (CH₂Cl₂): *m/z* (%): 348 (100) $[N(C_6F_5)_2]^-$, (-)-HRMS (ESI): m/z calcd for $C_{36}ClF_{30}GaN_3^-$: 1147.8563 $[M]^+$; found: 1147.8576; elemental analysis calcd (%) for C₆₀H₂₀AsClF₃₀GaN₃: C 47.01, H 1.32, N 2.74; found: C 47.17, H 1.79, N 2.83.

Crystallographic Information

IPDS I, IPDS II (Stoe) and D8 QUEST (Bruker) diffractometers were used for data collection by the xray department at the Philipps-Universität Marburg (*Dr. K. Harms, G. Geiseler, M. Marsch,* and *R. Riedel*). Data collection, reduction and cell refinement was performed with Stoe IPDS Software or Apex2 (Bruker). Structures were solved with SIR92,³ SIR97,⁴ SIR2004⁵ or SHELXS-97⁶ and refined with SHELXL-97.⁷ Absorption correction was performed with semi-empirical methods within WinGX (Multi-scan⁸ or Gaussian⁹) or Apex2 (Multi-scan¹⁰).

Hydrogen atoms were calculated in their idealized positions and refined with fixed isotropic thermal parameters. All molecular structures were illustrated with Diamond 3¹¹ using thermal ellipsoids at the 30% probability level for all non-hydrogen atoms.

Crystal data and experimental conditions are listed in S-Table S1-S3. The corresponding CIF files providing full information concerning the molecular structures and experimental conditions are deposited at the Cambridge Crystallographic Data Center.

	$AI[N(C_6F_5)_2]_3$	[Cs(PhMe) ₃] ⁺	[CPh ₃] ⁺
		$[FAI(N(C_6F_5)_2)_3]^-$	$[Li(FAl(N(C_6F_5)_2)_3)_2]^-$
empirical formula	C.AlF.N.	CH- AlCeE. N.	$C_{91}H_{15}Al_2F_{62}LiN_6,$
	C36AII 301 V3	C571124AICSI 311V3	$2(C_7H_8)$
mol. weight [g mol ⁻¹]	1071.37	1499.68	2615.26
crystal habit	colorless prism	colorless, irregular	colorless prism
crystal size [mm ³]	0.66 · 0.24 · 0.12	0.54 · 0.39 · 0.11	0.41 · 0.34 · 0.28
crystal system	triclinic	monoclinic	triclinic
space group	<i>P</i> -1	P121/c1	<i>P</i> -1
a [Å]	10.8600(10)	13.0294(5)	14.4989(14)
b [Å]	12.7006(11)	26.0373(7)	18.051(2)
c [Å]	14.3671(13)	16.8481(6)	21.909(2)
α [°]	73.501(10)	90	84.427(13)
β[°]	72.779(11)	92.421(3)	73.249(12)
γ [°]	89.315(11)	90	67.033(12)
volume [Å ³]	1809.2(3)	5710.6(3)	5054.8(9)
Ζ	2	4	2
density [g cm ⁻³]	1.967	1.744	1.718
T [K]	193(2)	193(2)	193(2)
absorption coeff. [mm ⁻¹]	0.248	0.808	0.198
Θ range [°]	2.0 to 25.9	1.4 to 26.0	1.9 to 25.0
	-13 <= h <= 13,	-15 <= h <= 14,	-17 <= h <= 17,
index ranges	-15 <= k <= 15,	-31 <= k <= 31,	-21 <= k <= 21,
	-17 <= 1 <= 17	-20 <= 1 <= 20	-26 <= l <= 26
reflns collected	17179	44417	45908
independent reflas	6574 [R(int) = 0.0444]	11041	16752
	0574 [R(mt) 0.0444]	[R(int) = 0.0308]	[R(int) = 0.0581]
absorption correction	empirical	multi-scan	gaussian
max. and min. transmission	0.931 and 0.971	0.8482 and 0.6968	0.9551 and 0.932
transmissiondata/restraints	6574 / 1 / 631	11041 / 0 / 802	16752 / 11 / 1458
/parameters	0574717051	11041/0/002	10/52/11/1456
goodness-of-fit on F ²	0.853	1.097	0.793
final R indices [I>2s(I)]	R1 = 0.0375	R1 = 0.0601	R1 = 0.0538
R indices (all data)	wR2 = 0.0914	wR2 = 0.1779	wR2 = 0.1483
larg. diff. peak/hole	0 274 / _0 208	1 245 / -2 580	0.764 / _0.701
[e Å-3]	0.2747-0.300	1.275/-2.300	0.7047-0.701
treatment of H atoms	-	constr.	constr.

Table S1. Crystal data and experimental conditions.

Table S2. (Crystal	data and	experimental	conditions.
-------------	---------	----------	--------------	-------------

	$Ga[N(C_6F_5)_2]_3$	[AsPh ₄] ⁺
		[ClGa(N(C ₆ F ₅) ₂) ₃] ⁻
ampirical formula	C E CoN	$C_{120}H_{40}As_2Cl_2F_{60}Ga_2N_6,$
empirical formula	C36F30OalN3	$C_{5}H_{12}$
mol. weight [g mol ⁻¹]	1114.11	3137.91
crystal habit	colorless prism	colorless plate
crystal size [mm ³]	0.30 · 0.05 · 0.04	0.28 · 0.08 · 0.05
crystal system	monoclinic	triclinic
space group	P21/c	<i>P</i> -1
a [Å]	7.9908(7)	11.2887(5)
b [Å]	20.611(3)	13.9044(7)
c [Å]	22.8236(19)	20.9274(11)
α [°]	90	98.126(2)
β[°]	108.292(7)	103.279(2)
γ [°]	90	111.8210(10)
volume [Å ³]	3569.1(7)	2873.0(2)
Ζ	4	1
density [g cm ⁻³]	2.073	1.802
T [K]	100(2)	100(2)
absorption coeff. [mm ⁻¹]	0.966	1.241
Θ range [°]	1.4 to 26.9	2.0 to 27.0
	-10 <= h <= 9,	-14 <= h <= 14,
index ranges	-24 <= k <= 26,	-17 <= k <= 17,
	-28 <= 1 <= 28	-26 <= 1 <= 26
reflns collected	19281	55879
independent reflns	7542 [R(int) = 0.1328]	12537
	/012[r(m) 0.1020]	[R(int) = 0.0897]
absorption correction	multi-scan	multi-scan
max. and min. transmission	0.9624 and 0.7604	1.0000 and 0.8474
transmissiondata/restraints	7542 / 0 / 625	12537 / 30 / 913
/parameters	7312707023	120077007910
goodness-of-fit on F ²	0.712	1.074
final R indices [I>2s(I)]	R1 = 0.0509	R1 = 0.0375
R indices (all data)	wR2 = 0.1359	wR2 = 0.1042
larg. diff. peak/hole	0 991 / -1 138	0.662 / -0.649
[e Å-3]	0.2717 1.150	0.0027 0.072
treatment of H atoms	-	constr.

Quantum chemical Calculations

DFT optimizations were carried out with TURBOMOLE^{12,13} at the (RI-)BP86^{14,15,16}/def-TZVP¹⁷, with RI-J auxiliary bases^{18,19,20} and D3²¹ dispersion correction.Vibrational frequencies were calculated analytically with the AOFORCE^{22,23} module and all structures represented true minima without imaginary frequencies on the respective hypersurface. Thermal contributions to *ab initio* reaction energies (see below) were calculated with inclusion of zero point energy, thermal contributions to the enthalpy/entropy (FREEH tool; unscaled²⁴ BP86/def-TZVP/D3 vibrational frequencies).

RI-MP2 structure optimisations were carried out with TURBOMOLE¹² and def2-QZVPP¹⁷ basis sets and corresponding RI-C auxiliary bases¹⁴ for all atoms. Frozen core: 1s for 2nd row elements, 1s2s2p for Al, none for H, 1s2s2p3s3p for Ga.

MP2 and CCSD(T) single point calculations with correlation-consistent basis sets were done with Gaussian 03.^[13] Basis set extrapolation was done with the following formula:

 $\Delta E_{\text{CCSD}(T)/A'VQZ} \approx \Delta E_{\text{compound}} = \Delta E_{\text{CCSD}(T)/A'VDZ} + \Delta E_{\text{MP}_2/A'VQZ} - \Delta E_{\text{MP}_2/A'VDZ}$

with A'VXZ = cc-pVXZ for H²⁵, aug-cc-pV(X+d)Z for Al²⁶, aug-cc-pwCVXZ-PP for Ga²⁷, aug-cc-pVXZ for 2^{nd} row elements ²⁸ (X = D, Q).

Frozen core: 1s for 2nd row elements, 1s2s2p for Al, none for H and Ga.

Thermal contributions to reaction energies were calculated with BP86-D3/def-TZVP at 1 bar, 298.15 K:

 $\Delta U^{\circ} = \Delta E_{\rm QM.} + \Delta E_{\rm vrt}$

 $(\Delta E_{QM} = \Delta E_{SCF} \text{ for DFT}, \Delta E_{compound} \text{ for ab-initio calculations}; \Delta E_{vrt} = \text{sum of translational, rotational, and vibrational energy incl. zero point vibrational energy})$

 $\Delta H^{\circ} = \Delta U^{\circ} + \Delta n RT \qquad (\Delta n = \text{particle number change in reaction equation})$ $\Delta G^{\circ} = \Delta H^{\circ} - 298.15 \text{ K} \cdot \Delta S^{\circ}$

Table	e S3.	Details of	on ab	initio	calculations	(with	thermal	correct	ions at	BP86-I	D3/def-TZVP 1	evel).

	CCSD(T)/A'VDZ	MP2/A'VDZ	MP2/A'VQZ	E _{comp}	H°	G٥
	[H]	[H]	[H]	[kJ mol ⁻¹]	[kJ mol ⁻¹]	[kJ mol ⁻¹]
F-	-99.668634	-99.665948	-99.774407	-348070.66	-347943.15	-348015.74
AlF ₃	-541.216273	-541.198926	-541.556053	-1421900.96	-1421867.26	-1421950.52
AlF ₄ -	-641.066362	-641.043002	-641.511473	-1684349.70	-1684307.74	-1684396.96
GaF ₃	-557.728995	-557.717825	-558.354450	-1465988.94	-1465957.94	-1466045.63
GaF ₄ -	-657.566082	-657.549237	-658.296248	-1728401.03	-1728362.13	-1728456.65

	SCF	E _{vrt}	S°	H°	G°
	[H]	[kJ mol ⁻¹]	[kJ mol ⁻¹ K ⁻¹]	[kJ mol ⁻¹]	[kJ mol ⁻¹]
F-	-99.879116	3.72	0.14547	-262226.42	-262269.79
AlF ₃	-542.338235	31.22	0.27925	-1423875.34	-1423958.59
AlF ₄ -	-642.410764	39.48	0.29923	-1686607.50	-1686696.72
GaF ₃	-2224.913325	28.52	0.29413	-5841478.94	-5841566.63
GaF ₄ -	-2324.972266	36.42	0.31705	-6104175.78	-6104270.31
$Al(N(C_6F_5)_2)_3$	-4775.691260	965.88	1.49104	-12537609.04	-12538053.60
$FAl(N(C_6F_5)_2)_3^{-1}$	-4875.791366	973.64	1.49255	-12800414.11	-12800859.12
$Ga(N(C_6F_5)_2)_3$	-6458.327682	966.81	1.48051	-16955370.04	-16955811.45
$FGa(N(C_6F_5)_2)_3^-$	-6558.396066	972.77	1.47152	-17218093.62	-17218532.35
$Al(N(C_6F_5)_2)_3)$	-3584.411955	1185.68	1.26100	-9409685.43	-9410061.39
$FAl(N(N(C_6F_5)_2)_3)$	-3684.528095	1192.54	1.29373	-9672533.49	-9672919.22

TADIC 34. Details on Drob-D./($dr = 17.$) vr calculations	Table S4.	Details on	BP86-D3/def-TZVP	calculations.
--	-----------	------------	------------------	---------------

MP2/def2-QZVPP coordinates (atomic units, Turbomole format)

 AlF_3, D_{3h} 0.000000000000000 0.00000000000000 0.0000000000000 al $0.00000000000000 \ f$ 1.54642228740784 -2.67848197174726 1.54642228740784 0.0000000000000 f 2.67848197174726 -3.09284457481566 0.000000000000000 0.0000000000000 f AlF_4 , T_d 0.00000000000000 0.0000000000000 al 1.84949633922621 -1.84949633922621 1.84949633922621 f -1.84949633922621 1.84949633922621 1.84949633922621 f -1.84949633922621 -1.84949633922621 -1.84949633922621 f 1.84949633922621 1.84949633922621 -1.84949633922621 f

 GaF_3, D_{3h}

0.00000000000000	0.00000000000000	0.00000000000000	ga
1.61953241012213	-2.80511241883599	0.00000000000000	f
1.61953241012213	2.80511241883599	0.00000000000000	f
-3.23906482024423	0.000000000000000	0.00000000000000	f

GaF_4 , T_d

ga	0.000000000000000	0.000000000000000	0.000000000000000
f	1.93854254827746	-1.93854254827746	1.93854254827746
f	1.93854254827746	1.93854254827746	-1.93854254827746
f	-1.93854254827746	-1.93854254827746	-1.93854254827746
f	-1.93854254827746	1.93854254827746	1.93854254827746

BP86-D3/def-TZVP coordinates (atomic units, Turbomole format)

 AlF_3, D_{3h}

0.000000000000000	0.000000000000000	0.00000000000000 al
1.56940806082359	-2.71829449915461	0.0000000000000 f
1.56940806082359	2.71829449915461	0.00000000000000000000000000000000000
-3.13881612164718	0.000000000000000	0.0000000000000 f

AlF₄-, T_d

0.000000000000000	0.000000000000000	0.0000000000000 al
1.87974602471639	-1.87974602471639	1.87974602471639 f
-1.87974602471639	1.87974602471639	1.87974602471639 f
-1.87974602471639	-1.87974602471639	-1.87974602471639 f
1.87974602471639	1.87974602471639	-1.87974602471639 f

GaF₃, D_{3h}

0.00000000000000	0.00000000000000	0.00000000000000	ga
1.65443129382760	-2.86555905854132	0.00000000000000	f
1.65443129382760	2.86555905854132	0.00000000000000	f
-3.30886258765519	0.000000000000000	0.000000000000000	f

 GaF_4 , T_d

0.000000000000000	0.000000000000000	0.0000000000000 ga
1.98100527642910	-1.98100527642910	1.98100527642910 f
-1.98100527642910	1.98100527642910	1.98100527642910 f
-1.98100527642910	-1.98100527642910	-1.98100527642910 f
1.98100527642910	1.98100527642910	-1.98100527642910 f

 $Al(N(C_6F_5)_2)_{3}, C_1$

0.06751439987584	0.12896607972366	0.06448722572172 al
1.26114557924050	-0.67476825710019	3.28832927470843 n
-0.18719906172103	-2.34673919239267	-2.44511856762995 n
-0.90671112891604	3.37550087863069	-0.60708293849819 n
-0.25452995655689	-2.02369513823070	5.03933421607934 c
-2.21552205736257	-0.81369644318966	6.34709602401144 c
-3.83452573397034	-2.13511316524962	7.95645684828362 c
-3.49211631692481	-4.73194898882164	8.30664039792928 c
-1.54445545768759	-5.98781477149522	7.03328008094384 c

0.02910747613855	-4.63658673421821	5.40585817181277 c
3.86943709565593	-0.55193076192771	3.65088265034202 c
5.23315871063070	-0.97486552590248	5.89574664814126 c
7.86819431926871	-0.75964348226433	5.96691643834010 c
9.24289142325106	-0.04244178182685	3.82626184971696 c
7.94656710166230	0.44304477266218	1.57235692964254 c
5.34533199431155	0.18506706561897	1.58308862487729 c
1.66564379163984	-2.68924847388435	-4.35403523021411 c
4.01960545249688	-3.76872630429153	-3.78865406151341 c
5.90946251620673	-4.01574935379875	-5.61134242616736 c
5.43955652319794	-3.22244849273128	-8.08845461631019 c
3.09246106410377	-2.18061858118089	-8.71805118048475 c
1.24205981468959	-1.92488753693519	-6.85700710789153 c
-2.30353716725376	-3.91126446701576	-2.36671955794315 c
-2.84500911207734	-6.05020076505986	-3.85871956159386 c
-5.07171200965031	-7.43872409328608	-3.52001948649645 c
-6.82619374853387	-6.79462907911670	-1.65094748885815 c
-6.34427582366043	-4.69566249748017	-0.11591148952313 c
-4.12779466009152	-3.36741637345627	-0.52353545019049 c
-1.46666161452717	4.24081250497874	-3.08043587974737 c
-3.41759555874901	3.19378009566404	-4.54204737991560 c
-3.93170295925350	4.02759887193449	-6.99056160829455 c
-2.51878227782077	6.00408527604463	-8.02307305696860 c
-0.58158835102694	7.11228955338050	-6.60501854051113 c
-0.06724256292821	6.21894908513685	-4.17797872800549 c
-1.25443758482355	5.15994514027292	1.36379156087519 c
-3.65564288425623	6.17672646075400	1.87797200966661 c
-4.05871002063578	7.87551193981028	3.85350132082068 c
-2.03963879147727	8.57301823467270	5.41006276207126 c
0.36635722719442	7.58480536561524	4.95514279219533 c
0.73719427720226	5.93112227371461	2.93515444796662 c
-2.58674648841316	1.68515521792809	6.01552551297914 f
-5.70450602990902	-0.92808694142972	9.17107144254650 f
-5.02834187573567	-6.01729011005490	9.85660921247152 f
-1.22165407708294	-8.48308223223622	7.35992859755187 f
1.87173830242983	-5.87134528465447	4.15787419564950 f
4.02051406878363	-1.60496922971211	8.05054955048278 f
9.09319373287745	-1.21137248587658	8.13997671502691 f
11.76784219016016	0.17282876779094	3.92545191744064 f

9.18256825053870	1.13171028644037	-0.52888902498683 f
3.99571438396326	0.68251778092117	-0.63480683612480 f
4.48859040043811	-4.57340581377513	-1.41699968370707 f
8.15697311685884	-5.02347352196894	-5.00678171180755 f
7.23528920549483	-3.45987014595555	-9.85696290112296 f
2.63411461721482	-1.43835565444643	-11.09928805879517 f
-1.02644582880823	-0.97281606939729	-7.50256503825337 f
-1.22297654833394	-6.82824634741861	-5.66890117688362 f
-5.50942376164947	-9.45356787190735	-4.99391213225957 f
-8.93837715122354	-8.16164048027567	-1.33394929412549 f
-7.96175154420138	-4.00537212008128	1.70737593757698 f
-3.60434494595913	-1.25675897984220	0.97280727524132 f
-4.84865785957300	1.31494005265298	-3.58303219320586 f
-5.78823622818185	2.95265992312230	-8.34581373593747 f
-3.00318797374704	6.82518403330215	-10.37182234571437 f
0.79587062047474	8.99804400545695	-7.60231516131639 f
1.83405625634564	7.27958794807529	-2.85788469202895 f
-5.64224181855026	5.45732487666144	0.45725117157137 f
-6.38010345735764	8.79902209066942	4.30404496675461 f
-2.41250709693337	10.18114406571959	7.33414068419226 f
2.31774058315321	8.26397471029221	6.43240404007721 f
3.09519303006443	5.05315619224130	2.51126684931763 f
$FAl(N(C_6F_5)_2)_3, C_1$		
-0.49237691634568	-1.61299410488604	-0.38483340821645 al
-1.40353721963105	-4.63197694594500	-1.02384533574972 f
3.68772771267369	2.45984847296226	-6.28421777333642 f
4.52567109600297	0.73341667995492	-11.02078557656299 f
4.39721772505368	-4.36210753439389	-12.01626114992226 f
3.54024065951921	-7.70691199340578	-8.14816820756238 f
2.89473565622627	-6.02444141070904	-3.37917756456209 f
1.43274807242295	4.21262044050629	-0.67230938676732 f
4.97798266363349	7.20490746257831	1.50081815453078 f
9.87494121213658	5.54120139589632	1.96581694337193 f
11.14318606501271	0.80139269936533	0.27775321643534 f
7.57365291908959	-2.25891100518370	-1.76809942735766 f
-6.57277140233547	-0.16082350577355	-5.62437969428286 f
-10.78705204038993	-3.03519726572130	-5.98062379962851 f
-12.25190646765333	-6.05457529796346	-2.01544480846462 f

-9.45289354384851	-6.07146165702872	2.35982458280100 f
-5.33383971854177	-3.07389301156270	2.80402602466528 f
-6.92346643360817	3.10615016091259	1.56643301340800 f
-7.66090414790250	8.06591963977478	0.40735077295236 f
-5.16825885953081	10.19487089183705	-3.61248451230780 f
-2.00551496930603	7.28783351826883	-6.52005219968372 f
-1.38972249543143	2.29908377682567	-5.44742731762012 f
-1.78810052203839	3.84038572943575	3.31906965151625 f
-5.24177335688482	4.91931915614698	6.94593331381027 f
-6.31579490800078	1.44332925160036	10.64273294654295 f
-3.90939489113737	-3.15050679911007	10.63757423007725 f
-0.55667107039969	-4.30004117842912	6.91017562876077 f
3.08875116107537	-5.57451442420498	2.03168986886958 f
7.96856458634911	-6.34684419832179	3.38054571709551 f
10.56657965448369	-2.70930874519441	6.01317911442880 f
8.20640230325089	1.75081759819668	7.23310252068443 f
3.37201764184320	2.60145422208156	5.77272781809461 f
2.49194764066941	-0.77203964536750	-2.22864416977198 n
-3.60643338357389	0.02637847537439	-1.17442131329774 n
0.57839180540803	-0.94810690607014	2.98428414102589 n
3.01714650614540	-1.70535765766097	-4.67126405870812 c
3.58469165912836	-0.05623404307196	-6.69034062591786 c
4.04668309504482	-0.92048168996979	-9.13686471582808 c
3.98292922468108	-3.50759707235241	-9.64832295875935 c
3.49666434885486	-5.19862592927950	-7.68505478651385 c
3.09943672756372	-4.31070510172746	-5.22936582681261 c
4.35643877723856	0.85568637283718	-1.25411074439886 c
3.79329636822908	3.30398650175105	-0.39226549767568 c
5.60651148842888	4.86962300954671	0.70707880398547 c
8.10223204170503	4.04029924227807	0.92015452612340 c
8.74681071817561	1.63903794788708	0.03147328058216 c
6.89761026407720	0.08860393230206	-1.02530112438010 c
-5.79214676514972	-1.48642604893649	-1.37937773475050 c
-7.27379745588690	-1.54342702655865	-3.59343701944073 c
-9.43713329704239	-3.03501420198019	-3.81285792296482 c
-10.17471629742583	-4.58663651800763	-1.81200803827033 c
-8.73560178221728	-4.60669491405605	0.39944033652177 c
-6.61534695439655	-3.05724988451176	0.60214267356869 c
-4.01327836461735	2.57774218412450	-1.82149347545029 c

-5.68987753076466	4.10376694123476	-0.43282504155683 c
-6.08863961721813	6.64304597705069	-1.01009462117795 c
-4.81447043888930	7.73267934500018	-3.04974746127862 c
-3.17768135318769	6.25917371451082	-4.50317744245129 c
-2.83916947387536	3.71222890455267	-3.91361790512121 c
-1.11723793789296	-0.29556721386028	4.93954190211815 c
-2.34562814435277	2.05325201378988	5.03744878544421 c
-4.10477716560792	2.64028365705481	6.91265935380543 c
-4.63061185802347	0.88753279681884	8.81154586072228 c
-3.38896715200552	-1.44223566409790	8.81466128353930 c
-1.66871754994554	-2.00744269780797	6.90093029085219 c
3.05199909552865	-1.45230769888551	3.82206820330020 c
4.31719038928890	-3.72605318194445	3.26017694052668 c
6.82816513073765	-4.14405163705753	3.95603093600899 c
8.14786288433488	-2.30986091306390	5.31751376079143 c
6.93190737084361	-0.05767737463814	5.96299058316631 c
4.43987682020200	0.34842998628265	5.21380746642419 c
$Al(N(C_6H_2F_3)_2)_{3,}C_1$		
-5.29206295796552	-0.65820321914183	-0.54852678814659 c
-5.00119249004266	-2.35933234830767	-2.55994984949647 c
-6.81728455022539	-4.21523586062756	-2.96584558906338 c
-9.00423284707490	-4.35106926539792	-1.49583225713986 c
-9.31314973886204	-2.57329230513172	0.44081708625076 c
-7.49282323996044	-0.75345070234674	0.93930060809088 c
-3.34567779243723	-2.31756815801638	-3.78546694335760 h
-6.49557231517613	-5.90991060493557	-4.84352934667174 f
-10.76201306385050	-6.12987031492094	-1.93114665581889 f
-11.41533820965835	-2.69902688392178	1.87418189098361 f
-7.76589001285946	0.52998315798733	2.52423540403919 h
0.00008726750997	0.00663523023658	0.02422635201711 al
-3.30203598796798	1.03639209171901	0.08163618106186 n
3.17421536774107	-4.25904098894617	-0.71046521202625 c
2.06776841980208	4.89393861160799	-0.80305273534852 c
-3.97252470936402	3.55413486533665	0.74253048466643 c
5.07305383098563	1.68604724764555	0.54900416696433 c
-1.05358402264320	-5.19833657497052	0.83708603101012 c
4.39138697786838	-3.16455734020724	-2.79518909920002 c
0.39765678445865	5.42060213663957	-2.79275002441256 c

-2.70292124471207	4.79609453489731	2.71033309204921 c
5.55512539684293	0.05477049598178	2.58184559576048 c
-2.64820277897905	-4.69817875723138	2.89469458201820 c
6.87559645627045	-3.82427133115755	-3.34435562974790 c
-0.29655919236563	7.90777618383136	-3.28303435391634 c
-3.14973257261477	7.35087660753499	3.13627384439146 c
7.99576724494194	-0.83376613005180	2.98465585138176 c
-4.61288610206465	-6.35388455617677	3.44966112878452 c
8.15771395173104	-5.65915382731411	-1.94700044919952 c
0.73252638213196	9.92224854153926	-1.92412433605125 c
-4.93605947749968	8.69359577310279	1.73258219333278 c
10.01961199503747	-0.03723156102554	1.49047453503960 c
-4.96563226878850	-8.58530505820845	2.08568869913939 c
6.87826707073192	-6.80790290049670	0.06552288385783 c
2.47569488231359	9.36916050333699	-0.01060996185494 c
-6.26080494180346	7.39801815171243	-0.15728603369524 c
9.52141750067441	1.67419824689403	-0.46609268040889 c
-3.29422477605100	-9.10476423800038	0.10007508289532 c
4.42969779802891	-6.12460053327725	0.70731330087163 c
3.13823052120160	6.90046230857277	0.57334398243194 c
-5.79350188592240	4.87109294797750	-0.67735190996624 c
7.09191870065867	2.52561121667753	-0.96271458558556 c
-1.36967447289172	-7.44595239199935	-0.54692435708202 c
3.46709416972661	-1.74693643273998	-3.97023542107532 h
-0.43735949367962	3.92242548872452	-3.93391749500874 h
-1.31125687122321	3.83108492981715	3.88342489534746 h
4.05041475500957	-0.60254849181502	3.82602758159360 h
-2.43860436479260	-3.00004854130381	4.04244095799497 h
8.07982958591225	-2.70470778953079	-5.29293144813237 f
-1.97432347886076	8.41083714980842	-5.13581887237387 f
-1.86433409012268	8.57139403005229	4.96889328150032 f
8.44633928362801	-2.47680210789376	4.88174156129669 f
-6.20440504346922	-5.82850264919935	5.37124161516360 f
10.54404124628380	-6.30741779517782	-2.52052246115555 f
0.07479407616374	12.31874778127825	-2.44165177394391 f
-5.37576364192402	11.15197122607406	2.18756160271893 f
12.37425443403706	-0.88244934048983	1.92100308994976 f
-6.84699147170399	-10.18803886484405	2.66539489809307 f
8.10602987922766	-8.57605698456248	1.42763603361832 f

3.47141920187090	11.30298379816784	1.31548928991814 f	
-7.98484357163795	8.68208732467447	-1.52413804037682 f	
11.46425787218063	2.44759808061190	-1.92089237433735 f	
-3.62693399559438	-11.25060195207487	-1.23212147111865 f	
3.54255281262430	-6.99732888955450	2.34575849141478 h	
4.42741187472805	6.55243530306214	2.13874263635651 h	
-6.79814474315788	3.96487313613823	-2.22747534734546 h	
6.77730760431110	3.77871070360254	-2.56399481182065 h	
-0.17520764736003	-7.88031243305589	-2.16482839857035 h	
0.75609355782928	-3.36995631925744	0.05743977596401 n	
2.54417316284356	2.34882663806816	-0.07850197451969 n	

 $FAl(N(C_6H_2F_3)_2)_3^-, C_1$

-4.31339339121768	-2.77812958165447	-0.39811907807515 c
-3.06766508069133	-3.83850597657798	-2.49045996719665 c
-3.71152052958770	-6.24714846722011	-3.31512212810783 c
-5.66699188648228	-7.61651327710470	-2.19502946634545 c
-6.96195253227280	-6.50043073396252	-0.17702668848312 c
-6.31770902018260	-4.12880782990060	0.72541159265893 c
-1.50537713367783	-2.86299301428734	-3.40120422462186 h
-2.45658020762103	-7.30095026158213	-5.28294402467611 f
-6.29649276864067	-9.94395636880275	-3.03366933664563 f
-8.85652827565294	-7.82687504132968	0.92939101259237 f
-7.30740792954067	-3.36639694955142	2.36069999870219 h
-0.13405216075929	-0.14446643289481	1.87527431523753 al
-3.47670969018501	-0.47066213765009	0.65749933487163 n
4.08305297966650	-1.92192722761117	-0.99064494646219 c
-0.02842602543760	4.90754109075973	-0.31767490396295 c
-5.26428447132816	1.42571663335983	1.11584263332312 c
3.82405157710159	3.47557643646006	1.67068568035874 c
1.54157438527173	-5.24009499454995	0.84851295266303 c
3.74335533486390	-0.50084512234313	-3.20653930826414 c
-1.59474082108629	4.30522117631162	-2.38128489744163 c
-4.82064052401613	3.23745340848639	3.02563140519917 c
4.84385172719318	2.36725972354291	3.87412268131455 c
-0.11424421799144	-6.04527782197806	2.78710226122706 c
5.83391872560714	0.40865958884462	-4.51180841487052 c
-3.13303410257660	6.14589552384547	-3.44551053557692 c
-6.38521896577782	5.32910178919836	3.22977666567527 c

7.40172929748380	2.61901399807080	4.39568931246255 c
-0.82064782396557	-8.56170741596063	2.93732145182247 c
8.29193951765537	-0.11387562722675	-3.71522131677843 c
-3.08415214612860	8.64742931200082	-2.61398812135967 c
-8.49374468959630	5.65892503392713	1.67547661692651 c
9.02348061983177	3.99756962972093	2.83724774663470 c
0.13161684430460	-10.39405921230402	1.28861721353148 c
8.60715566473008	-1.56790325876952	-1.52885886848598 c
-1.44765330639622	9.24964422121734	-0.62578735391003 c
-8.97398668779380	3.80106941938449	-0.13865346006013 c
7.98152482944217	5.12967116889718	0.68899894616164 c
1.83269807488159	-9.59245323455113	-0.56143218787869 c
6.55442366402881	-2.47096253422292	-0.17419440339174 c
0.05731265729765	7.43982584852158	0.51916248515939 c
-7.41394403888949	1.71919366038917	-0.44197470298442 c
5.44605349121569	4.88675938191534	0.08544662682762 c
2.54162333428083	-7.08098674314243	-0.80968995292137 c
1.86478348766761	-0.01983934227080	-3.88834072055548 h
-1.75191008806085	2.37461739229190	-3.06894901749151 h
-3.23861717822087	3.05184648630882	4.33348183610498 h
3.65475443732830	1.30982675530332	5.18335974993844 h
-0.88093918028712	-4.71644824377830	4.16341405663692 h
5.50755498186008	1.83792163033043	-6.61416441965524 f
-4.70065382412974	5.53164321538844	-5.37715055397714 f
-5.91323788654081	7.09811553934074	5.02491465797155 f
8.38044577189268	1.53377257478340	6.50516450794349 f
-2.45578484083711	-9.31335928024577	4.76554858818194 f
10.30874701880628	0.77911952221564	-4.99712717242515 f
-4.56136238402820	10.43079870070328	-3.69311233941949 f
-10.02883307417255	7.68964077332277	1.93478008595753 f
11.50693977121992	4.25079423489900	3.39445447262216 f
-0.55104049051545	-12.85285227813460	1.49667336331011 f
10.99232299091385	-2.03918606416571	-0.72028419433997 f
-1.39658714488868	11.67481039583255	0.20917539350079 f
-11.01385188268767	4.09724894076583	-1.66803666427777 f
9.53996772996122	6.45172622470443	-0.86306286301382 f
2.77853413418709	-11.34251144644389	-2.18471304040794 f
6.86756316877405	-3.52330038861187	1.56585486526669 h
1.22796868310452	7.97814447502935	2.12350149574674 h

-7.81344915990520	0.39258353943945	-1.96287433695756 h
4.75528043740274	5.72076661483397	-1.66375693541158 h
3.78798215501446	-6.55689691716750	-2.35975667164644 h
1.97664743509236	-2.66107229458054	0.48821973380538 n
1.30319230465282	3.00491490851351	0.98199545135767 n
-0.23868167096456	-0.41842344828298	5.11971802638546 f

 $Ga(N(C_6F_5)_2)_{3,}D_3$

-4.91585012313605	-2.23090050545877	-0.47932539750919 c
-4.34751115105735	-3.77717667868902	-2.55973343662083 c
-5.56763227000642	-6.07599538745367	-2.96558718994691 c
-7.49202606047071	-6.84211117785723	-1.32466745691271 c
-8.14394884973787	-5.31489950550111	0.73191383200309 c
-6.84265644256761	-3.05875376021457	1.15475782425205 c
-2.50861425620336	-3.05794094187152	-4.17936783951479 f
-4.91581737127722	-7.54288274928041	-4.92998437660793 f
-8.68768734186450	-9.04121351891509	-1.70957384474594 f
-9.96699316134037	-6.05681788638206	2.32801295323332 f
-7.42933688753258	-1.67591848638674	3.20725170571069 f
0.000000000000000	0.000000000000000	0.0000000000000 ga
-3.53619160708375	0.000000000000000	0.0000000000000 n
4.38994157261085	-3.14180083510331	-0.47932539750919 c
0.52590855052520	5.37270134056206	-0.47932539750919 c
-4.91585012313605	2.23090050545877	0.47932539750919 c
4.38994157261085	3.14180083510331	0.47932539750919 c
0.52590855052520	-5.37270134056206	0.47932539750919 c
5.44488653385550	-1.87646676070729	-2.55973343662083 c
-1.09737538279815	5.65364343939631	-2.55973343662083 c
-4.34751115105735	3.77717667868902	2.55973343662083 c
5.44488653385550	1.87646676070729	2.55973343662083 c
-1.09737538279815	-5.65364343939631	2.55973343662083 c
8.04578249381516	-1.78371329102875	-2.96558718994691 c
-2.47815022380873	7.85970867848242	-2.96558718994691 c
-5.56763227000642	6.07599538745367	2.96558718994691 c
8.04578249381516	1.78371329102875	2.96558718994691 c
-2.47815022380873	-7.85970867848242	2.96558718994691 c
9.67145512577719	-3.06722930525407	-1.32466745691271 c
-2.17942906530647	9.90934048311130	-1.32466745691271 c
-7.49202606047071	6.84211117785723	1.32466745691271 c

9.67145512577719	3.06722930525407	1.32466745691271 c
-2.17942906530647	-9.90934048311130	1.32466745691271 c
8.67481241519425	-4.39541683824350	0.73191383200309 c
-0.53086356545638	9.71031634374461	0.73191383200309 c
-8.14394884973787	5.31489950550111	-0.73191383200309 c
8.67481241519425	4.39541683824350	-0.73191383200309 c
-0.53086356545638	-9.71031634374461	-0.73191383200309 c
6.07028668155080	-4.39653742852551	1.15475782425205 c
0.77236976101682	7.45529118874009	1.15475782425205 c
-6.84265644256761	3.05875376021457	-1.15475782425205 c
6.07028668155080	4.39653742852551	-1.15475782425205 c
0.77236976101682	-7.45529118874009	-1.15475782425205 c
3.90256166703492	-0.64355320323216	-4.17936783951479 f
-1.39394741083156	3.70149414510367	-4.17936783951479 f
-2.50861425620336	3.05794094187152	4.17936783951479 f
3.90256166703492	0.64355320323216	4.17936783951479 f
-1.39394741083156	-3.70149414510367	4.17936783951479 f
8.99023676428286	-0.48578134925070	-4.92998437660793 f
-4.07441939300564	8.02866409853112	-4.92998437660793 f
-4.91581737127722	7.54288274928041	4.92998437660793 f
8.99023676428286	0.48578134925070	4.92998437660793 f
-4.07441939300564	-8.02866409853112	4.92998437660793 f
12.17376425935202	-3.00315117873362	-1.70957384474594 f
-3.48607691748750	12.04436469764870	-1.70957384474594 f
-8.68768734186450	9.04121351891509	1.70957384474594 f
12.17376425935202	3.00315117873362	1.70957384474594 f
-3.48607691748750	-12.04436469764870	1.70957384474594 f
10.22885473637301	-5.60326033387551	2.32801295323332 f
-0.26186157503264	11.66007822025756	2.32801295323332 f
-9.96699316134037	6.05681788638206	-2.32801295323332 f
10.22885473637301	5.60326033387551	-2.32801295323332 f
-0.26186157503264	-11.66007822025756	-2.32801295323332 f
5.16605642764918	-5.59603523468266	3.20725170571069 f
2.26328045988340	7.27195372106941	3.20725170571069 f
-7.42933688753258	1.67591848638674	-3.20725170571069 f
5.16605642764918	5.59603523468266	-3.20725170571069 f
2.26328045988340	-7.27195372106941	-3.20725170571069 f
1.76809580354186	-3.06243176438385	0.0000000000000 n
1.76809580354186	3.06243176438385	0.0000000000000 n

$FGa(N(C_6F_5)_2)_3, C_3$		
-4.69358661349006	-1.85645601191411	-0.17878885525076 c
-3.98864340787123	-3.21269585337742	-2.35292715890954 c
-5.13637061208747	-5.49866047076651	-2.99961559553227 c
-7.08117664157931	-6.46725071893227	-1.50530228793759 c
-7.86998319312562	-5.13637348074538	0.63462725160692 c
-6.67709105375402	-2.87524033511688	1.27583481310202 c
-2.18240701458799	-2.30763077270493	-3.88219481116864 f
-4.38891822655716	-6.77032764190268	-5.07784946046105 f
-8.18341690370828	-8.68057567170946	-2.11344502785843 f
-9.73916857762346	-6.07506893377243	2.08973693536507 f
-7.44048679091229	-1.65678770039926	3.37523817110678 f
0.000000000000000	0.000000000000000	1.88407815164387 ga
-3.45911291555942	0.38790769740897	0.57183467817219 n
3.95453137407099	-3.13653723618794	-0.17878885525076 c
0.73905523941908	4.99299324810201	-0.17878885525076 c
-4.97428692332132	2.54426849479257	0.67820037270421 c
4.69054461219940	3.03572459391269	0.67820037270421 c
0.28374231112190	-5.57999308870528	0.67820037270421 c
4.77659792759337	-1.84791859116511	-2.35292715890954 c
-0.78795451972213	5.06061444454255	-2.35292715890954 c
-4.68075096535637	4.42085963714937	2.55327522512652 c
6.16895223501482	1.84321942621248	2.55327522512652 c
-1.48820126965845	-6.26407906336184	2.55327522512652 c
7.33016496051279	-1.69889719793629	-2.99961559553227 c
-2.19379434842535	7.19755766870280	-2.99961559553227 c
-6.09338040081693	6.64368421535741	2.58516723839832 c
8.80028950562968	1.95518011435095	2.58516723839832 c
-2.70690910481277	-8.59886432970836	2.58516723839832 c
9.14139173602820	-2.89885350082650	-1.50530228793759 c
-2.06021509444886	9.36610421975879	-1.50530228793759 c
-7.93876647170914	7.07991846870333	0.75259513392557 c
10.10077248647430	3.33521420486062	0.75259513392557 c
-2.16200601476512	-10.41513267356393	0.75259513392557 c
8.38322151421300	-4.24741863223071	0.63462725160692 c
-0.51323832108733	9.38379211297604	0.63462725160692 c
-8.30816953492540	5.26453041428854	-1.12310527686139 c
8.71330184523238	4.56282066904908	-1.12310527686139 c

S21

-0.40513231030700	-9.82735108333763	-1.12310527686139 c
5.82857669907391	-4.34491030837431	1.27583481310202 c
0.84851435468010	7.22015064349121	1.27583481310202 c
-6.83644299302680	3.07793036862285	-1.16967289841234 c
6.08378738682038	4.38156811917389	-1.16967289841234 c
0.75265560620640	-7.45949848779676	-1.16967289841234 c
3.08967037901121	-0.73620452967811	-3.88219481116864 f
-0.90726336442318	3.04383530238304	-3.88219481116864 f
-2.92837418122459	4.10706237627441	4.37371857939595 f
5.02100744339320	0.48251524458977	4.37371857939595 f
-2.09263326216858	-4.58957762086415	4.37371857939595 f
8.05773484311025	-0.41575085837971	-5.07784946046105 f
-3.66881661655311	7.18607850028236	-5.07784946046105 f
-5.69320912400699	8.37432726292909	4.41349487184092 f
10.09898471130470	0.74330009898288	4.41349487184092 f
-4.40577558729772	-9.11762736191197	4.41349487184092 f
11.60930750302769	-2.74675909251565	-2.11344502785843 f
-3.42589059931942	11.42733476422507	-2.11344502785843 f
-9.33136078649403	9.21598076453110	0.79090259030520 f
12.64695385611964	3.47320511071621	0.79090259030520 f
-3.31559306962563	-12.68918587524730	0.79090259030520 f
10.13074831520031	-5.39683293307488	2.08973693536507 f
-0.39157973757678	11.47190186684727	2.08973693536507 f
-10.04818220907154	5.66537121089102	-2.94379119429860 f
9.93044649503637	5.86929544946526	-2.94379119429860 f
0.11773571403515	-11.53466666035626	-2.94379119429860 f
5.15506363267955	-5.61525672725296	3.37523817110678 f
2.28542315823279	7.27204442765225	3.37523817110678 f
-7.18998214543079	1.47771265366439	-3.13411433428195 f
4.87472777028246	5.48785086386740	-3.13411433428195 f
2.31525437514829	-6.96556351753182	-3.13411433428195 f
1.39361853750000	-3.18963350813780	0.57183467817219 n
2.06549437805943	2.80172581072884	0.57183467817219 n
0.000000000000000	0.000000000000000	5.27446496812404 f

References

- [1] Koppang, R. Acta Chem. Scand. 1971, 25, 3067-3071.
- [2] Khvorost, A.; Shutov, P. L.; Harms, K.; Lorberth, J.; Sundermeyer, J.; Karlov, S. S.; Zaitseva, G. S. Z. Anorg. Allg. Chem. 2004, 630, 885-889.
- [3] Altomare, A.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A. J. Appl. Cryst. 1993, 26, 343-350.
- [4] Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. *Appl. Crystallogr.* **1999**, *32*, 115-119.
- [5] Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 381-388.
- [6] Sheldrick, G. M. Acta Crystallogr. Sect. A 1990, 46, 467-473;
- [7] Sheldrick, G. Acta Cryst. A 2008, 64, 112-122.
- [8] Blessing, R. H., Acta Cryst. A 1995, 51, 33-38.
- [9] Coppens, P. (Eds.: F. R. Ahmed, S. R. Hall, P. C. Huber), Munksgaard, Copenhagen, 1970, pp. 225-270.
- [10] Bruker, Bruker AXS Inc., Madison, Wisconsin, USA, 2012.
- [11] Brandenburg, K.; Putz, H.: *Diamond Crystal and Molecular Structure Visualization v3.2i*, Crystal Impact GbR, Bonn, Germany, 2012.
- [12] Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165-169.
- [13] Treutler, O.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346-354.
- [14] Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
- [15] Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
- [16] Perdew, J. P. Phys. Rev. B 1986, 34, 7406.
- [17] Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571-2577.
- [18] Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 240, 283-290.
- [19] Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 242, 652-660.
- [20] Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor. Chem. Acc. 1997, 97, 119-124.
- [21] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys 2010, 132, 154104.
- [22] Deglmann, P.; Furche, F.; Ahlrichs, R. Chem. Phys. Lett. 2002, 362, 511-518.
- [23] Deglmann, P.; Furche, F. J. Chem. Phys. 2002, 117, 9535-9538.
- [24] By chance scaling factors for BP86/def-TZVP frequencies are very close to unity. Therefore we did not scale the contributions to entropy/enthalpy.
- [25] Dunning, T. H. J. Chem. Phys. 1989, 90, 1007-1023.
- [26] Dunning, T. H.; Peterson, K. A.; Wilson, A. K. J. Chem. Phys. 2001, 114, 9244-9253.
- [27] DeYonker, N. J.; Peterson, K. A.; Wilson, A. K. J. Phys. Chem. A 2007, 111, 11383-11393.
- [28] Kendall, R; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796-6806.