Supporting Information for

Cobalt-Catalyzed Regioselective Stereoconvergent Markovnikov 1,2-Hydrosilylation of Conjugated Dienes

Hui Leng Sang, Songjie Yu and Shaozhong Ge*

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

Email: chmgsh@nus.edu.sg

Table of Contents

General Remarks	S2
Reaction Screening of Silanes for Hydrosilylation of (E) -1-phenyl-1,3-butadiene	S 3
Reaction Screening of Ligands for Asymmetric Hydrosilylation of (E) -1-phenyl-1,3-butadiene	S4
General procedure for Co-catalyzed Markovnikov 1,2-hydrosilylation of <i>trans-</i> 1,3-dienes & Characterization Data of Isolated Products	S 5
General procedure for Co-catalyzed Markovnikov 1,2-hydrosilylation of <i>trans/cis-</i> 1,3-dienes mixture & Characterization Data of Isolated Products	S12
General procedure for Separation of <i>cis</i> -1,3-dienes via hydrosilylation reaction & Characterization Data of Isolated Products	S19
General procedure for Co-catalyzed Markovnikov 1,2-hydrosilylation of trans/cis 1,3-dienes (Outside glovebox under nitrogen protection)	S20
General procedure for gram-scale Co-catalyzed Markovnikov 1,2-hydrosilylation of <i>trans/cis-</i> 1,3-dienes mixture	S20
General procedure for asymmetric Co-catalyzed Markovnikov 1,2-hydrosilylation of <i>trans-</i> 1,3-dienes & Characterization Data of Isolated Products	S21
Mechanistic studies:	S27
Procedure for Deuterium-labeling Experiments	S27
Reaction Monitoring	S26
Reference	S26
NMR Spectra (¹ H, { ¹ H} ¹³ C and ¹⁹ F)	S27

General Remarks

All the manipulations were performed in an argon-filled glovebox, unless mentioned otherwise. THF, toluene, and hexane were purified by passing the degassed solvents (N₂) through a column of activated alumina (solvent purification system purchased from Innovative Technologies, Newburyport, MA). The following chemicals were purchased and used as received: Co(acac)₂ (99%, Sigma-Aldrich), CoCl₂ (99.7%, Sigma-Aldrich), CoBr₂ (99%, Sigma-Aldrich), Co(OAc)₂ (99.99%, Sigma-Aldrich), PhSiH₃ (97%, Sigma-Aldrich), Ph₂SiH₂ (97%, Sigma-Aldrich), MePhSiH₂ (98%, Sigma-Aldrich), Me₂PhSiH (>98%, Sigma-Aldrich), Et₂SiH₂ (99%, Sigma-Aldrich), (EtO)₃SiH (95%, Sigma-Aldrich). PhPDI, ^{TF}ADPI, PyBox were prepared according to previously reported procedures.¹ (*E*)-1,3-dienes were prepared by Wittig olefination² of the corresponding enals³. *E*/Z-1,3-dienes were prepared procedures.⁴ All other reagents and solvents were purchased from commercial sources and used without purification.

¹H and ¹³C spectra were recorded using Bruker 300 MHz, 400 MHz, or 500 MHz NMR spectrometers. ¹H NMR and ¹³C NMR spectra were referenced to resonances of the residual signals of the deuterated solvents. As such, the ¹H and ¹³C signals of CDCl₃ were calibrated to 7.26 ppm (singlet) and 77.16 ppm (triplet) respectively. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, dt = doublet of triplets and m = multiplet. GC analysis was acquired on Agilent 6850 gas chromatograph equipped with a flame-ionization detector. HR-MS analyses were performed using Thermo Scientific Exactive (APCI). GC-MS analysis was performed on Shimadzu GC-2010 gas chromatograph coupled to a Shimadzu QP2010 mass selective detector. The details of the methods were illustrated as below.

Reaction Screening of Silane for Hydrosilylation of (E)-1-phenyl-1,3-butadiene^a

	Ph	+ [Si]-H	Co(acac) ₂ (1 m xantphos (1 mo THF	ol %) [Si]	[Si] + Ph
			RT, 4h	1a	2a
	entry		[Si]-H	Yield of 1a (%)	1a/4a
	1		PhSiH ₃	80	>99:-
	2		Ph_2SiH_2	84	>99:-
	3		Et ₂ SiH ₂	-	-
	4 ^b		Et_2SiH_2	-	-
	5		MePhSiH ₂	Trace	-
	6°		MePhSiH ₂	80	>99:1
	7		(EtO) ₃ SiH	-	-
	8 ^b		(EtO) ₃ SiH	-	-
	9		Me ₂ PhSiH	-	-
	10 ^b		Me ₂ PhSiH	-	-

^aConditions: (*E*)- 1-phenylbutadiene (0.200 mmol), [Si]-H (0.250 mmol), Co(acac)₂ (2.0 μ mol), xantphos (2.0 μ mol), THF (0.500 mL), 4 h; yield of isolated product. ^bReactions were conducted at 50 °C instead. ^c3 mol % catalyst loading was used.

Reaction Screening of Ligands for Asymmetric Hydrosilylation of 1-phenylbutadiene^a

PhSiH₃

Co(acac)₂ (3 mol%) Ligand (3 mol%) SiH₂Ph

^aConditions: (*E*)-diene (0.200 mmol), PhSiH₃ (0.250 mmol), Co(acac)₂ (6.0 μ mol), ligand (6.0 μ mol), THF (0.5 mL), 8 h; ^bConversion of diene were determined by GC analysis with tridecane as the internal standard; Enantiomeric ratio was determined by chiral HPLC. ^cCatalyst (5 mol %), 6 hours at room temperature.

General procedure for Co-catalyzed Markovnikov 1,2-hydrosilylation of trans-1,3-dienes

In an Ar-filled glovebox, a mixture of Co(acac)₂ (1.0 mg, 4.0 µmol) and xantphos (2.3 mg, 4.0 µmol) in THF (1 mL) was added into a 4-mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 2 mins prior adding phenylsilane (54.1 mg, 0.500 mmol) and trans-1,3-dienes (0.400 mmol) successively. The vial was removed from the glove box, and the mixture was stirred at room temperature for 4 hours. After that, GC-MS analysis was conducted to determine the selectivity of the crude reaction mixture prior concentrating it under vacuum. Subsequently, the residue was purified by flash column chromatography using a mixture of ethyl acetate and hexane as eluent. The details and characterization data of the products are stated below.

(E)-phenyl(4-phenylbut-3-en-2-yl)silane (1a)

The title compound was isolated (76.3 mg, 80%, E/Z = >99:1) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.58 (m, 2H), 7.47–7.36 (m, 3H), 7.34–7.28 (m, 4H), 7.23–7.17 (m, 1H), 6.35 (dd, J = 15.9, 6.8 Hz, 1H), 6.29 (d, J = 16.0 Hz, 1H), 4.35 – 4.28 (m, 2H), 2.35 – 2.23 (m, 1H), 1.32 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 138.2, 135.9, 133.2, 131.30, 123.0, 128.6, 128.1, 127.4, 126.7, 125.9, 23.0, 15.3. HR-MS (APCI⁺) m/z calcd for C₁₆H₁₈Si, [M+H⁺]: 239.1256, Found: 239.1258.

The GC trace for the crude mixture of the reaction to make 1a.

(E)-(4-(2-methoxyphenyl)but-3-en-2-yl)(phenyl)silane (1b)

The title compound was isolated (90.2 mg, 84%, E/Z = >99:1) as colourless oil after chromatography on silica gel (20:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.63– 7.58 (m, 2H), 7.44–7.35 (m, 4H), 7.20–7.14 (m, 1H), 6.94–6.84 (m, 2H), 6.64 (dd, J =16.0, 1.2 Hz, 1H), 6.33 (dd, J = 16.0, 7.8 Hz, 1H), 4.35–4.29 (m, 2H), 3.84 (s, 3H), 2.36– 2.24 (m, 1H), 1.32 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 156.4, 135.9, 133.8, 131.5, 123.0,

128.1, 127.7, 127.3, 126.3, 122.1, 120.8, 111.0, 55.6, 23.5, 15.4. HR-MS (APCI⁺) *m/z* calcd for C₁₇H₂₀OSi, [M+H⁺]: 269.1362, Found: 269.1355.

The GC trace for the crude mixture of the reaction to make **1b**.

(E)-phenyl(4-(p-tolyl)but-3-en-2-yl)silane (1c)

SiH₂Ph The title compound was isolated (91.9 mg, 91%, E/Z = >99:1) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc).¹H NMR (400 MHz, CDCl₃) & Me 7.68-7.53 (m, 2H), 7.46-7.35 (m, 3H), 7.23 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 7.9 Hz, Me 2H), 6.37-6.18 (m, 2H), 4.40-4.21 (m, 2H), 2.35 (s, 3H), 2.31-2.22 (m, 1H), 1.31 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 136.4, 135.9, 135.4, 132.1, 131.4, 129.9, 129.3, 128.1, 127.3, 125.8, 22.9, 21.3, 15.3. HR-MS (APCI⁺) m/z calcd for C₁₇H₂₀Si, [M+H⁺]: 253.4341, Found: 253.1408.

The GC trace for the crude mixture of the reaction to make 1c.

(E)-N,N-dimethyl-4-(3-(phenylsilyl)but-1-en-1-yl)aniline (1d)

The title compound was isolated (96.7 mg, 86%, E/Z = >99:1) as colourless oil after chromatography on silica gel (20:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 7.8, 1.4 Hz, 2H), 7.29–7.17 (m, 3H), 7.08 (d, J = 8.7 Hz, 2H), 6.54 (d, J = 8.8 Hz, 2H), 6.08 (d, J = 15.9 Hz, 1H), 5.98 (dd, J = 15.8, 7.5 Hz, 1H), 4.23– 4.09 (m, 2H), 2.79 (s, 6H), 2.15–2.03 (m, 1H), 1.15 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ

149.7, 135.9, 131.7, 129.8, 128.9, 128.0, 127.3, 127.1, 126.7, 112.8, 40.8, 22.7, 15.5. HR-MS (APCI⁺) m/z calcd for C₁₈H₂₄NSi, [M+H⁺]: 282.1678, Found: 282.1681.

The GC trace for the crude mixture of the reaction to make 1d.

(E)-phenyl(4-(4-(trifluoromethyl)phenyl)but-3-en-2-yl)silane (1e)

SiH₂Ph The title compound was isolated (108 mg, 88%, E/Z = >99:1) as colourless oil after chromatography on silica gel (50:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ Me 7.62–7.58 (m, 2H), 7.55 (d, J = 8.2 Hz, 2H), 7.48–7.43 (m, 1H), 7.43–7.37 (m, 4H), F₃C 6.47 (dd, J = 15.9, 7.7 Hz, 1H), 6.31 (d, J = 16.3 Hz, 1H), 4.35 (d, J = 2.9 Hz, 2H), 2.39–2.29 (m, 1H), 1.35 (d, J = 7.1 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 141.7 (d, $J_{C-F} = 1.2$ Hz), 136.2, 135.8, 130.9, 130.1, 128.5 (q, $J_{C-F} = 32.4 \text{ Hz}$), 128.2, 126.2, 126.0, 125.6 (q, $J_{C-F} = 3.8 \text{ Hz}$), 124.5 (q, $J_{C-F} = 3.8 \text{ Hz}$) 271.7 Hz), 23.4, 15.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.30. GC-MS (EI) m/z calcd for C₁₇H₁₈F₃Si [M]⁺: 306.40, Found: 306.15

The GC trace for the crude mixture of the reaction to make **1e**.

(E)-(4-(4-bromophenyl)but-3-en-2-yl)(phenyl)silane (1f)

The title compound was isolated (101 mg, 80%, E/Z = >99:1) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc).¹H NMR (400 MHz, CDCl₃) δ 7.62–7.54 (m, 2H), 7.47–7.31 (m, 5H), 7.21–7.10 (m, 2H), 6.33 (dd, *J* = 15.9, 7.6 Hz, 1H), 6.20 (d, J = 16.0 Hz, 1H), 4.39–4.22 (m, 2H), 2.41–2.17 (m, 1H), 1.31 (d, J = 7.2

Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 137.1, 135.8, 134.1, 131.7, 131.1, 130.0, 128.1, 127.4, 126.2, 120.3, 23.2, 15.1. HR-MS (APCI⁺) m/z calcd for C₁₆H₁₈BrSi, [M+H⁺]: 317.0361, Found: 317.0357.

The GC trace for the crude mixture of the reaction to make 1f.

(E)-2-methoxy-4-(3-(phenylsilyl)but-1-en-1-yl)phenyl acetate (1g)

The title compound was isolated (104 mg, 80%, E/Z = >99:1) as colourless oil after chromatography on silica gel (10:1 hexane/EtOAc).¹H NMR (400 MHz, CDCl₃) δ 7.60-7.54 (m, 2H), 7.45-7.33 (m, 3H), 6.94 (d, J = 8.3 Hz, 1H), 6.89-6.84 (m, 2H), 6.29–6.19 (m, 2H), 4.30 (d, J = 2.9 Hz, 2H), 3.83 (s, 3H), 2.31 (s, 3H), 2.28–2.22 (m, 1H), 1.29 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 169.3, 151.2, 138.7, 137.3, 135.9, 133.6,

131.2, 130.0, 128.1, 126.8, 122.8, 118.4, 109.8, 56.0, 23.0, 20.8, 15.2. GC-MS (EI) *m/z* calcd for C₁₉H₂₂O₃Si [M]⁺: 326.13, Found: 326.20

The GC trace for the crude mixture of the reaction to make 1g.

(E)-(4-(furan-2-yl)but-3-en-2-yl)(phenyl)silane (1h)

SiH₂Ph Me The title compound was isolated (78.6 mg, 86%, E/Z = >99:1) as pale yellow oil after chromatography on silica gel (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.62– 7.54 (m, 2H), 7.44–7.33 (m, 3H), 7.30 (d, J = 1.5 Hz, 1H), 6.38–6.25 (m, 2H), 6.14–6.03 (m, 2H), 4.29 (qd, J = 6.7, 3.0 Hz, 2H), 2.28–2.17 (m, 1H), 1.27 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 153.7, 141.2, 135.8, 132.2, 131.2, 123.0, 128.1, 116.2, 111.2, 105.7, 22.9, 15.0. GC-MS (EI) *m*/z: calcd for C₁₄H₁₆OSi [M]⁺: 228.36, Found: 228.10.

The GC trace for the crude mixture of the reaction to make **1h**.

(E)-dodec-3-en-2-yl(phenyl)silane (1i)

The title compound was isolated (48 mg, 87%, E/Z = >99:1) as colourless oil after chromatography on silica gel (100:0 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.55 (m, 2H), 7.44–7.33 (m, 3H), 5.54–5.45 (m, 1H),

5.36–5.27 (m, 1H), 4.29–4.17 (m, 2H), 2.00 (m, 3H), 1.34–1.25 (m, 12H), 1.18 (d, J = 7.3 Hz, 3H), 0.91 (t, J = 6.9 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 135.8, 132.0, 131.9, 129.7, 128.5, 128.0, 32.9, 32.1, 30.0, 29.7, 29.5, 29.3, 22.9, 21.8, 15.6, 14.3. GC-MS (EI) m/z: calcd for C₁₈H₃₀Si [M]⁺: 274.21; Found: 274.30.

The GC trace for the crude mixture of the reaction to make 1i.

Me

(E)-non-3-en-2-yl(phenyl)silane (1j)

The title compound was isolated (71.0 mg, 76%, E/Z = >99:1) as colourless oil after chromatography on silica gel (100:0 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 7.8, 1.5 Hz, 2H), 7.42–7.33 (m, 3H), 5.52–5.45 (m, 1H), 5.34–5.27 (m,

1H), 4.24–4.19 (m, 2H), 2.05–1.97 (m, 3H), 1.35–1.23 (m, 6H), 1.17 (d, J = 7.3 Hz, 3H), 0.88 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 135.8, 132.0, 131.9, 129.7, 128.5, 128.0, 32.9, 31.5, 29.6, 22.7, 21.8, 15.6, 14.2. GC-MS (EI) *m/z*: calcd for C₁₅H₂₄Si [M]⁺: 232.16; Found: 232.20.

The GC trace for the crude mixture of the reaction to make 1j.

(3E,7Z)-deca-3,7-dien-2-yl(phenyl)silane (1k)

Me

The title compound was isolated (62 mg, 64%, E/Z = >99:1) as colourless oil after SiH₂Ph chromatography on silica gel (100:0 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ Ме 7.57 (dd, J = 7.8, 1.5 Hz, 2H), 7.44–7.33 (m, 3H), 5.53 (dd, J = 15.3, 7.4 Hz, 1H), 5.45-5.26 (m, 3H), 4.26-4.18 (m, 2H), 2.11-1.97 (m, 7H), 1.18 (d, J = 7.3 Hz, 3H), 0.97 (t, J = 7.5 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 135.8, 132.5, 132.0, 131.9, 129.8, 128.7, 128.0, 127.7, 33.1, 27.6, 21.8, 20.7, 15.5, 14.5. GC-MS (EI) *m*/*z*: calcd for C₁₆H₂₄Si [M]⁺: 244.16; Found: 244.20.

The GC trace for the crude mixture of the reaction to make 1k.

(E)-(2-methyl-4-phenylbut-3-en-2-yl)(phenyl)silane (11)

Ph

SiH₂Ph

Me

The title compound was isolated (71.0 mg, 70%, E/Z = >99:1) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc).¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 7.9, 1.4 Hz, 2H), 7.47–7.24 (m, 7H), 7.22–7.16 (m, 1H), 6.34 (d, J = 16.1 Hz, 1H), $6.18 \text{ (d, } J = 16.1 \text{ Hz}, 1\text{H}), 4.25 \text{ (s, 2H)}, 1.27 \text{ (m, 6H)}. {}^{1}\text{H} {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta$

138.3, 138.3, 136.2, 131.4, 130.0, 128.6, 128.0, 126.8, 126.1, 126.0, 25.7, 24.1. HR-MS(APCI⁺) m/z calcd for C₁₇H₂₀Si, [M+H⁺]: 253.1413, Found:253.1416.

The GC trace for the crude mixture of the reaction to make 11.

(4,4-diphenylbut-3-en-2-yl)(phenyl)silane (1m)

The title compound was isolated (106 mg, 84%, E/Z = >99:1) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) & 7.547.49 (m, 2H), 7.45–7.27 (m, 6H), 7.27–7.16 (m, 5H), 7.08–7.02 (m, 2H), 6.02 (d, *J* = 11.5 Hz, 1H), 4.33 – 4.22 (m, 2H), 2.37 - 2.24 (m, 1H), 1.25 (d, J = 7.1 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 142.7, 140.4, 134.0, 135.9, 132.1, 131.4, 123.0, 129.9, 128.4, 128.2, 128.1, 127.1, 126.9, 126.8, 20.8, 16.9. HR-MS (APCI⁺) m/z calcd for $C_{22}H_{23}Si$, [M+H⁺]: 315.1569, Found: 315.1566.

The GC trace for the crude mixture of the reaction to make 1m.

(E)-(3-methyl-4-phenylbut-3-en-2-yl)(phenyl)silane (1n)

The title compound was isolated (93.0 mg, 92%, E/Z = >99:1) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) & 7.60 (d, J = 6.5 Hz, 2H), 7.46–7.27 (m, 5H), 7.19 (d, J = 6.9 Hz, 3H), 6.15 (s, 1H), 4.37 (m, 2H), 2.21–2.12 (m, 1H), 1.90 (s, 3H), 1.34 (d, J = 7.3 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) & 141.3, 139.0, 135.8, 132.0, 129.9, 129.0, 128.1, 128.1, 125.8, 123.5, 29.4, 18.8, 15.6. HR-MS (APCI⁺) m/z calcd for C₁₇H₂₀Si, [M+H⁺]: 253.1413, Found: 253.1413.

The GC trace for the crude mixture of the reaction to make 1n.

(E)-diphenyl(4-phenylbut-3-en-2-yl)silane (1a')

The title compound was isolated (106 mg, 84%, E/Z = >99:1) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.67– 7.58 (m, 4H), 7.46–7.32 (m, 6H), 7.27 (m, 3H), 7.24–7.11 (m, 2H), 6.36 (dd, J = 15.9, 7.4 Hz, 1H), 6.25 (dd, J = 16.0, 0.9 Hz, 1H), 4.83 (d, J = 2.8 Hz, 1H), 2.57-2.44 (m, 1H), 1.33(d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 138.4, 135.8, 135.7, 134.5, 133.2, 133.1, 133.0, 130.0,

128.6, 128.1, 128.1, 127.6, 126.6, 125.9, 24.37, 14.9. HR-MS (APCI⁺) m/z calcd for C₂₂H₂₃Si, [M+H⁺]: 315.1569, Found: 315.1555.

The GC trace for the crude mixture of the reaction to make 1a'.

(E)-Methyl(phenyl)(4-phenylbut-3-en-2-yl)silane (1a'')

The reaction was conducted with 3 mol % catalyst loading at 0.2 mmol scale. The title compound was isolated (40.3 mg, 80%, E/Z = >99:1 dr = 1:1 determined by ¹H NMR analysis) as colourless oil after chromatography on silica gel (100:0 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.54 (m, 2H), 7.44–7.35 (m, 3H), 7.34–7.27 (m, 4H),

7.21–7.16 (m, 1H), 6.35–6.27 (m, 1H), 6.24 (d, J = 16.0 Hz, 1H), 4.38–4.30 (m, 1H), 2.20–2.10 (m, 1H), 1.27–1.22 (m, 3H), 0.40 (t, J = 3.6 Hz, 3H). {¹H} ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 135.0, 135.0, 134.9, 134.8, 133.6, 133.5, 129.6, 128.6, 128.0, 127.0, 126.9, 126.6, 125.8, 25.3, 25.2, 14.6, 14.2, -7.5, -7.7. GC-MS (EI) m/z: calcd for C₁₇H₂₀Si [M]⁺: 252.43; Found: 252.15.

The GC trace for the crude mixture of the reaction to make 1a".

(E)-(4-(4-methoxyphenyl)but-3-en-2-yl)(phenyl)silane

The title compound was isolated (96.0 mg, 90%, E/Z = >99:1.) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.51 (m, 2H), 7.45–7.31 (m, 3H), 7.26–7.22 (m, 2H), 6.85–6.79 (m, 2H), 6.23 (d, J = 16.0 Hz, 1H), 6.16 (dd, J = 15.9, 6.9 Hz, 1H), 4.35–4.19 (m, 2H), 3.80 (s, 3H),

2.28–2.19 (m, 1H), 1.28 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 158.7, 135.9, 131.5, 131.1, 131.0, 129.9, 128.1, 127.0, 126.8, 114.1, 55.5, 22.8, 15.4. HR-MS (APCI ⁺) m/z calcd for C₁₇H₂₁OSi, [M+H⁺]: 269.1362, Found: 269.1354.

The GC trace for the crude mixture of the reaction to make this compound.

General procedure for Co-catalyzed Markovnikov 1,2-hydrosilylation of trans/cis-1,3-dienes mixture

In an Ar-filled glovebox, a mixture of $Co(acac)_2$ (1.0 mg, 4.0 μ mol) and xantphos (2.3 mg, 4.0 μ mol) in THF (1 mL) was added into a 4-mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 2 mins prior adding phenylsilane (54.1 mg ,0.500 mmol) and trans/cis-1,3-dienes (0.400 mmol) successively. The vial was removed from the glove box, and the mixture was stirred at room temperature for 6 hours or 5 °C for 24 hours. After that, GC-MS analysis was conducted to determine the selectivity of the crude reaction mixture prior concentrating it under vacuum. The residue was then purified by flash column chromatography using a mixture of ethyl acetate and hexane as eluent. The details and characterization data of the products are stated below.

(*E*)-phenyl(4-phenylbut-3-en-2-yl)silane (1a)

Me

SiH₂Ph The reaction was stirred for 6 h at 24 °C. The title compound was isolated (76.3 mg, 80%, E/Z = >99:1, 1, 2/1, 4 = 95:5) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) & 7.63–7.58 (m, 2H), 7.47–7.36 (m, 3H), 7.34-7.28 (m, 4H), 7.23-7.17 (m, 1H), 6.35 (dd, J = 15.9, 6.8 Hz, 1H), 6.29 (d, J = 16.0

Hz, 1H), 4.35–4.28 (m, 2H), 2.35–2.23 (m, 1H), 1.32 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 138.2, 135.9, 133.2, 131.3, 123.0, 128.6, 128.1, 127.4, 126.7, 125.9, 23.0, 15.3. HR-MS (APCI ⁺) m/z calcd for C₁₆H₁₈Si, [M+H⁺]: 239.1256, Found: 239.1258.

The GC trace for the crude mixture of the reaction to make 1a.

(E)-phenyl(4-(p-tolyl)but-3-en-2-yl)silane (1c)

Me

SiH₂Ph The reaction was stirred for 24 h at 5 °C. The title compound was isolated (77.7 mg, 77%, E/Z = >99:1, 1.2/1,4=95:5) as colourless oil after chromatography on silica gel Me (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) & 7.68–7.53 (m, 2H), 7.46–7.35 (m, 3H), 7.23 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 6.28 (m, 2H), 4.40-4.21(m, 2H), 2.35 (s, 3H), 2.31–2.22 (m, 1H), 1.31 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 136.4, 135.9, 135.4, 132.1, 131.4, 129.9, 129.3, 128.1, 127.3, 125.8, 22.9, 21.3, 15.3. HR-MS (APCI⁺) m/z calcd for C₁₇H₂₀Si, [M+H⁺]: 253.4341, Found: 253.1408.

The GC trace for the crude mixture of the reaction to make 1c.

(E)-phenyl(4-(4-(trifluoromethyl)phenyl)but-3-en-2-yl)silane (1e)

The reaction was stirred for 6 h at 24 °C. The title compound was isolated (79.0 mg, 65%, E/Z = >99:1, 1.2/1, 4= 99:1) as colourless oil after chromatography on silica gel (50:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.58 (m, 2H), 7.55 (d, J = 8.2 Hz, 2H), 7.48–7.43 (m, 1H), 7.43–7.37 (m, 4H), 6.47 (dd, J = 15.9, 7.7 Hz, 1H), 6.31 (d, J = 16.3 Hz, 1H), 4.35 (d, J = 2.9 Hz, 2H), 2.39 – 2.29 (m, 1H), 1.35 (d, J = 7.1 Hz, 3H). {¹H} ¹³C NMR $(101 \text{ MHz, CDCl}_3) \delta 141.7 \text{ (d, } J_{C-F} = 1.2 \text{ Hz}), 136.2, 135.8, 130.9, 130.1, 128.5 \text{ (g, } J_{C-F} = 32.4 \text{ Hz}), 128.2,$ 126.2, 126.0, 125.6 (q, $J_{CF} = 3.8$ Hz), 124.5 (q, $J_{CF} = 271.7$ Hz), 23.4, 15.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.30. GC-MS (EI) *m/z* calcd for C₁₇H₁₈F₃Si [M]⁺: 306.40, Found: 306.15

The GC trace for the crude mixture of the reaction to make 1e.

(E)-(4-(4-bromophenyl)but-3-en-2-yl)(phenyl)silane (1f)

The reaction was stirred for 6 h at 24 °C. The title compound was isolated (66.0 mg, 52%, E/Z = >99:1. 1.2/1,4 = 99:1) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.54 (m, 2H), 7.47–7.31 (m, 5H), 7.21-7.10 (m, 2H), 6.33 (dd, J = 15.9, 7.6 Hz, 1H), 6.20 (d, J = 16.0 Hz, 1H),

4.39 - 4.22 (m, 2H), 2.41 - 2.17 (m, 1H), 1.31 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 137.1, 135.8, 134.1, 131.7, 131.1, 130.0, 128.1, 127.4, 126.2, 120.3, 23.2, 15.1. HR-MS (APCI⁺) m/z calcd for C₁₆H₁₈BrSi, [M+H⁺]: 317.0361, Found: 317.0357.

The GC trace for the crude mixture of the reaction to make 1f.

(E)-(4-(4-methoxyphenyl)but-3-en-2-yl)(phenyl)silane (10)

The reaction was stirred for 6 h at 24 °C. The title compound was isolated (97.6 mg, 91%, E/Z = >99:1.1.2/1.4 = 95:5) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.51 (m, 2H), 7.45– 7.31 (m, 3H), 7.26–7.22 (m, 2H), 6.85–6.79 (m, 2H), 6.23 (d, J = 16.0 Hz, 1H), 6.16

(dd, J = 15.9, 6.9 Hz, 1H), 4.35-4.19 (m, 2H), 3.80 (s, 3H), 2.28-2.19 (m, 1H), 1.28 (d, J = 7.2 Hz, 3H).{¹H}¹³C NMR (101 MHz, CDCl₃) δ 158.7, 135.9, 131.5, 131.1, 131.0, 129.9, 128.1, 127.0, 126.8, 114.1, 55.5, 22.8, 15.4. HR-MS (APCI⁺) *m/z* calcd for C₁₇H₂₁OSi, [M+H⁺]: 269.1362, Found: 269.1354.

The GC trace for the crude mixture of the reaction to make 10.

(E)-(4-(4-(tert-butyl)phenyl)but-3-en-2-yl)(phenyl)silane (1p)

The reaction was stirred for 24 h at 5 °C. The title compound was isolated (98.1 mg, 83%, E/Z = >99:1, 1, 2/1.4 = 95:5) as colourless oil after chromatography on silica gel (200:1 hexane/EtOAc).¹H NMR (400 MHz, CDCl₃) δ 7.51-7.45 (m, 2H), 7.34-7.27 (m, 2H), 7.25-7.13 (m, 5H), 6.21-6.17 (m, 2H), 4.26-4.15 (m, 2H), 2.22-2.10 (m, 1H), 1.25–1.18 (m, 12H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 149.8, 135.9, 135.4, 132.4, 131.4, 129.9, 128.1,

127.2, 125.6, 125.5, 34.1, 31.5, 22.9, 15.3. HR-MS (APCI⁺) *m/z* calcd for C₂₀H₂₆Si, [M+H⁺]: 295.5139, Found: 295.1875.

The GC trace for the crude mixture of the reaction to make 1p.

(x10,000,000) Max Intensity : 14,049												: 14,049,891					
1.50-1	с										Time	9.78	3 Scan#	1,358 Inte	en. 83	5,423 Oven	Temp293.48
1.25														1			
-																	
1.00-								1+						j			
-																	
0.75-																	
0.50																	
0.25													· · · · · · · · · · ·				
1												A.1.					
					i <u>.</u>							T. 14	<u>)</u>		40.5	110	
3.0	3.5	4.0	4.5	5.0 5	.5	0.0	0.5 /	.0 7.:	5 6.0	0.5	9.0	5	1.5	10.0	10.5	11.0 1	1.5
Print Edit View Similarity Search																	
Peak#	Ret.Time	Start Tm	End Tm	m/z		Area	Area%	Height	Height %	A/H	Mar	rk			Nan	ne	
1	9.344	9.270	9.395		TIC	842600	4.79	722508	4.91	1.17	MI						
2	9.947	9.880	10.030		TIC	16734523	95.21	14001945	95.09	1.20	MI						

(E)-(4-(4-(methylthio)phenyl)but-3-en-2-yl)(phenyl)silane (1q)

The reaction was stirred for 24 h at 5 °C. The title compound was isolated (76.7 mg, 67%, E/Z = >99:1, 1,2/1.4 = 94:6) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc).¹H NMR (400 MHz, CDCl₃) δ 7.62–7.55 (m, 2H), 7.47–7.34 (m, 3H), 7.28–7.17 (m, 4H), 6.31 (dd, J = 15.9, 7.1 Hz, 1H), 6.23 (d, J = 16.0 Hz, 1H), 4.35–4.27 (m, 2H), 2.49 (s, 3H), 2.32–2.22 (m, 1H), 1.31 (d, J = 7.2 Hz, 3H). {¹H} ¹³C NMR (101 MHz, 101 MHz) CDCl₃) & 136.5, 135.8, 135.4, 132.8, 131.3, 130.0, 128.1, 127.2, 126.8, 126.3, 23.0, 16.3, 15.2. GC-MS (EI)

m/*z*: calcd for C₁₇H₂₀OSSi [M]⁺: 284.11; Found: 284.15.

The GC trace for the crude mixture of the reaction to make 1q.

(E)-phenyl(4-(4-(trifluoromethoxy)phenyl)but-3-en-2-yl)silane (1r)

The reaction was stirred for 24 h at 5 °C. The title compound was isolated (87.7 mg, 68%, E/Z = >99:1, 1,2/1.4 = 94:6) as colourless oil after chromatography on silica gel (100:0 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 7.8, 1.4 Hz, 2H), 7.44–7.27 (m, 5H), 7.16–7.07 (m, 2H), 6.31 (dd, J = 15.9, 7.1 Hz, 1H), 6.24 (d,

J = 16.0 Hz, 1H), 4.30 (d, J = 2.9 Hz, 2H), 2.33–2.18 (m, 1H), 1.30 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 148.0, 137.0, 135.8, 134.4, 131.1, 130.1, 128.2, 127.0, 126.0, 121.2, 120.7 (q, $J_{C-F} = 256.7$ Hz), 23.2, 15.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -57.88. GC-MS (EI) *m/z*; calcd for C₁₇H₁₇F₃OSi [M]⁺: 322.10; Found: 322.10.

The GC trace for the crude mixture of the reaction to make 1r.

(*E*)-(4-(4-fluorophenyl)but-3-en-2-yl)(phenyl)silane (1s)

The reaction was stirred for 24 h at 5 °C. The title compound was isolated (76.7 mg, 75%, E/Z = >99:1, 1, 2/1.4 = 92:8) as colourless oil after chromatography on silica gel Ме (50:1 hexane/EtOAc).¹H NMR (400 MHz, CDCl₃) δ 7.64–7.56 (m, 2H), 7.44–7.34 (m, F 3H), 7.29–7.23 (m, 2H), 7.03–6.95 (m, 2H), 6.25 (m, 2H), 4.41–4.27 (m, 2H), 2.34–2.20 (m, 1H), 1.31 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 161.9 (d, $J_{C-F} = 245.4$ Hz), 135.8, 134.4 (d, J_{C-F} = 3.3 Hz), 132.9 (d, J_{C-F} = 2.2 Hz), 131.2, 130.0, 128.1, 127.3 (d, J_{C-F} = 7.8 Hz), 126.3, 115.4 (d, $J_{C-F} = 21.5 \text{ Hz}$, 23.0, 15.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -116.01. HR-MS (APCI ⁺) m/z calcd for C₁₆H₁₈FSi, [M+H⁺]: 257.3980, Found: 257.1162.

The GC trace for the crude mixture of the reaction to make **1s**.

(E)-(4-(4-chlorophenyl)but-3-en-2-yl)(phenyl)silane (1t)

SiH₂Ph CI

Ме

The reaction was stirred for 24 h at 5 °C. The title compound was isolated (71.5 mg, 66%, E/Z = >99:1, 1, 2/1.4 = 95:5) as colourless oil after chromatography on silica gel (100:0 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 7.8, 1.4 Hz, 2H), 7.49–7.39 (m, 3H), 7.31–7.22 (m, 4H), 6.35 (dd, J = 15.9, 7.4 Hz, 1H), 6.25 (d, J =

16.1 Hz, 1H), 4.35 (d, J = 2.7 Hz, 2H), 2.36 – 2.24 (m, 1H), 1.34 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, 101 MHz, 10 CDCl₃) δ 136.7, 135.8, 134.0, 132.2, 131.1, 130.0, 128.7, 128.1, 127.1, 126.2, 23.1, 15.2. HR-MS (APCI⁺) *m/z* calcd for C₁₆H₁₈ClSi, [M+H⁺]: 273.8526, Found: 273.0860.

(E)-4-(3-(phenylsilyl)but-1-en-1-yl)phenyl trifluoromethanesulfonate (1u)

SiH₂Ph The reaction was stirred for 6 h at 24 °C. The title compound was isolated (140.8 mg, 91%, E/Z = >99:1, 1,2/1,4(and minor isomer) = 80:20) as colourless oil after Me chromatography on silica gel (10:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 7.8, 1.4 Hz, 2H), 7.43–7.33 (m, 4H), 7.20–7.12 (m, 3H), 6.35 (dd, J = 15.9, 7.5 Hz, 1H), 6.24 (d, J = 16.0 Hz, 1H), 4.30 (d, J = 2.9 Hz, 2H), 2.35 - 2.22 (m, 1H), 1.30 (d, J = 7.1 Hz, 3H). {¹H} ¹³C NMR (101 MHz, CDCl₃) & 148.2, 138.6, 135.8, 130.9, 130.1, 129.2, 128.2, 127.3, 125.5, 122.1 (q, $J_{C-F} = 311.7$ Hz), 121.5, 23.3, 15.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -72.83. HR-MS (APCI⁺) m/z calcd for C₁₇H₁₈F₃O₃SSi, [M+H⁺]: 387.0698, Found: 387.0698.

(E)-4-(1-(phenylsilyl)but-2-en-1-yl)phenyl trifluoromethanesulfonate (2u)

The title minor compound was isolated via chromatography on silica gel (10:1 hexane/EtOAc) together with the major 1,2-hydrosilylation product. ¹H NMR (400 MHz, CDCl₃) δ 5.77 (ddq, J = 15.0, 8.6, 1.5 Hz, 1H), 5.58 – 5.48 (m, 1H).

The GC trace for the crude mixture of the reaction to make **1u**.

(*E*)-4-(3-(phenylsilyl)but-1-en-1-yl)phenyl acetate (1v)

The reaction was stirred for 24 h at 5 °C. The title compound was isolated (106 mg, 89%, E/Z = >99:1, 1, 2/1.4 = 95:5) as colourless oil after chromatography on silica gel (25:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 7.9, 1.5 Hz, 2H), 7.45–7.33 (m, 3H), 7.31–7.27 (m, 2H), 7.00 (d, J = 8.7 Hz, 2H), 6.31–6.21 (m, 2H), 4.29 (d, J = 2.9 Hz, 2H), 2.32–2.25 (m, 4H), 1.29 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 169.7, 149.5, 136.1, 135.8, 133.5, 131.2, 130. 0, 128.1, 126.8, 126.5, 121.7, 23.0, 21.3, 15.2. GC-MS (EI) m/z: calcd

The GC trace for the crude mixture of the reaction to make 1v.

for C₁₈H₂₀O₂Si [M]⁺: 296.12; Found: 296.15.

(E)-methyl 4-(3-(phenylsilyl)but-1-en-1-yl)benzoate (1w)

The reaction was stirred for 24 h at 5 °C with 0.2 mmol scale. The title compound was isolated (43.0 mg, 73%, E/Z = >99:1, 1,2/1.4 = 95:5) as colourless oil after chromatography on silica gel (25:1 hexane/EtOAc).¹H NMR (400 MHz, CDCl₃) δ 8.00–7.93 (m, 3H), 7.59–7.55 (m, 2H), 7.41–7.34 (m, 3H), 7.28–7.23 (m, 1H),

6.47 (dd, J = 15.9, 7.7 Hz, 1H), 6.29 (d, J = 16.6 Hz, 1H), 4.31 (dd, J = 2.9, 0.8 Hz, 2H), 3.91 (s, 3H), 2.36–2.26 (m, 1H), 1.31 (d, J = 7.1 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 167.2, 142.7, 136.4, 135.8, 130.9, 130.0, 129.8, 128.5, 128.2, 126.6, 125.7, 52.1, 23.5, 15.1. GC-MS (EI) *m*/*z*: calcd for C₁₈H₂₀O₂Si [M]⁺: 296.12; Found: 296.15.

The GC trace for the crude mixture of the reaction to make 1w.

(E)-(4-(4-(1,3-dioxolan-2-yl)phenyl)but-3-en-2-yl)(phenyl)silane (1x)

The reaction was stirred for 6 h at 24 °C. The title compound was isolated (94.8 mg, 76%, E/Z = >99:1, 1,2/1.4 = 93:7) as colourless oil after chromatography on silica gel (10:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.55 (m, 2H), 7.42–7.32 (m, 7H), 6.37 (dd, J = 15.9, 7.3 Hz, 1H), 6.28 (d, J = 16.0 Hz, 1H), 5.81 (s, 1H), 4.32 (d, J = 2.9 Hz, 2H), 4.16–4.11 (m, 2H), 4.06–4.01 (m, 2H), 2.34–2.24 (m,

1H), 1.31 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 139.1, 136.2, 135.8, 133.9, 131.2, 130.0, 128.1, 127.0, 126.8, 125.8, 103.8, 65.4, 23.1, 15.2. GC-MS (EI) m/z: calcd for C₁₉H₂₂O₂Si ([M]⁺): 310.14; Found: 309.15.

The GC trace for the crude mixture of the reaction to make 1x.

(E)-4-(3-(phenylsilyl)but-1-en-1-yl)aniline (1y)

The reaction was stirred for 6 h at 24 °C. The title compound was isolated (83.0 mg, 82%, E/Z = >99:1, 1,2/1.4 = 83:17) as colourless oil after chromatography on silica gel (5:1 hexane/EtOAc).¹H NMR (400 MHz, CDCl₃) δ 7.61–7.56 (m, 2H), 7.42–7.34 (m, 3H), 7.15–7.07 (m, 2H), 6.63–6.60 (m, 2H), 6.19 (d, J = 16.0 Hz, 1H), 6.11 (dd, J

= 15.9, 7.3 Hz, 1H), 4.32–4.22 (m, 2H), 3.61 (s, 2H), 2.26–2.17 (m, 1H), 1.27 (d, J = 7.1 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 145.3, 135.9, 131.6, 129.9, 129.5, 128.7, 128.1, 127.2, 127.0, 115.3, 22.7, 15.4. GC-MS (EI) *m*/*z*: calcd for C₁₆H₁₉NSi [M]⁺: 253.41; Found: 253.15.

The GC trace for the crude mixture of the reaction to make 1y.

$(E)-phenyl(4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)but-3-SiH_2Ph en-2-yl)silane (1z)$

The reaction was stirred for 6 h at 24 °C. The title compound was isolated (127 mg, 87%, E/Z = >99:1, 1,2/1.4 = 95:5) as colourless oil after chromatography on silica gel (30:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.1 Hz, 2H), 7.58 (dd, J = 7.9, 1.5 Hz, 2H), 7.45–7.29 (m, 5H), 6.42 (dd, J = 15.9, 7.6 Hz, 1H), 6.28 (d, J = 16.0 Hz, 1H), 4.32 (d, J = 2.8 Hz, 2H), 2.34–

2.23 (m, 1H), 1.36 (s, 12H), 1.31 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (75 MHz, CDCl₃) δ 140.9, 135.8, 135.2, 134.4, 131.1, 130.0, 128.1, 127.5, 125.2, 83.8, 25.0, 23.2, 15.1. The carbon connected with boron could not be observed due to quadrupole of boron. GC-MS (EI) *m/z*: calcd for C₂₂H₂₉BO₂Si ([M]⁺): 364.20; Found: 364.25.

The GC trace for the crude mixture of the reaction to make 1z.

(E)-phenyl(1-phenylhex-1-en-3-yl)silane (1aa)

The reaction was stirred for 48 h at 24 °C. The title compound was isolated (61.0 mg, 57%, E/Z = >99:1, 1,2/1.4 = 94:6) as colourless oil after chromatography on silica gel (100:0 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 7.9, 1.4 Hz, 2H), 7.38–7.31 (m, 3H), 7.25 (d, J = 3.3 Hz, 4H), 7.17–7.11 (m, 1H), 6.24 (d, J = 15.9 Hz,

1H), 6.11 (dd, J = 15.8, 9.2 Hz, 1H), 4.31–4.26 (m, 2H), 2.21–2.13 (m, 1H), 1.62–1.54 (m, 2H), 1.49–1.39 (m, 1H), 1.37–1.27 (m, 1H), 0.86 (t, J = 7.3 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) & 138.2, 135.9, 132.1, 131.4, 129.9, 128.9, 128.6, 128.1, 126.7, 125.9, 32.9, 29.5, 22.6, 14.0. GC-MS (EI) *m*/*z*: calcd for C₁₈H₂₂Si [M]⁺: 266.45; Found: 266.20.

The GC trace for the crude mixture of the reaction to make 1aa.

General procedure for Separation of cis-1,3-dienes via hydrosilylation reaction

In an Ar-filled glovebox, a mixture of $Co(acac)_2$ (19.0 mg, 0.120 mmol) and binap (45.0 mg, 0.120 mmol) in THF (5 mL) was added into a 20-mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 2 mins prior adding phenylsilane (0.260 g, 2.40 mmol) and *trans/cis*-1,3-dienes (0.520 g, 4.00 mmol) successively. The vial was removed from the glove box, and the mixture was stirred at room temperature for 6 hours. After that, a GC-MS analysis was done and the crude reaction mixture was concentrated under vacuum using a 30 °C water bath and the residue was purified by flash column chromatography using hexane and ethyl acetate (100:1) as eluents yielding (*E*)-allylsilane **1a** (0.250 g, 1.05 mmol, 58%) as a colorless oil and recovering (*Z*)-1-phenyl-1,3-diene (Z/E = 98:2, 0.130 g, 1.0 mmol, 45%).

The GC trace for the crude reaction mixture to form **1a** ($t_R = 5.0 \text{ min}$) and (**Z**)-1-phenyl-1,3-diene ($t_R = 8.8 \text{ min}$).

(Z)-1-phenyl-1,3-diene

¹H NMR (400 MHz, CDCl₃) δ 7.36–7.31 (m, 4H), 7.28–7.22 (m, 1H), 6.89 (dddd, J = 16.9, 11.2, 10.1, 1.0 Hz, 1H), 6.47 (d, J = 11.5 Hz, 1H), 6.27 (t, J = 11.3 Hz, 1H), 5.38 (ddd, J = 16.9, 1.8, 0.9 Hz, 1H), 5.23 (dt, J = 10.1, 2.1 Hz, 1H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 137.5, 133.4, 130.9, 130.6, 129.2, 128.4, 127.2, 119.8. GC-MS (EI) *m/z*: calcd for C₁₀H₁₀ [M]⁺: 130.08; Found: 129.15.

General procedure for Co-catalyzed Markovnikov 1,2-hydrosilylation of trans/cis 1,3-dienes (Outside glovebox under nitrogen protection)

Co(acac)₂ (1.0 mg, 4.0 μ mol) and xantphos (2.3 mg, 4.0 μ mol) were pre-weighted in air on the open bench and added into a 25 mL Schlenk flask. The Schlenk flask was back-filled with N₂ thrice and dry THF (1 mL) was then added. The resulting mixture was stirred for 2 mins to give a pale pink solution. Subsequently, phenylsilane (54.1 mg, 0.500 mmol) and 1-phenylbutadiene (51.6 mg, 0.400 mmol) were added with the aid of a microsyringe which gave a pale-yellow solution. Upon stirring the mixture for 6 hours, a GC-MS analysis was conducted to determine the selectivity of the crude reaction mixture prior concentrating it under vacuum. Subsequently, the residue was purified by flash column chromatography using a mixture of ethyl acetate and hexane as eluent yielding (*E*)-phenyl(4-phenylbut-3-en-2-yl)silane **1a** (74.7mg, 78%, *E*/*Z* = >99:1, 1,2/1.4 = 94:6) as a colorless oil.

The GC trace for the crude mixture of the reaction to form 1a.

General procedure for gram scale Co-catalyzed Markovnikov 1,2-hydrosilylation of 1,3-dienes

 $Co(acac)_2$ (25.7 mg, 0.100 mmol) and xantphos (57.9 mg, 0.100 mmol) were weighted in air on the open bench and added into a 100 mL Schlenk flask. The Schlenk flask was back-filled with N₂ thrice and dry THF (25 mL) was then added. The resulting mixture was stirred for 2 mins to give a pale pink solution prior adding phenylsilane (1.35 g, 12.5 mmol) and 1-(buta-1,3-dien-1-yl)-4-methoxybenzene (1.60 g, 10.0 mmol) successively. The Schlenk flask was removed from the glove box, and the mixture was stirred at room

temperature for 6 hours. Subsequently, a GC-MS analysis was conducted to determine the selectivity of the crude reaction mixture prior concentrating it under vacuum. The residue was then purified by flash column chromatography using a mixture of ethyl acetate and hexane as eluent yielding (*E*)-(4-(4-methoxyphenyl)but-3-en-2-yl)(phenyl)silane **10** (2.34 g, 87 %, E/Z = >99:1, 1, 2/1.4 = 92:8) as a colorless oil.

The GC trace for the crude reaction mixture to form **10**.

General procedure for asymmetric Co-catalyzed Markovnikov 1,2-hydrosilylation of trans-1,3-dienes

In an Ar-filled glovebox, a mixture of Co(acac)₂ (5.1 mg, 20 μ mol) and (*R*)-difluorphos (14.0 mg, 20 μ mol) in THF (1 mL) was added into a 4-mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 2 mins prior adding phenylsilane (54.1 mg, 0.500 mmol) and *trans*-1,3-dienes (0.400 mmol) successively. The vial was removed from the glove box, and the mixture was stirred at room temperature for 6 hours. After that, the crude reaction mixture was concentrated under vacuum and the residue was purified by flash column chromatography using a mixture of ethyl acetate and hexane as eluent. The details and characterization data of the products are stated below. The enantiopurity of the product was analyzed by chiral HPLC or oxidized to (*E*)-allylic alcohol prior analysing with chiral HPLC.

Procedure for oxidation of (E)-allylsilanes

A mixture of (E)-allylsilane (0.200 mmol) and KHCO₃ (0.200 mmol) was added into a mixture of THF (0.5 mL) and methanol (0.5 mL) in a 4-mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 2 mins. Subsequently, 30% aqueous H₂O₂ (0.500 mmol) was dropwise slowly into the reaction mixture and then stirred at room temperature for 5 hours. Anhydrous sodium thiosulfate was then added to quenched the excess oxidant prior it was extracted with ethyl acetate, dried over sodium sulfate, filtered and concentrated under vacuum. The residue was then purified by flash column chromatography using hexane and ethyl acetate as eluents yielding (*E*)-allylic alcohol.

(*S*,*E*)-phenyl(4-phenylbut-3-en-2-yl)silane (1a)

The reaction was stirred for 6 h at 24 °C. The title compound was isolated (68.0 mg, 71%, E/Z = >99:1) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.63–7.58 (m, 2H), 7.47–7.36 (m, 3H), 7.34–7.28 (m, 4H), 7.23–7.17 (m, 1H), 6.35 (dd, J = 15.9, 6.8 Hz, 1H), 6.29 (d, J = 16.0 Hz, 1H), 4.35–4.28

(m, 2H), 2.35–2.23 (m, 1H), 1.32 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 138.2, 135.9, 133.2, 131.30, 123.0, 128.6, 128.1, 127.4, 126.7, 125.9, 23.0, 15.3. HR-MS (APCI⁺) m/z calcd for C₁₆H₁₈Si, [M+H⁺]: 239.1256, Found: 239.1258. Optical Rotation: $[\alpha]^{20}_{D} = -15.00$ (c = 0.20 g/cm³, CHCl₃). The absolute configuration was assigned by oxidizing it to the corresponding allylic alcohol (1a''').

(S,E)-4-phenylbut-3-en-2-ol (1a"")

The title compound was isolated (34.5 mg, 82%, 88:11 er) as colourless oil after chromatography on silica gel (10:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) & 7.39 (dd, J = 5.3, 3.4 Hz, 2H), 7.34–7.29 (m, 2H), 7.26–7.21 (m, 1H), 6.57 (d, J = 16.0 Hz, 1H), 6.27 $(dd, J = 15.9, 6.4 Hz, 1H), 4.55-4.44 (m, 1H), 1.38 (d, J = 6.4 Hz, 3H).{^{1}H} {^{13}C} NMR (101)$

MHz, CDCl₃) δ 136.9, 133.7, 129.6, 128.7, 127.8, 126.6, 69.1, 23.6. Optical Rotation: $[\alpha]_{D}^{20} = -16.10$ (c = 0.20 g/cm³, CHCl₃). The absolute configuration was assigned by comparing with the optical rotation reported in the literature.⁵ HPLC condition: Chiral column IB, n-hexane/i-PrOH = 90:10, flow rate = 0.35 mL/min, wavelength = 254 nm, t_{R} = 19.8 min for minor isomer, t_{R} = 25.3 min for major isomer.

(S,E)-N,N-dimethyl-4-(3-(phenylsilyl)but-1-en-1-yl)aniline (1d)

The title compound was isolated (91.0 mg, 80%, E/Z = >99:1) as colourless oil after chromatography on silica gel (20:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 7.8, 1.4 Hz, 2H), 7.29 - 7.17 (m, 3H), 7.08 (d, J = 8.7 Hz, 2H), 6.54 (d, J = 8.8 Hz, 2H), 6.08 (d, J = 15.9 Hz, 1H), 5.98 (dd, J = 15.8, 7.5 Hz, 1H), 4.23 –

4.09 (m, 2H), 2.79 (s, 6H), 2.15 – 2.03 (m, 1H), 1.15 (d, J = 7.2 Hz, 3H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 149.7, 135.9, 131.7, 129.8, 128.9, 128.0, 127.3, 127.1, 126.7, 112.8, 40.8, 22.7, 15.5. HR-MS (APCI⁺) m/z calcd for C₁₈H₂₄NSi, [M+H⁺]: 282.1678, Found: 282.1681. The absolute configuration was assigned by analog to that of **1a.** Optical Rotation: $[\alpha]_{D}^{20} = -21.00$ (c = 0.30 g/cm³, CHCl₃). HPLC condition: Chiral column IB, nhexane/i-PrOH = 99.9:0.1, flow rate = 0.35 mL/min, wavelength = 254 nm, $t_R = 20.2$ min for minor isomer, $t_R = 10.2$ minor isomer, $t_R = 10.2$ minor isomer, $t_R = 10.2$ minor isomer, t21.7 min for major isomer.

(S,E)-(4-(4-methoxyphenyl)but-3-en-2-yl)(phenyl)silane (10)

The reaction was stirred for 12 h at 24 °C. The title compound was isolated (42.0 mg, 61%, E/Z = >99:1.) as colourless oil after chromatography on silica gel (100:1 hexane/EtOAc).¹H NMR (400 MHz, CDCl₃) δ 7.62-7.51 (m, 2H), 7.45-7.31 (m, 3H), 7.26–7.22 (m, 2H), 6.85–6.79 (m, 2H), 6.23 (d, J = 16.0 Hz, 1H), 6.16 (dd, J = 15.9, 6.9 Hz, 1H), 4.35–4.19 (m, 2H), 3.80 (s, 3H), 2.28–2.19 (m, 1H), 1.28 (d, J = 7.2 Hz, 3H). {¹H} ¹³C NMR (101 MHz, CDCl₃) & 158.7, 135.9, 131.5, 131.1, 131.0, 129.9, 128.1, 127.0, 126.8, 114.1, 55.5, 22.8, 15.4. HR-MS (APCI⁺) m/z calcd for C₁₇H₂₁OSi, [M+H⁺]: 269.1362, Found: 269.1354. Optical Rotation: [α]²⁰_D = -21.00 (c = 0.30 g/cm³, CHCl₃). The absolute configuration was assigned by oxidizing it to the corresponding allylic alcohol (10").

(S,E)-4-(4-methoxyphenyl)but-3-en-2-ol (10"")

The title compound was isolated (31.7 mg, 73%, 90:10 er) as colourless oil after chromatography on silica gel (10:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.28 (m, 2H), 6.88–6.83 (m, 2H), 6.51 (d, *J* = 15.9 Hz, 1H), 6.13 (dd, *J* = 15.9, 6.6 Hz, 1H), 4.47 (p, *J* = 6.3 Hz, 1H), 3.81 (s, 3H), 1.37 (d, *J* = 6.4 Hz, 3H). {¹H}

NMR (101 MHz, CDCl₃) δ 159.5, 131.6, 129.6, 129.2, 127.8, 114.2, 69.3, 55.5, 23.6. Optical Rotation: $[\alpha]^{20}_{D} =$ -10.70 (c = 0.30 g/cm³, CHCl₃). The absolute configuration was assigned by analog to that of **1a**". HPLC condition: Chiral column IB, n-hexane/i-PrOH = 93:7, flow rate = 0.35 mL/min, wavelength = 254 nm, t_R = 30.4 min for minor isomer, t_R = 31.5 min for major isomer.

Mechanistic studies

Procedure for Deuterium-labeling Experiments

Note: PhSiD₃⁶ was synthesized based on previously reported procedure.

In an Ar-filled glovebox, a mixture of $Co(acac)_2$ (0.5 mg, 2.0 µmol) and xantphos (1.2 mg, 2.0 µmol) in THF (0.5 mL) was added into a 4-mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 2 mins prior adding PhSiD₃ (27.8 mg, 0.25 mmol) and 1,3-dienes (0.2 mmol) successively. The vial was removed from the glove box, and the mixture was stirred at room temperature for 4 hours. After that, the crude reaction mixture was concentrated under vacuum and the residue was purified by flash column chromatography using a mixture of ethyl acetate and hexane (100:1) as eluent. The details and characterization data of the products are stated below. Equimolar of chloroform-*d* was added as the internal standard for ²H NMR analysis.

Reaction monitoring

General Procedure for Reaction monitoring of (E/Z)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene with phenylsilane

In an Ar-filled glovebox, a mixture of $(1.0 \text{ mg}, 4.0 \mu \text{mol})$ and xantphos $(2.3 \text{ mg}, 4.0 \mu \text{mol})$ in THF (2 mL) was added into a 4-mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 2 mins prior adding phenylsilane (54.1 mg, 0.5 mmol) and 1-(buta-1,3-dien-1-yl)-4-methoxybenzene (64.1 mg, 0.4 mmol) successively. Lastly, tridecane (27.7 mg, 0.15 mmol) was added into the reaction mixture as an internal standard. The mixture was stirred at room temperature. A GC analysis was done for the crude mixture for every 5 minutes to monitor the reaction. It was found that the (*E*)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene was consumed at a significantly higher rate than (*Z*)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene.

References

- 1. C. H. Schuster, T. Diao, I. Pappas and P. J. Chirik, ACS Catalysis, 2016, 6, 2632-2636.
- 2. K. B. Urkalan and M. S. Sigman, *Angewandte Chemie International Edition*, 2009, **48**, 3146-3149.
- 3. G. Battistuzzi, S. Cacchi and G. Fabrizi, *Organic Letters*, 2003, **5**, 777-780.
- 4. P. Röse, S. Emge, J.-i. Yoshida and G. Hilt, *Beilstein Journal of Organic Chemistry*, 2015, **11**, 174-183.
- 5. L. Sun, Y. Guo, G. Peng and C. Li, *Synthesis*, 2008, **2008**, 3487-3491.
- 6. V. Avrorin, G. Fominykh, I. Ignat'ev, E. Sinotova and T. Kochina, *Russian Journal of General Chemistry*, 2014, **84**, 2125-2129.

NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S47

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

