Electronic Supplementary Information for

Variations in the Fuel Structure Control the Rate of the Back and Forth Motions of a Chemically Fuelled Molecular Switch

Chiara Biagini,^a Simone Albano,^a Rachele Caruso,^a Luigi Mandolini,^a José Augusto Berrocal^b and Stefano Di Stefano^a*

^aDipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy.

^bInstitute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands)

Contents

¹ H NMR spectrum of acid 2 , $X = OCH_3$	S3
¹³ C NMR spectrum of acid 2 , $X = OCH_3$	S4
¹ H NMR spectrum of acid 2 , $X = CH_3$	S5
¹³ C NMR spectrum of acid 2 , $X = CH_3$	S6
¹ H NMR spectrum of acid 2 , $X = Cl$	S7
¹ H NMR monitoring of the reaction between 2 , $X = Cl$ and Et_3N	S8
¹ H NMR monitoring of the reaction between 2 , $X = OCH_3$ and Et_3N	S9
¹ H NMR monitoring of the reaction between 2 , $X = CH_3$ and Et_3N	S10
Hammett plot for reaction between 2 , X = OCH ₃ , CH ₃ , H and Cl with Et ₃ N	S11
¹ H NMR monitoring of the reaction between 1 and 2, $X = Cl$	S12
¹ H NMR monitoring of the reaction between 1 and 2, $X = H$	S13
¹ H NMR monitoring of the reaction between 1 and 2 , $X = CH_3$	S14
¹ H NMR monitoring of the reaction between 1 and 2 , $X = OCH_3$	S15
¹ H NMR spectrum of $1H^+$ CF ₃ CO ₂ ⁻ in CD ₂ Cl ₂	S16
Consecutive first-order reactions	S17
Effect of reactant concentration	S18
Comparison of the UV-Vis spectra of B " in the presence and absence of added salt	S19
Alternative mechanisms for reaction of 2 , $X = H$ and 1 in the presence of Bu ₄ NBr	S20

¹H NMR spectrum acid **2**, $X = OCH_3$

¹H NMR (300 MHz, CD₂Cl₂)

δ: 7.51-7.46 (m, 2H), 6.99-6.93 (m, 2H), 4.95 (br. s, 1H), 3.82 (s, 3H), 1.97 (s, 3H).

¹³C NMR (75 MHz, CD₂Cl₂)

δ: 171.3, 160.0, 127.1, 126.7, 119.2, 114.3, 55.3, 47.1, 23.8.

¹H NMR spectrum acid **2**, $X = CH_3$

¹H NMR (300 MHz, CDCl₃)

δ: 7.46-7.43 (m, 2H), 7.24-7.22 (m, 2H), 4.05 (br. s, 1H), 2.36 (s, 3H), 1.97 (s, 3H).

¹³C NMR (75 MHz, CDCl₃)

δ: 171.2, 139.1, 131.8, 129.8, 125.7, 119.0, 47.7, 24.2, 20.9.

¹H NMR spectrum acid **2**, X = Cl

 $\delta:$ 7.55–7.52 (m, 2H), 7.46-7.43 (m, 2H), 3.52 (br s, 1H), 1.99 (s, 3H).

Fig. S1. Decarboxylation of 10 mM **2**, X = Cl promoted by 10 mM Et₃N in CD₂Cl₂ at 25 °C. Portion of ¹H NMR spectra recorded at t \approx t_{1/2} (14 min) and t = ∞ (123 min). Portions of the spectra of the pure reactants are shown for comparison. The broad signal is due to adventitious H₂O.

Fig. S2. Decarboxylation of 10 mM **2**, $X = OCH_3$ promoted by 10 mM Et₃N in CD₂Cl₂ at 25 °C. Portion of ¹H NMR spectra recorded at t $\approx t_{\frac{1}{2}}$ (332 min) and t = ∞ (1080 min). Portions of the spectra of the pure reactants are shown for comparison. The broad signal is due to adventitious H₂O.

Fig. S3. Decarboxylation of 10 mM **2**, $X = CH_3$ promoted by 10 mM Et₃N in CD₂Cl₂ at 25 °C. Portion of ¹H NMR spectra recorded at t $\approx t_{\frac{1}{2}}$ (204 min) and t = ∞ (693 min). Portions of the spectra of the pure reactants are shown for comparison. The broad signal is due to adventitious H₂O.

Fig. S4. Hammett plot related to reactions between 10 mM **2**, $X = OCH_3$, CH_3 , H, and Cl with 10 mM Et_3N in CD_2Cl_2 at 25 °C.

Fig. S5. ¹H NMR monitoring of the reaction between 5 mM **1** and 5 mM **2**, X = Cl in CD_2Cl_2 at 25 °C.

Fig. S6. ¹H NMR monitoring of the reaction between 5 mM 1 and 5 mM 2, X = H in CD_2Cl_2 at 25 °C.

Fig. S7. ¹H NMR monitoring of the reaction between 5 mM **1** and 5 mM **2**, $X = CH_3$ in CD_2Cl_2 at 25 °C.

Fig. S8. ¹H NMR monitoring of the reaction between 5 mM **1** and 5 mM **2**, $X = OCH_3$ in CD_2Cl_2 at 25 °C.

Fig. S9. ¹H NMR spectrum of $1H^+ CF_3CO_2^-$ in CD_2Cl_2 at 25 °C (data from ref 6). Peak at 5.30 is due to CHDCl₂.

Consecutive first-order reactions

The integrated rate eqn $(S1)^{S1}$ reduces to the simple form of eqn (S2) when k' >> k''.

$$[B] = \frac{[A]_{o}k'}{k'' - k'} \left(e^{-k't} - e^{-k''t} \right)$$
(S1)

$$[B] = [A]_o \left(e^{-k''t} - e^{-k't} \right)$$
(S2)

Eqn (S3) is an adaptation of eqn (S2) to the growth and subsequent decay of absorbance A in the course of the reactions of 1 with acids 2.

$$A = A_{max} \left(e^{-k''t} - e^{-k't} \right) + A_o e^{-k't} + A_{\infty} \left(1 - e^{-k''t} \right)$$
(S3)

 A_o and A_∞ are the absorbance values at t = 0 and t = ∞ , respectively, and A_{max} is the maximum value in the absorbance-time profile.

^{S1} E. A. Frost and R. G. Pearson, Kinetics and Mechanism, 2nd Edition, John Wiley & Sons, New York 1961.

Effect of reactant concentration on the reaction of **2**, $X = OCH_3$ with equimolar **1** in CH_2Cl_2 at 25 °C

Average 2.5±0.5

 3.1 ± 0.2

Fig. S10. Reaction between equimolar 0.30 mM 1 and 2, X = H. Spectrum of the solution at the highest concentration of the intermediate in the absence and in the presence of 5 mM Bu₄NBr

Alternative mechanisms for reaction of 0.30 mM **2**, X = H with equimolar **1** in CH₂Cl₂ at 25 °C in the presence of increasing amounts of Bu₄NBr.

The red curve in Fig. S11 is the plot reported in the main text (Fig. 5) and is related to the association mechanism in Scheme 2

The black curve in Fig. S11 is a plot obtained from the fit of the experimental data points with the system of equations reported below, taking into account the mechanism depicted in Scheme S1. In this case, after a metathetic exchange of counterions (a sort of special salt effect), $1H^+Br^-$ and $Bu_4N^+R^-$ react in a bimolecular fashion to give the products.

Scheme S1

$$f=k''_{o}*(((C-z)/C)+k_{2}*((z^{2})/C))$$

$$z=(-b-(sqrt((b^{2})-4*c*a)))/(2*a)$$

$$b=-K_{exc}*(C+x)$$

$$a=K_{exc}-1$$

$$c=K_{exc}*C*x$$

$$k''_{o}=2.5e-4 s^{-1}$$
fit f to y

The system of equations reported on the left is the one used to obtain the best fit values of K_{exc} and k_2 of Scheme S1 through the calculation software Sigma Plot 10.0.

C is the concentration of reagents 1 and 2, $X = H (3 \times 10^{-4} M)$;

x is the initial concentration of $Bu_4N^+Br^-$ (ranging from 0 to $5{\times}10^{\text{-3}}\ \text{M});$

z is the fraction of intermediate 1H⁺ R⁻ exchanged with Bu₄N⁺Br⁻.

best fit values $K_{\text{exc}} = 0.99 \pm 0.50$ $k_2 = 16.6 \pm 2.1 \text{ M}^{-1} \text{ s}^{-1}$ r = 0.97

Fig. S11. Alternative fits of the data obtained for reaction of **2**, X = H with equimolar **1** in CH₂Cl₂ at 25 °C in the presence of increasing amounts of Bu₄NBr (in the case of the black fit, k"_{obs} = k₂×z).