Fuchise, Igarashi, Sato, Shimada

Organocatalytic Controlled/Living Ring-Opening Polymerization of Cyclotrisiloxanes Initiated by Water with Strong Organic Base Catalysts

Keita Fuchise,* Masayasu Igarashi, Kazuhiko Sato,* Shigeru Shimada*

Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

E-mail: s-shimada@aist.go.jp

Electronic Supplementary Information (ESI)

Contents:

Experimental Section	S3
Materials.	S3
Measurements.	S4
NMR	S4
Size-Exclusion Chromatography (SEC)	S4
Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS).	S5
High Resolution Mass Spectrometry (HR-MS)	S5
Differential Scanning Calorimetry (DSC)	S5
Synthesis of 1,3,5-Trimethyl-1,3,5-triphenylcyclotrisioxane (DError!)	S5
Synthesis of Dodecamethylpentasiloxane	S6
Synthesis of 1,1,2,3-Tetramethylguanidine (TMGb)	S7
Synthesis of 1,3-Trimethylene-2-propylguanidine (TMnPG)	S7
Synthesis of 1,3-Trimethylene-2-isopropylguanidine (TMiPG)	
Homopolymerization of DError! (Tables 1 and 2)	S8
Figure S1. The change in the molecular weight distribution of (a) PDMS-(OH) ₂ obtaine	d in the
polymerization described in the section of 'Homopolymerization of DError!' and (b) PDMS-(OS	iMe ₂ Ph) ₂
obtained in the polymerization shown in entry 6 of Table 2 before and after the purification	S9
Synthesis of Telechelic PDMSs (Table 2)	S9
Homopolymerization of DError! (Table 3, entry 1)	S10
Figure S2. ¹ H NMR spectrum of the crude product in the polymerization of DError! taken just b	before the
addition of the end-capping reaction observed in CDCl ₃ .	S11
Homopolymerization of DError! (Table 3, entry 3)	S11
Figure S3. ¹ H NMR spectrum of (a) DError! and (b) the crude product in the polymerization of	DError!
taken just before the addition of the end-capping agent observed in CDCl ₃	S12
Homopolymerization of DError! (Table 3, entry 5)	S12
Attempts of Homopolymerization of DError!, DError!, and DError! (Table 3, entry 7–9)	S12
Statistical Copolymerization of DError! and DError! (Table 3, entry 10)	
By the semi-batch method	S13

By the premix method
Figure S4. (a) First-order kinetic plot for the copolymerization of DError! and DError! catalyzed by
TMnPG in CH ₂ Cl ₂ /THF (67/33 (v/v)) at 30 °C under the conditions of $[DError!]_0 = [DError!]_0 = 1.80$ mol
L^{-1} and $[DError!]_0/[DError!]_0/[H_2O]_0/[TMnPG]_0 = 25/25/1/0.05S14$
Figure S5. SEC chromatograms of the products obtained in the copolymerization of DError! and DError!
based on the premixed method ([DError!] ₀ /[DError!] ₀ /[H ₂ O] ₀ /[TMnPG] ₀ = $25/25/1/0.05$ in CH ₂ Cl ₂ /THF =
67/33 (v/v) at 30 °C)
Block Copolymerization of DError! and Other D ₃ Monomers (Table 3, entries 11 and 12)S14
Model Reaction for the Intermolecular Transfer of a Terminal Dimethylsiloxy Unit of α,ω-Dihydroxy-
Terminated PDMS
Figure S6. ¹ H NMR spectra of the reaction mixtures obtained in the model reaction for the intermolecular
transfer of terminal dimethylsiloxy units using DError!-(OH)2 and TMnPG in THF at 30 °C observed in
$CDCl_{3}/THF \sim 4/1. \label{eq:cDCl_3} S16$
Model Reaction for the Intermolecular Chain-Transfer in the Polymerization of DError!
Figure S7. ¹ H NMR spectra of (a) dodecamethylpentasiloxane, (b) α, ω -bis trimethylsilyl-terminated PDMS,
(c) the reaction mixture taken just before the addition of the end-capping agent, and (d) the product obtained
in the model reaction for the intermolecular chain-transfer reaction observed in CDCl ₃ S17
Figure S8. ¹ H and ²⁹ Si{ ¹ H} NMR (in CDCl ₃), and MALDI-TOF MS (measured in the linear mode using
DCTB as a matrix and TFAAg as a cationization agent) spectra of PDMS-(OSiMe ₃) ₂ synthesized with
Me ₃ SiCl ($M_{n,NMR} = 2.64 \text{ kg mol}^{-1}$, $D = 1.14$)
Figure S9. ¹ H and ²⁹ Si{ ¹ H} NMR (in CDCl ₃), and MALDI-TOF MS (measured in the reflector mode using
DCTB as a matrix and TFANa as a cationization agent) spectra of PDMS-(OSiMe ₂ H) ₂ (Table 2, entry 10,
$M_{\rm n,NMR} = 2.95 \text{ kg mol}^{-1}, D = 1.15$)
Figure S10. ¹ H and ²⁹ Si{ ¹ H} NMR (in CDCl ₃), and MALDI-TOF MS (measured in the linear mode using
DCTB as a matrix and TFAAg as a cationization agent) spectra of PDMS-(OSiMe ₂ Vi) ₂ (Table 2, entry 11,
$M_{\rm n,NMR} = 3.00 \text{ kg mol}^{-1}, D = 1.14$)
Figure S11. ¹ H and ²⁹ Si{ ¹ H} NMR (in CDCl ₃), and MALDI-TOF MS (measured in the linear mode using
DCTB as a matrix and TFAAg as a cationization agent) spectra of PDMS-(OSiAllylMe ₂) ₂ (Table 2, entry 12,
$M_{\rm n,NMR} = 2.77 \text{ kg mol}^{-1}, D = 1.13$)
Figure S12. ¹ H and ²⁹ Si{ ¹ H} NMR (in CDCl ₃), and MALDI-TOF MS (measured in the reflector mode using
DCTB as a matrix and TFANa as a cationization agent) spectra of PDMS-[OSi(CH ₂ Cl)Me ₂] ₂ (Table 2, entry
13, $M_{n,NMR} = 3.14 \text{ kg mol}^{-1}$, $D = 1.10$)
Figure S13. ¹ H and ²⁹ Si{ ¹ H} NMR (in CDCl ₃), and MALDI-TOF MS (measured in the reflector mode using
DCTB as a matrix and TFANa as a cationization agent) spectra of PDMS-[OSi(CH ₂ Br)Me ₂] ₂ (Table 2, entry
14, $M_{n,NMR} = 3.08 \text{ kg mol}^{-1}$, $D = 1.13$)
Figure S14. ¹ H, ²⁹ Si{ ¹ H}, and ¹⁹ F NMR (in CDCl ₃), and MALDI-TOF MS (measured in the linear mode
using DCTB as a matrix and TFAAg as a cationization agent) spectra of PDMS-(OSiMe ₂ C ₆ F ₅) ₂ (Table 2,
entry 15, $M_{n,NMR} = 3.38 \text{ kg mol}^{-1}$, $D = 1.13$)
Figure S15. ¹ H and ²⁹ Si{ ¹ H} NMR (in CDCl ₃), and MALDI-TOF MS (measured in the linear mode using
DCTB as a matrix and TFAAg as a cationization agent) of PDMS-[Si(OEt) ₃] ₂ (Table 2, entry 16, $M_{n,NMR}$ =

$3.25 \text{ kg mol}^{-1}, D = 1.11$)
Figure S16. ¹ H and ²⁹ Si{ ¹ H} NMR (in CDCl ₃), and MALDI-TOF MS (measured in the linear mode using
DCTB as a matrix and TFAAg as a cationization agent) spectra of PMPS-(OSiEt ₃) ₂ (Table 3, entry 1, $M_{n,NMR}$
$= 5.60 \text{ kg mol}^{-1}, D = 1.16$)
Figure S17. ¹ H and ²⁹ Si{ ¹ H} NMR (in CDCl ₃), and MALDI-TOF MS (measured in the linear mode using
DCTB as a matrix and TFAAg as a cationization agent) spectra of PMVS-(OSiMe ₂ Ph) ₂ (Table 3, entry 3,
$M_{\rm n,NMR} = 3.64 \text{ kg mol}^{-1}, D = 1.11$)
Figure S18. ¹ H, ²⁹ Si{ ¹ H}, and ¹⁹ F NMR (in CD ₃ CN), and MALDI-TOF MS (measured in the linear mode
using DCTB as a matrix and TFAAg as a cationization agent) spectra of PMTFPS-(OSiMe ₂ Ph) ₂ . (Table 3,
entry 5, $M_{n,NMR} = 6.00 \text{ kg mol}^{-1}$, $D = 1.12$)
Figure S19. ¹ H NMR spectra of (a) α, ω -bis[dimethyl(phenyl)silyl]-terminated PMVS-b-PDMS-b-PMVS
(Table 3, entry 11, $M_{n,NMR} = 11.2$ kg mol ⁻¹ , $D = 1.07$), (b) α,ω -bis[dimethyl(phenyl)silyl]-terminated
poly[dimethylsiloxane-co-methyl(vinyl)siloxane] obtained by the semi-batch method (Table 3, entry 10,
$M_{n,NMR} = 6.34$ kg mol ⁻¹ , $D = 1.13$), and (c) α, ω -bis[dimethyl(phenyl)silyl]-terminated
poly[dimethylsiloxane-co-methyl(vinyl)siloxane] obtained by the premix method ($M_{n,NMR} = 12.9$ kg mol ⁻¹ , D
= 1.37) measured in CDCl ₃
Figure S20. ²⁹ Si{ ¹ H} NMR spectra of (a) α, ω -bis[dimethyl(phenyl)silyl]-terminated PMVS- <i>b</i> -PDMS- <i>b</i> -PDM
PMVS (Table 3, entry 11, $M_{n,NMR} = 11.2 \text{ kg mol}^{-1}$, $D = 1.07$), (b) α, ω -bis[dimethyl(phenyl)silyl]-terminated
poly[dimethylsiloxane-co-methyl(vinyl)siloxane] obtained by the semi-batch method (Table 3, entry 10,
$M_{n,NMR} = 6.34$ kg mol ⁻¹ , $D = 1.13$), and (c) α, ω -bis[dimethyl(phenyl)silyl]-terminated
poly[dimethylsiloxane-co-methyl(vinyl)siloxane] obtained by the premix method ($M_{n,NMR} = 12.9$ kg mol ⁻¹ , D
= 1.37) measured in CDCl ₃
Figure S21. A monomeric sequence of the poly[dimethylsiloxane-co-methyl(vinyl)siloxane] (Table 3, entry
10) simulated based on the population of the triad monomeric sequences observed in the ²⁹ Si{ ¹ H} NMR
measurement, $n(D^{(Me2)})/n(D^{(Me,Vi)})$, and D
Figure S22. ¹ H and ²⁹ Si{ ¹ H} NMR spectra of α,ω -bis(triethylsilyl)-terminated PDPS- <i>b</i> -PDMS- <i>b</i> -PDPS
(Table 3, entry 12, $M_{n,NMR} = 11.7 \text{ kg mol}^{-1}$, $D = 1.06$) measured in CDCl ₃ S32
References

Experimental Section

Materials.

Hexamethylcyclotrisiloxane (DError!, Kanto, 95%) was purified by sublimation by heating under an nitrogen atmosphere prior to use. Octamethylcyclotetrasiloxane (DError!, TCI, >98%), 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane (DError!, Gelest, >95%, mixture of *cis* and *trans* isomers, *cis/trans* = 23/77), 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane (DError!, TCI, >98.0%, mixture of *cis* and *trans* isomers, *cis/trans* = 20/80), *N*,*N*-diisopropylethylamine (DIPEA, TCI, >99.0%), and pyridine (Kanto, >99.0%) were dried over CaH₂ and distilled under reduced pressure prior to use. Decamethylcyclopentasiloxane (DError!, TCI, >99%), hexaphenylcyclotrisiloxane (DError!, TCI, >96.0%), 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane (DError!, Shin-Etsu, mixture of isomers), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, TCI, >98.0%), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN, Kanto, >97.0%), 1,5,7-triazabicyclo[4.4.0]dec-5-ene

(TBD, Aldrich, 98%), 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD, TCI, >95.0%), 1.1.3.3tetramethylguanidine (TMGa, TCI, >99.0%), 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2diaza- phosphorine (BEMP, Aldrich, >98.0%), tert-butylimino-tri(pyrrolidino)phosphorane (tBu-P₁(pyrr), Aldrich, \geq 97.0%), 1-ethyl-2,2,4,4,4-pentakis(dimethylamino)-2 λ ⁵,4 λ ⁵-catenadi(phosphazene) (Et-P₂, Aldrich, \geq 98.0%), 2,8,9-triisobutyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane (TiBP, Aldrich, 97%), chlorotrimethylsilane (Me₃SiCl, TCI, >98.0%), chlorotriethylsilane (Et₃SiCl, TCI, >97.0%), chlorodimethyl(phenyl)silane (Me₂PhSiCl, Gelest, >95%), chlorodimethylsilane (Me2HSiCl, TCI, >95.0%), chloro(dimethyl)vinylsilane (Me2ViSiCl, TCI, >97.0%), allyl(chloro)dimethylsilane (AllylMe₂SiCl, TCI, >96.0%), chloro(chloromethyl)dimethylsilane ((ClCH₂)Me₂SiCl, TCI, >98.0%), (bromomethyl)chlorodimethylsilane ((BrCH₂)Me₂SiCl, Aldrich, 97%), chlorodimethyl(2,3,4,5,6-pentafluorophenyl)silane ($Me_2(C_6F_5)SiCl$, Wako, >95.0%), chlorotriethoxysilane ((EtO)₃SiCl, Aldrich, 98%), dichloro(methyl)phenylsilane (Gelest, 95–100%), dimethylamine (ca. 2.0 mol L⁻¹ in ethanol, TCI), propylamine (TCI, >98.0%), isopropylamine (Wako, 99.0%), iodomethane (Wako, 99.5%), benzoic acid (Kanto, >99.5%), trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB, Aldrich, \geq 98%), perfluorobenzoic acid (PFBA, TCI, >98.0%), sodium trifluoroacetate (TFANa, Wako, >97.0%), silver trifluoroacetate (TFAAg, Wako, >97.0%), sodium sulfate (Na₂SO₄, Wako, >99.0%), tetrahydrofuran (THF, stabilizer free, Wako, >99.5%), dichloromethane (CH₂Cl₂, stabilized with 2-methylbut-2-ene, Wako, >99.5%), dimethylsulfoxide (DMSO, Wako, Super Dehydrated, >99.0%), diethyl ether (Et₂O, Wako, Super Dehydrated, >99.5%), and acetonitrile (MeCN, Wako, >99.5%) were used as received. 'Dry' CH₂Cl₂ (Wako, super dehydrated, water content < 0.001%) and 'dry' THF (Kanto, dehydrated –Super Plus–, water content < 0.001%) were purified with Glass Contour Solvent Dispensing System and used for most of the polymerizations to exclude experimental errors originated from a variation of water content in a not dehydrated solvent among lots. Amberlyst® A26 (OHform, Aldrich) was washed with THF (stabilizer free) several times prior to use.

1,5-Dihydroxy-1,1,3,3,5,5-hexamethyltrisiloxane $(DError!-(OH)_2)$,¹ 1,4,6-triazabicyclo[3.3.0]oct-4-ene (TBO),² propylenethiourea,³ *N*,*N'*,*S*-trimethylisothiourea hydroiodide,⁴ 2-methylthio-1,4,5,6-tetrahydropyrimidine hydroiodide,⁵ and 1,5,7-triazabicyclo[4.3.0]non-6-ene (TBN)⁶ were synthesized as previously reported.

Measurements.

NMR

¹H (600 MHz), ¹³C{¹H} (150 MHz), ²⁹Si{¹H} (119 MHz), and ¹⁹F (564 MHz) NMR spectra were recorded on a BRUKER Biospin AVANCE III HD 600 NMR spectrometer with a CryoProbe. Chemical shifts were reported in δ (ppm) and were referenced to tetramethylsilane (0.00 ppm) for ¹H, ¹³C, and ²⁹Si and to (trifluoromethyl)benzene (-63.72 ppm) for ¹⁹F.

Size-Exclusion Chromatography (SEC)

Size-exclusion chromatography (SEC) was performed at 45 °C using a Waters ACQUITY Advanced Polymer Chromatography (APC) System consisting of p-Isocratic Solvent Manager (Model AIS), Sample Manager pFTN (Model ASM), Column Manager-S (Model AZC), PDA TS Detector (Model ADT), Refractive Index (RI) Detector (Model URI) equipped with a Waters APCTM XT45 column (linear, 4.6 mm × 150 mm; pore size, 4.5 nm; bead size, 1.7 µm; exclusion limit, 5000), a Waters APCTM XT200 column (linear, 4.6 mm × 150 mm; pore size, 20.0 nm; bead size, 2.5 µm; exclusion limit, 70 000), and a Waters APCTM XT450 column (linear, 4.6 mm × 150 mm; pore size, 4.5 mm; pore size, 45.0 nm; bead size, 2.5 µm; exclusion limit, 70 000), and a Waters APCTM XT450 column (linear, 4.6 mm

min⁻¹. The polydispersity (D) was determined based on a calibration curve prepared by polystyrene (PS) of TSK gel[®] standard polystyrene oligomer kit (Tosoh) with the weight-average molecular weights (M_w) and (D)s of 9.64×10⁴ g mol⁻¹ (1.01) and 5.9×10² g mol⁻¹ (1.19) and PS of ReadyCal PS Kit for APC (Waters) with M_w (D)s of 6.25×10⁴ g mol⁻¹ (1.05), 4.23×10⁴ g mol⁻¹ (1.02), 3.40×10⁴ g mol⁻¹ (1.04), 2.75×10⁴ g mol⁻¹ (1.03), 2.12×10⁴ g mol⁻¹ (1.02), 1.55×10⁴ g mol⁻¹ (1.05), 8.90×10³ g mol⁻¹ (1.03), 4.71×10³ g mol⁻¹ (1.08), 3.46×10³ g mol⁻¹ (1.06), 2.25×10³ g mol⁻¹ (1.05), 1.25×10³ g mol⁻¹ (1.12).

Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)

MALDI-TOF MS of the obtained polymers was performed using a Bruker autoflexTM speed TOF/TOF system with a Smartbeam laser (Bruker Daltonics). Spectra were acquired in the positive linear or reflector mode by accumulating 200 to 2000 laser shots at a 19 kV acceleration voltage and externally calibrated with Tosoh TSKgel[®] standard Polystyrene TS-502 ($M_w = 2.63$ kg mol⁻¹, D = 1.05) and TS-521 ($M_w = 5.06$ kg mol⁻¹, D =1.02). In a typical measurement, a solution of external standard was prepared by mixing TS-502 (12.5 µL, 10 mg mL⁻¹ in THF), TS-521 (12.5 µL, 10 mg mL⁻¹ in THF), a matrix (DCTB, 50 mg mL⁻¹, 20 µL), and a cationization agent (TFAAg, 2.2 mg mL⁻¹, 45 µL). Solution of samples were prepared by mixing polysiloxane (30 mg mL⁻¹ in THF, 10 µL), a matrix (DCTB for poly(dimethylsiloxane) (PDMS), poly[methyl(vinyl)siloxane] (PMVS), and poly(methylphenylsiloxane) (PMPS); PFBA for poly[methyl(3,3,3-trifluoropropyl)siloxane] (PMTFPS), 50 mg mL⁻¹, 20 µL), and a cationization agent (TFAAg or TFANa, 2.2 mg mL⁻¹, 45 µL). Approximately 10 µL of the obtained mixture were spotted on a ground steel target plate and dried prior to measurements.

High Resolution Mass Spectrometry (HR-MS)

The high-resolution atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) mass spectra were obtained on a Bruker micrOTOF II.

Differential Scanning Calorimetry (DSC)

Melting points (m.p.) of the compounds newly synthesized in this study were measured by differential scanning calorimetry (DSC) on a Seiko Instruments DSC 7020. Approximately 3 mg of samples were used for each measurement. The samples were heated from 25 °C to 140 °C at the heating rate of 2 °C min⁻¹ under nitrogen atmosphere. The m.p. was determined from the extrapolated onset temperature and the peak temperature of an endothermic peak in the first scan.

Synthesis of 1,3,5-Trimethyl-1,3,5-triphenylcyclotrisioxane (DError!)

The synthesis of DError! was carried out by modifying previously reported procedures for the synthesis of

other cyclotrisiloxanes from dichlorosilanes and DMSO.^{7, 8} Dry DMSO (6.88 g, 88.1 mmol) was added dropwise to a solution of dichloro(methyl)phenylsilane (8.42 g, 44.1 mmol) in dry Et₂O (63 mL) at ambient temperature under a nitrogen atmosphere. After 48 min, the reaction mixture was diluted with Et₂O and washed with water several times until acidic by-products were removed. The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give a viscous colorless liquid containing isomers of DError! and 1,3,5,7tetramethyl-1,3,5,7-tetraphenylcyclotetrasiloxane. The crude product was distilled under reduced pressure to obtain a mixture of *cis*- **DError!** and *trans*- **DError!** (*cis/trans* = 24/76) as a white solid (1.80 g, 30% yield). B.p. 110-118 °C / 0.06 mmHg (as a mixture of cis- DError! and trans- DError!). (Lit. 171 °C / 1.5 mmHg).⁹ ¹H NMR (600 MHz, CDCl₃): cis-isomer δ 7.49-7.46 (m, 6H, Ar-H in *m*-position), 7.36-7.32 (m, 3H, Ar-H in *p*position), 7.26-7.22 (m, 6H, Ar-H in o-position), 0.55 (s, 9H, SiMe); trans-isomer 7.73-7.70 (m, 2H, Ar-H in mposition), 7.60-7.56 (m, 4H, Ar-H in m-position), 7.46-7.41 (m, 1H, Ar-H in p-position), 7.45-7.42 (m, 2H, Ar-H in o-position), 7.42-7.37 (m, 2H, Ar-H in p-position), 7.35-7.30 (m, 4H, Ar-H in o-position), 0.47 (s, 6H, SiMe), 0.41 (s, 3H, SiMe). ¹³C{¹H} NMR (151 MHz, CDCl₃): cis-isomer δ 135.85 (aromatic, ipso-position), 133.33 (aromatic, *p*-position), 130.03 (aromatic, *p*-position), 127.68 (aromatic, *m*-position), -0.06 (SiMe); trans-isomer δ 136.61 (1C, aromatic, ipso-position), 136.20 (2C, aromatic, ipso-position), 133.27 (2C, aromatic, o-position), 133.20 (1C, aromatic, o-position), 130.22 (1C, aromatic, p-position), 130.12 (2C, aromatic, p-position), 127.96 (1C, aromatic, *m*-position), 127.80 (2C, aromatic, *m*-position), -0.26 (2C, SiMe), -0.42 (1C, SiMe). ²⁹Si{¹H} NMR (119 MHz, CDCl₃): cis-isomer δ -21.02 (SiMe); trans-isomer δ -21.02 (2Si, SiMe), -21.06 (1Si, SiMe). HRMS (ESI) calcd for $[C_{21}H_{25}O_3Si_3]^+$ [M+H]⁺ 409.1111, found 409.1109.

Synthesis of Dodecamethylpentasiloxane

Chlorotrimethylsilane (481 µL, 3.79 mmol) was added dropwise to a solution of DError!-(OH)₂ (0.38 g, 1.6 mmol) and dry pyridine (509 µL, 6.32 mmol) in dry CH₂Cl₂ (878 µL) at 0 °C. The reaction was continued for 2 h at 0 °C. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with water (5 mL × 3). The organic phase was separated, dried over Na₂SO₄, and filtered. The solvent was removed from the filtrate with an evaporator. The residue was purified by distillation at reduced pressure to obtain the targeted compound as a colorless liquid (0.27 g, 44% yield). B.p. 72–75 °C / 4 mmHg. (Lit. 110–113°C / 21 mmHg).¹⁰ ¹H NMR (600 MHz, CDCl₃): δ 0.09 (s, 18H, Si*Me*₃), 0.07 (s, 6H, Me₃Si-O-Si*Me*₂-O, Si*Me*₂-), 0.05 (s, 12H, Me₃Si-O-Si*Me*₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 1.80 (Si*Me*₃), 1.16 (Me₃Si-O-Si*Me*₂), 1.07 (Me₃Si-O-Si*Me*₂-O-Si*Me*₂-). ²⁹Si{¹H} NMR (119 MHz, CDCl₃): δ 7.28 (*Si*Me₃), -21.38 (Me₃Si-O-*Si*Me₂), -22.15 (Me₃Si-O-SiMe₂-O-*Si*Me₂-). HRMS (APCI) calcd for [C₁₂H₃₇O₄Si₃]⁺ [M+H]⁺ 385.1538, found 385.1538.

Synthesis of 1,1,2,3-Tetramethylguanidine (TMGb)

Dimethylamine in ethanol (2.0 mol L⁻¹, 42.3 mL, 85 mmol) was added to *N*,*N'*,*S*-trimethylisothiourea hydroiodide (10.41 g, 42.30 mmol) under a nitrogen atmosphere at ambient temperature, and the mixture was stirred for 9 h at the same temperature. After ceasing the evolution of methanethiol, the reaction mixture was concentrated *in vacuo* to obtain crude 1,1,2,3-tetramethylguanidine hydroiodide (TMGb-HI) as a yellow solid. One third of the crude product (3.43 g, 14.1 mmol) was suspended in THF (40 mL, stabilizer-free) and neutralized with Amberlyst® A26 (OH⁻ form, 0.8 mequiv mL⁻¹, 24.0 mL-wet volume, 19.2 mmol). The resultant solution was filtered, concentrated, and distilled under reduced pressure in the presence of CaH₂ (0.40 g) to give TMGb (0.63 g, *y*. 38%) as a colorless crystalline solid.

TMGb-HI: m.p. 104–113°C (Lit. 120–120.5°C).¹¹ ¹H NMR (600 MHz, DMSO-*d*₆): δ 7.41 (br s, 2H, N*H*), 2.90 (br s, 6H, -N*Me*₂), 2.82 (br s, 3H, -NH*Me*), 2.81 (br s, 3H, -NH*Me*). ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ 160.41 (quaternary), 39.50 (-N*Me*₂), 30.92 (-NH*Me*). HRMS (APCI) calcd for [C₅H₁₄N₃]⁺ [M–I]⁺ 116.1187, found 116.1186; calcd for [C₅H₁₄N₃I₂]⁻ [M+I]⁻ 369.9283, found 369.9281.

TMGb: m.p. 43–47 °C, b.p. 68–71 °C / 8.3 mmHg. *Hygroscopic*. ¹H NMR (600 MHz, CDCl₃): δ 2.82 (s, 6H, - NH*Me* and -N=*Me*), 2.68 (s, 6H, -N*Me*₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 160.57 (quaternary), 39.63 (-N*Me*₂), 32.83 (-NH*Me* and -C=N*Me*). HRMS (APCI) calcd for [C₅H₁₄N₃]⁺ [M+H]⁺ 116.1187, found 116.1185.

Synthesis of 1,3-Trimethylene-2-propylguanidine (TMnPG)

1,2-Trimethylene-3-propylguanidine hydroiodide (TMnPG-HI) was synthesized by modifying a typical procedure to synthesize guanidine.¹² Propylamine (6.10 mL, 74.2 mmol) was added to a suspension of 2-methylthio-1,4,5,6-tetrahydropyrimidine hydroiodide (9.15 g, 35.4 mmol) in THF (50 mL, with stabilizer) at ambient temperature under a nitrogen atmosphere. The reaction mixture was stirred for 62 h at ambient temperature and then concentrated, washed with *n*-hexane, and dried *in vacuo* to give crude TMnPG-HI as a white solid. The crude product was again dissolved in THF (100 mL, with stabilizer) and stirred with Amberlyst[®] A26 (OH⁻ form, 0.8 mequiv mL⁻¹, 50 mL-wet volume, 40 mmol) for 4 h at ambient temperature. The solution was filtered and the filtrate was concentrated *in vacuo*. The residue was distilled under reduced pressure in the presence of CaH₂ to obtain 1,2-trimethylene-3-propylguanidine (TMnPG) (3.54 g, 71% yield) as a yellowish solid.

TMnPG-HI: m.p. 53–56 °C. ¹H NMR (600 MHz, DMSO- d_6): δ 7.59 (br s, 2H, NH(CH₂)₃NH), 7.18 (br s, 1H, NHⁿPr), 3.24 (t, J = 5.8 Hz, 4H, NCH₂CH₂CH₂N), 3.01 (dt, J = 5.0 Hz and 7.0 Hz, 3H, CH₂CH₂CH₃), 1.81 (quintet, J = 5.8 Hz, 2H, NCH₂CH₂CH₂N), 1.47 (sextet, J = 7.3 Hz, 2H, CH₂CH₃), 0.87 (t, J = 7.4 Hz, 3H, CH₃).

¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ 152.99 (*CN*^{*n*}Pr), 42.41 (N*C*H₂CH₂CH₃), 38.54 (NH*C*H₂CH₂CH₂NH), 22.33 (*C*H₂CH₃), 20.17 (NHCH₂CH₂CH₂NH), 11.53 (*C*H₃). HRMS (APCI) calcd for [C₇H₁₆N₃]⁺ [M–I]⁺ 142.1344, found 142.1346; calcd for [I]⁻ [M–TMnPG–H]⁻ 126.9050, found 126.9053.

TMnPG: m.p. 94–99 °C (Lit. ~50 °C).¹³ B.p. 118–121°C / 1.1 mmHg (Lit. 138°C / 0.5 mmHg).¹³ *Hygroscopic*. ¹H NMR (600 MHz, CDCl₃): δ 3.36 (t, J = 5.8 Hz, 4H, NCH₂CH₂CH₂N), 3.27 (t, J = 6.9 Hz, 3H, CH₂CH₂CH₃), 1.91 (quintet, J = 5.8 Hz Hz, 2H, NCH₂CH₂CH₂N), 1.62 (sextet, J = 7.2 Hz, 2H, CH₂CH₃), 0.99 (t, J = 7.4 Hz, 3H, CH₃). ¹³C {¹H} NMR (151 MHz, CDCl₃): δ 153.22 (CN^{*n*}Pr), 43.06 (NCH₂CH₂CH₃), 38.28 (NHCH₂CH₂CH₂NH), 22.26 (CH₂CH₃), 20.13 (NHCH₂CH₂CH₂NH), 11.30 (CH₃). HRMS (APCI) calcd for [C₇H₁₆N₃]⁺ [M+H]⁺ 142.1344, found 142.1341.

Synthesis of 1,3-Trimethylene-2-isopropylguanidine (TMiPG)

Isopropylamine (2.07 g, 35.0 mmol) was added to a suspension of 2-methylthio-1,4,5,6-tetrahydropyrimidine hydroiodide (4.52 g, 17.5 mmol) in dry THF (26 mL) at ambient temperature under a nitrogen atmosphere. The reaction mixture was stirred for 231 h at 50 °C, and then concentrated *in vacuo*. The residue was washed with *n*-hexane and dried *in vacuo* to give 1,2-trimethylene-3-isopropylguanidine hydroiodide (TMiPG-HI) as a light brown solid (4.17 g, 88% yield). The crude product was dissolved in MeCN (6 mL) and stirred with CaH₂ (0.84 g) at 60 °C for 3.5 h. The solution was concentrated *in vacuo*. The residue was distilled by heating at 190 °C and 0.75 mmHg to obtain 1,3-trimethylene-2-isopropylguanidine (TMiPG, 0.38 g, 7.6% yield) as a white solid.

TMiPG-HI: m.p. 67–76°C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 7.50 (br s, 2H, N*H*(CH₂)₃N*H*), 7.10 (br d, *J* = 7.9 Hz, 1H, N*H*ⁱPr), 3.63 (septet, *J* = 6.9 Hz, 1H, NC*H*), 3.26 (t, *J* = 5.8 Hz, 4H, NC*H*₂CH₂CH₂N), 1.82 (quintet, *J* = 5.8 Hz, 2H, NCH₂CH₂CH₂N), 1.12 (d, *J* = 6.3 Hz, 6H, CH₃). ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ 152.14 (*C*N^{*i*}Pr), 42.86 (NCH), 38.56 (NHCH₂CH₂CH₂NH), 22.91 (CH₃), 20.16 (NHCH₂CH₂CH₂NH). HRMS (APCI) calcd for [C₇H₁₆N₃]⁺ [M–I]⁺ 142.1344, found 142.1343; calcd for [I]⁻ [M–TMiPG–H]⁻ 126.9050, found 126.9052.

TMiPG: m.p. 125–127 °C. *Hygroscopic*. ¹H NMR (600 MHz, DMSO-*d*₆): δ 3.62 (septet, J = 6.4 Hz, 1H, NC*H*), 3.10 (t, J = 5.8 Hz, 4H, NC*H*₂CH₂CH₂N), 1.57 (quintet, J = 5.7 Hz, 2H, NCH₂CH₂CH₂N), 0.99 (d, J = 6.4 Hz, 6H, CH₃). ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ 153.36 (CN^{*i*}Pr), 41.41 (NCH), 41.00 (NCH₂CH₂CH₂N), 23.65 (CH₃), 21.78 (NHCH₂CH₂CH₂NH). HRMS (APCI) calcd for [C₇H₁₆N₃]⁺ [M+H]⁺ 142.1344, found 142.1342.

Homopolymerization of DError! (Tables 1 and 2)

A typical polymerization was carried out as follows. **DError!** (221 mg, 991 μ mol), dry THF (358 μ L) and a THF solution of H₂O (1/99 (v/v), 179 μ L, 99.1 μ mol) was added to a flask equipped with a needle-bulb under a N₂ atmosphere. A THF solution of TMnPG (100 mg mL⁻¹, 14.0 μ L, 9.91 μ mol) was added to initiate the polymerization at 30 °C. After stirring for 90 min, pyridine (63.9 μ L, 756 μ mol, 8 equiv) as a scavenger of hydrochloric acid and Me₂PhSiCl (83.2 μ L, 496 μ mol, 5 equiv) as an end-capping agent were added to the

reaction mixture to end-cap the propagating polymers. The end-capping reaction was continued for 15 min at 30 °C. The mixture was concentrated, washed with MeOH (5 mL) four times, and the supernatant was carefully removed with a Pasteur pipette. The remaining product was concentrated *in vacuo* to obtain α,ω -bis[dimethyl(phenyl)silyl]-terminated PDMS (PDMS-(OSiMe₂Ph)₂) (189 mg, 75.9% yield, $M_{n,NMR} = 2.60$ kg mol⁻¹, $\beta = 1.12$) as a colorless liquid. ¹H and ²⁹Si{¹H} NMR spectra of the product are shown in Figure 3.

For the synthesis of α , ω -dihydroxy-terminated PDMS (PDMS-(OH)₂), benzoic acid (12.1 mg, 10 equiv, 99.12 µmol) was added to the reaction mixture instead of pyridine and Me₂PhSiCl. The reaction mixture was stirred for 5 min to neutralize the catalyst. The mixture was concentrated, washed with MeCN (3 mL) three times since addition of MeOH causes partial condensation of PDMS-(OH)₂. The upper MeCN layer was carefully removed with a Pasteur pipette. The product was concentrated *in vacuo* to obtain PDMS-(OH)₂ (135 mg, 60.7% yield, $M_{n,NMR} = 2.68 \text{ kg mol}^{-1}$, $\beta = 1.09$) as a colorless liquid. ¹H and ²⁹Si{¹H} NMR spectra of the product are shown in Figure 3.

The model polymerization of DError! in the presence of dodecamethylpentasiloxane (38.2 mg, 44.8 μ L, 99.1 μ mol) were carried out in the same manner using DError! (221 mg, 991 μ mol), a THF solution of H₂O (1/99 (v/v), 179 μ L, 99.1 μ mol), dry THF (313 μ L), a THF solution of TMnPG (100 mg mL⁻¹, 14.0 μ L, 9.91 μ mol), pyridine (63.9 μ L, 756 μ mol), and Me₂PhSiCl (83.2 μ L, 496 μ mol). The product was PDMS-(OSiMe₂Ph)₂) (173 mg, 69.5% yield, $M_{n,NMR} = 2.90$ kg mol⁻¹, $\vartheta = 1.13$).

The polymerizations of **DError!** under different conditions were similarly carried out as described in the typical procedure using THF solutions of the strong organic bases under the conditions listed in Tables 1 and 2.

The low-molecular-weight part of the products are also removed with the purification procedures when M_n of the product is low as shown in Figure S1.

Figure S1. The change in the molecular weight distribution of (a) PDMS-(OH)₂ obtained in the polymerization described in the section of 'Homopolymerization of DError!' and (b) PDMS-(OSiMe₂Ph)₂ obtained in the polymerization shown in entry 6 of Table 2 before and after the purification.

Synthesis of Telechelic PDMSs (Table 2)

The synthesis of telechelic PDMSs was carried out in the same manner as written in the section of 'Homopolymerization of DError!'. Non-dehydrated CH_2Cl_2 (358 µL, stabilized with stabilized with 2-methylbut-2-ene) was used instead of dry THF. The polymerizations were carried out with DError! (221 mg, 991 µmol) in a vial with a screw cap under air.

PDMS-(OSiMe₂H)₂ (Table 2, entry 10): PDMS-(OSiMe₂H)₂ (157 mg, 67.1 % yield, $M_{n,NMR} = 2.95$ kg mol⁻¹, $\mathcal{P} = 1.15$) was obtained as a colorless liquid by end-capping with Me₂HSiCl (55.0 µL, 496 µmol). MeCN instead

of MeOH was used for the purification. ¹H NMR, ²⁹Si{¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S9.

PDMS-(OSiMe₂Vi)₂ (Table 2, entry 11): PDMS-(OSiMe₂Vi)₂ (165 mg, 69.0% yield, $M_{n,NMR} = 3.00$ kg mol⁻¹, $\mathcal{D} = 1.14$) was obtained as a colorless liquid by end-capping with Me₂ViSiCl (66.9 µL, 496 µmol). ¹H NMR, ²⁹Si{¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S10.

PDMS-(OSiAllyIMe₂)₂ (Table 2, entry 12): PDMS-(OSiAllyIMe₂)₂ (162 mg, 66.8% yield, $M_{n,NMR} = 2.77$ kg mol⁻¹, $\mathcal{P} = 1.13$) was obtained as a colorless liquid by end-capping with AllyIMe₂SiCl (74.5 µL, 496 µmol). ¹H NMR, ²⁹Si{¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S11.

PDMS-[OSi(CH₂Cl)Me₂]₂ (Table 2, entry 13): PDMS-[OSi(CH₂Cl)Me₂]₂ (192 mg, 78.8% yield, $M_{n,NMR} =$ 3.14 kg mol⁻¹, $\mathcal{P} = 1.10$) was obtained as a colorless liquid using (ClCH₂)Me₂SiCl (65.2 µL, 496 µmol) as an end-capping agent and DIPEA (129 µL, 756 µmol) as a scavenger of hydrochloric acid. ¹H NMR, ²⁹Si{¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S12.

PDMS-[OSi(CH₂Br)Me]₂ (Table 2, entry 14): PDMS-[OSi(CH₂Br)Me₂]₂ (172 mg, 68.0% yield, $M_{n,NMR}$ = 3.08 kg mol⁻¹, \mathcal{P} = 1.13) was obtained as a colorless liquid by end-capping with Me₂(BrCH₂)SiCl (74.5 µL, 496 µmol). ¹H NMR, ²⁹Si{¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S13.

PDMS-(OSiMe₂C₆F₅)₂ (Table 2, entry 15): PDMS-(OSiMe₂C₆F₅)₂ (194 mg, 72.8% yield, $M_{n,NMR} = 3.38$ kg mol⁻¹, $\mathcal{P} = 1.13$) was obtained as a colorless liquid using Me₂(C₆F₅)SiCl (91.7 µL, 496 µmol) as an end-capping agent and DIPEA (129 µL, 756 µmol) as a scavenger of hydrochloric acid. ¹H NMR, ²⁹Si{¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S14.

PDMS-[Si(OEt)_3]_2 (Table 2, entry 16): PDMS-[Si(OEt)_3]_2 (115 mg, 45.1% yield, $M_{n,NMR} = 3.25$ kg mol⁻¹, $\mathcal{P} = 1.11$) was obtained as a colorless liquid by end-capping with (EtO)_3SiCl (97.3 µL, 496 µmol) as an end-capping agent. MeCN instead of MeOH was used for the purification. ¹H NMR, ²⁹Si{¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S15.

Homopolymerization of DError! (Table 3, entry 1)

DError! (145 mg, 354 µmol), dry CH₂Cl₂ (164 µL) and a THF solution of H₂O (1/99 (v/v), 64 µL, 99 µmol) was added to a flask equipped with a needle-bulb under a N₂ atmosphere. A THF solution of TMnPG (2.5 mg mL⁻¹, 20.0 µL, 0.35 µmol) was added to initiate the polymerization at 30 °C. After stirring for 219 min, pyridine (22.8 µL, 283 µmol, 8 equiv) as a scavenger of hydrochloric acid and Et₃SiCl (29.7 µL, 177 µmol, 5 equiv) as an end-capping agent were added to the reaction mixture. The end-capping reaction was continued for 150 min at 30 °C. The mixture was concentrated, washed with MeOH (5 mL) four times, and the supernatant was carefully removed with a Pasteur pipette. The remaining product was concentrated *in vacuo* to obtain α,ω -bis(triethylsilyl)-terminated PMPS (PMPS-(OSiEt₃)₂) (107 mg, 69.8% yield, $M_{n,NMR} = 5.60$ kg mol⁻¹, $\vartheta = 1.16$) as a colorless liquid. ¹H NMR, ²⁹Si{¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S16. The formation of 1,3,5,7-tetraphenylcyclotetrasiloxane (DError!) in the polymerization was observed in the ¹H NMR spectrum of the crude product as shown in Figure S2.

Figure S2. ¹H NMR spectrum of the crude product in the polymerization of DError! taken just before the addition of the end-capping reaction observed in CDCl₃.

Homopolymerization of DError! (Table 3, entry 3)

DError! (253 µL, 229 mg, 885 µmol), dry CH₂Cl₂ (282 µL) and a THF solution of H₂O (1/99 (v/v), 160 µL, 88.5 µmol) was added to a flask equipped with a needle-bulb under a N₂ atmosphere. A THF solution of TMnPG (2.5 mg mL⁻¹, 50.0 µL, 0.885 µmol) was added to initiate the polymerization at 30 °C. After stirring for 72 min, pyridine (57.0 µL, 708 µmol, 8 equiv) as a scavenger of hydrochloric acid and Me₂PhSiCl (74.3 µL, 443 µmol, 5 equiv) as an end-capping agent were added to the reaction mixture. The end-capping reaction was continued for 120 min at 30 °C. The mixture was concentrated, washed with MeOH (5 mL) four times, and the supernatant was carefully removed with a Pasteur pipette. The remaining product was concentrated *in vacuo* to obtain α , ω -bis[dimethyl(phenyl)silyl]-terminated PMVS (PMVS-(OSiMe₂Ph)₂) (116 mg, 45.6% yield, $M_{n,NMR}$ = 3.64 kg mol⁻¹, β = 1.11) as a colorless liquid. ¹H NMR, ²⁹Si{¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S17. The formation of DError! in the polymerization was observed in the ¹H NMR spectrum of the crude product as shown in Figure S3.

Figure S3. ¹H NMR spectrum of (a) **DError!** and (b) the crude product in the polymerization of **DError!** taken just before the addition of the end-capping agent observed in CDCl₃.

Homopolymerization of DError! (Table 3, entry 5)

DError! (415 mg, 885 µmol), dry CH₂Cl₂ (411 µL) and a THF solution of H₂O (1/99 (v/v), 159 µL, 88.5 µmol) was added to a flask equipped with a needle-bulb under a N₂ atmosphere. A THF solution of TMnPG (2.5 mg mL⁻¹, 20.0 µL, 0.354 µmol) was added to initiate the polymerization at 30 °C. After stirring for 40 min, pyridine (57.0 µL, 708 µmol, 8 equiv) as a scavenger of hydrochloric acid and Me₂PhSiCl (74.3 µL, 443 µmol, 5 equiv) as an end-capping agent were added to the reaction mixture. The end-capping reaction was continued for 120 min at 30 °C. The mixture was concentrated, washed with MeOH (5 mL) four times, and the supernatant was carefully removed with a Pasteur pipette. The remaining product was concentrated *in vacuo* to obtain α , ω -bis[dimethyl(phenyl)silyl]-terminated PMTFPS (PMTFPS-(OSiMe₂Ph)₂) (222 mg, 50.4% yield, $M_{n,NMR} = 6.00$ kg mol⁻¹, $\vartheta = 1.12$) as a colorless liquid. ¹H NMR, ²⁹Si{¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S18.

Attempts of Homopolymerization of DError!, DError!, and DError! (Table 3, entry 7–9)

DError! (197 mg, 664 μ mol), dry CH₂Cl₂ (320 μ L), and a THF solution of H₂O (1/99 (v/v), 160 μ L, 88.5 μ mol) were added to a flask equipped with a needle-bulb under a N₂ atmosphere. A THF solution of TMnPG (100 mg mL⁻¹, 12.5 μ L, 8.85 μ mol) was added to initiate the polymerization at 30 °C. After stirring for 1500 min (25 h), a small aliquot (~50 μ L) was taken and mixed with an excess amount of benzoic acid and CDCl₃ (~0.60 mL) prior to ¹H NMR measurements to determine the conversion of DError!.

The reactions of DError! and DError! were carried out in the same manner. For the reaction of DError!, DError! (229 mg, 664 μ mol), dry CH₂Cl₂ (282 μ L), and a THF solution of H₂O (1/99 (v/v), 160 μ L, 88.5 μ mol)

were used. For the reaction of DError!, DError! (197 mg, 531 μ mol), dry CH₂Cl₂ (320 μ L), a THF solution of H₂O (1/99 (v/v), 160 μ L, 88.5 μ mol) were used.

Statistical Copolymerization of DError! and DError! (Table 3, entry 10)

By the semi-batch method

DError! (208 mg, 935 µmol), dry CH₂Cl₂ (347 µL) and a THF solution of H₂O (1/99 (v/v), 67.4 µL 37.4 µmol) was added to a flask equipped with a needle-bulb under a N₂ atmosphere. A THF solution of TMnPG (2.50 mg mL⁻¹, 106 µL, 1.87 µmol) was added to initiate the polymerization at 30 °C. DError! (10.0 µL, 37.4 µmol) was added to the reaction mixture eight times at 28, 60, 95, 135, 182, 238, 308, and 401 min after the initiation. After 540 min of stirring, pyridine (24.1 µL, 299 µmol) and Me₂PhSiCl (31.4 µL, 187 µmol) were added to the reaction mixture. The end-capping reaction was continued for 14 h with stirring at 30 °C. The mixture was concentrated and washed with MeOH (5 mL) four times. The residue was concentrated *in vacuo* to obtain α , ω -bis[dimethyl(phenyl)silyl]-terminated poly[dimethylsiloxane-*co*-methyl(vinyl)siloxane] (163 mg, 55.0% yield, $M_{n,NMR} = 6.34$ kg mol⁻¹, β = 1.13) as a colorless liquid. ¹H and ²⁹Si{¹H} NMR spectra of the product are shown in Figures S19 and S20.

By the premix method

DError! (197 mg, 885 µmol), DError! (237 µL, 885 µmol), dry CH₂Cl₂ (328 µL) and a THF solution of H₂O (1/99 (v/v), 63.8 µL, 35.4 µmol) was added to a flask equipped with a needle-bulb under a N₂ atmosphere. A THF solution of TMnPG (2.50 mg mL⁻¹, 100 µL, 1.77 µmol) was added to initiate the polymerization at 30 °C. After 25 h of stirring, pyridine (22.8 µL, 283 µmol) and Me₂PhSiCl (29.7 µL, 177 µmol) were added to the reaction mixture. The end-capping reaction was continued for 1 h with stirring at 30 °C. The mixture was concentrated and washed with MeOH (5 mL) four times. The residue was concentrated *in vacuo* to obtain α, ω -bis[dimethyl(phenyl)silyl]-terminated poly[dimethylsiloxane-*co*-methyl(vinyl)siloxane] (316 mg, 72.6% yield, $M_{n,NMR} = 12.9$ kg mol⁻¹, $\mathcal{P} = 1.37$) as a colorless liquid. ¹H and ²⁹Si{¹H} NMR spectra of the product are shown in Figures S19 and S20. Small amounts of aliquots were taken during the polymerization to measure the conversion of DError! and the molecular weight distributions of the crude products. Figure S4 shows the first-order kinetic plot of the polymerization. It is obvious that DError! polymerized almost selectively and quantitatively in the first 75 min of the polymerization. The observed SEC traces indicated The occurrence of the backbiting and the condensation after the quantitative consumption of DError! as shown in Figure S5.

Figure S4. (a) First-order kinetic plot for the copolymerization of DError! and DError! catalyzed by TMnPG in CH₂Cl₂/THF (67/33 (v/v)) at 30 °C under the conditions of $[DError!]_0 = [DError!]_0 = 1.80 \text{ mol } L^{-1}$ and $[DError!]_0/[DError!]_0/[H_2O]_0/[TMnPG]_0 = 25/25/1/0.05$.

Figure S5. SEC chromatograms of the products obtained in the copolymerization of DError! and DError! based on the premixed method ($[DError!]_0/[DError!]_0/[H_2O]_0/[TMnPG]_0 = 25/25/1/0.05$ in CH₂Cl₂/THF = 67/33 (v/v) at 30 °C).

Block Copolymerization of DError! and Other D₃ Monomers (Table 3, entries 11 and 12).

DError! (221 mg, 991 μ mol), dry CH₂Cl₂ (465 μ L) and a THF solution of H₂O (1/99 (v/v), 71.4 μ L 39.7 μ mol) was added to a flask equipped with a needle-bulb under a N₂ atmosphere. A THF solution of TMnPG (100 mg mL⁻¹, 14.0 μ L, 9.91 μ mol) was added to initiate the polymerization at 30 °C. After 75 min of stirring, DError! (177 mg, 270 μ mol) was directly added to the reaction mixture and the mixture was stirred for 44 min. Pyridine (24.6 μ L, 317 μ mol) and Et₃SiCl (33.2 μ L, 198 μ mol) were added to the reaction mixture. The end-capping

reaction was continued for 24 h with stirring at 30 °C. The mixture was concentrated, washed with MeOH (5 mL) five times. The residue was concentrated *in vacuo* to obtain α,ω -bis(triethylsilyl)-terminated PDPS-*b*-PDMS-*b*-PDPS (321 mg, 78.7% yield, $M_{n,NMR} = 10.8$ kg mol⁻¹, $\vartheta = 1.06$) as a white solid. ¹H and ²⁹Si{¹H} NMR spectra of the product are shown in Figure S22.

 α,ω -Bis[dimethyl(phenyl)silyl]-terminated PMVS-*b*-PDMS-*b*-PMVS (260 mg, 56.8% yield, $M_{n,NMR} = 11.2$ kg mol⁻¹, $\vartheta = 1.07$) was synthesized in the same manner using DError! (217 mg, 974 µmol), a THF solution of H₂O (1/99 (v/v), 70.2 µL, 38.9 µmol), CH₂Cl₂ (367 µL), a THF solution of TMnPG (2.5 mg mL⁻¹, 110 µL, 1.95 µmol), DError! (260 µL, 974 µmol), pyridine (24.2 µL, 312 µmol), and Me₂PhSiCl (32.7 µL, 195 µmol) under the conditions shown in Table 3, entry 11. ¹H and ²⁹Si{¹H} NMR spectra of the product are shown in Figures S19 and S20.

Model Reaction for the Intermolecular Transfer of a Terminal Dimethylsiloxy Unit of α,ω -Dihydroxy-Terminated PDMS

A THF solution of TMnPG (100 mg mL⁻¹, 14.3 μ L, 10.1 μ mol) was added to a solution of DError!-(OH)₂ (24.3 mg, 101 μ mol) in dry THF (547 μ L) under a N₂ atmosphere at 30 °C. Small aliquots (~120 μ L) were taken at 2 min, 4 min and 6 min from the initiation and mixed with an excess amount of benzoic acid and CDCl₃ (~0.48 mL) prior to ¹H NMR measurements. 1,3-Dihydroxy-1,1,3,3-tetramethyldisiloxane, 1,7-dihydroxy-1,1,3,3,5,5,7,7-octamethyltetrasiloxane, 1,9-dihydroxy-1,1,3,3,5,5,7,7,9,9-decamethylpentasiloxane, 1,11-dihydroxy-1,1,3,3,5,5,7,7,9,9,11,11-dodecamethylhexasiloxane were gradually generated as the reaction was continued as observed in the ¹H NMR spectra shown in Figure S6.

Figure S6. ¹H NMR spectra of the reaction mixtures obtained in the model reaction for the intermolecular transfer of terminal dimethylsiloxy units using DError!-(OH)₂ and TMnPG in THF at 30 °C observed in CDCl₃/THF \sim 4/1.

Model Reaction for the Intermolecular Chain-Transfer in the Polymerization of DError!

[D^(Me2)₃] = 1.80 mol L⁻¹

In order to confirm whether the intermolecular chain-transfer (Scheme 2f) occur, a model polymerization of DError! (221 mg, 991 µmol) in the presence of dodecamethylpentasiloxane (38.2 mg, 99.1 µmol) was carried out under the same conditions as the one described in the section '**Homopolymerization of DError!**'. The product was α, ω -bisdimethyl(phenyl)silyl-terminated PDMS (173 mg, 69.5% yield, $M_{n,NMR} = 2.90$ kg mol⁻¹, $\vartheta = 1.13$) and did not contain trimethylsilyl-terminated PDMS as shown in Figure S7. α, ω -Bistrimethylsilyl-terminated PDMS (131 mg, 55.2% yield, $M_{n,NMR} = 2.64$ kg mol⁻¹, $\vartheta = 1.14$) as a reference material was synthesized using chlorotrimethylsilane in the same manner as the polymerization described in the section '**Synthesis of Telechelic PDMSs**'. ¹H, ²⁹Si {¹H} NMR, and MALDI-TOF MS spectra of the product are shown in Figure S8.

Figure S7. ¹H NMR spectra of (a) dodecamethylpentasiloxane, (b) α, ω -bis trimethylsilyl-terminated PDMS, (c) the reaction mixture taken just before the addition of the end-capping agent, and (d) the product obtained in the model reaction for the intermolecular chain-transfer reaction observed in CDCl₃.

Determination of $M_{n,NMR}$ by ¹H NMR Measurements.

The M_n ($M_{n,NMR}$) of the synthesized polysiloxanes were determined by ¹H NMR analysis.

For PDMS-(OH)₂, the integral values of the peak a (I_a) and peaks b–f (I_{b-f}) in Figure 3a were compared. $M_{n,NMR} = 74.13[2(I_a + I_{b-f}) / I_a] + 18.016$

For PDMS-(OSiMe₂Ph)₂, the integral values of the peak d' ($I_{d'}$) and peaks e'-h' ($I_{e'-h'}$) in Figure 3b were compared. $M_{n,NMR} = 74.13(2I_{e'-h'} / I_{d'}) + 286.52$

For PDMS-(OSiMe₂H)₂, the integral values of the peak b (I_b) and peaks c and d (I_{c+d}) in Figure S9 were compared. $M_{n_bNMR} = 74.13(2I_{c+d} / I_b) + 134.33$

For PDMS-(OSiMe₂Vi)₂, the integral values of the peak d (I_d) and peaks e and f (I_{e+f}) in Figure S10 were compared. $M_{n,NMR} = 74.13(2I_{e+f}/I_d) + 186.40$

For PDMS-(OSiMe₂Allyl)₂, the integral values of the peak d (I_d) and peaks e and f (I_{e+f}) in Figure S11 were compared. $M_{n,NMR} = 74.13(2I_{e+f}/I_d) + 214.46$

For PDMS-[OSi(CH₂Cl)Me₂]₂, the integral values of the peak b (I_b) and peaks c and d (I_{c+d}) in Figure S12 were compared. $M_{n,NMR} = 74.13(2I_{e+f} / I_d) + 231.26$

For PDMS-[OSi(CH₂Br)Me₂]₂, the integral values of the peak b (I_b) and peaks c–e (I_{c-e}) in Figure S13 were compared. $M_{n,NMR} = 74.13(2I_{c-e} / I_d) + 320.17$

For PDMS-(OSiMe₂C₆F₅)₂, the integral values of the peak a (I_a) and peaks b–f (I_{b-f}) in Figure S14 were compared. $M_{n,NMR} = 74.13(2I_{b-f} / I_a) + 466.43$ For PDMS-[Si(OEt)₃]₂, the integral values of the peak c (I_c) and peaks d–f (I_{d-f}) in Figure S15 were compared. $M_{n,NMR} = 74.13[2(I_{d-f} + I_c)/I_c] + 342.54$

For PMPS-(OSiEt₃)₂, the integral values of the peak a (I_a) and peaks c and d (I_{c+d}) in Figure S16 were compared. $M_{n,NMR} = 136.23(6I_{c+d} / I_a) + 246.54$

For PMVS-(OSiMe₂Ph)₂, the integral values of the peak b (I_c) and peaks e and f (I_{e+f}) in Figure S17 were compared. $M_{n,NMR} = 86.17(4I_{e+f}/I_c) + 286.52$

For PMTFPS-(OSiMe₂Ph)₂, the integral values of the peak d (I_d) and peaks e–i (I_{e-i}) in Figure S18 were compared. $M_{n,NMR} = 156.18(4I_{e+f} / I_c) + 286.52$

For α, ω -bis[dimethyl(phenyl)silyl]-terminated PMVS-*b*-PDMS-*b*-PMVS and α, ω -bis[dimethyl(phenyl)silyl]terminated poly[dimethylsiloxane-*co*-methyl(vinyl)siloxane], the integral values of the peak a (I_a), peak b (I_b), and peak d (I_d) in Figure S19 were compared. $M_{n,NMR} = 74.13(2I_d / I_a) + 86.17(4I_b / I_a) + 286.52$

For α, ω -bis(triethylsilyl)-terminated PDPS-*b*-PDMS-*b*-PDPS, the integral values of the peak a (I_a), peak c–i (I_b), and peak aromatic ($I_{aromatic}$) in Figure S22 were compared. $M_{n,NMR} = 74.13(2I_{c-i} / I_a) + 86.17(6I_{aromatic} / 5 I_a) + 594.89$

Figure S8. ¹H and ²⁹Si{¹H} NMR (in CDCl₃), and MALDI-TOF MS (measured in the linear mode using DCTB as a matrix and TFAAg as a cationization agent) spectra of PDMS-(OSiMe₃)₂ synthesized with Me₃SiCl ($M_{n,NMR}$ = 2.64 kg mol⁻¹, D = 1.14).

Figure S9. ¹H and ²⁹Si{¹H} NMR (in CDCl₃), and MALDI-TOF MS (measured in the reflector mode using DCTB as a matrix and TFANa as a cationization agent) spectra of PDMS-(OSiMe₂H)₂ (Table 2, entry 10, $M_{n,NMR}$ = 2.95 kg mol⁻¹, D = 1.15).

Figure S10. ¹H and ²⁹Si{¹H} NMR (in CDCl₃), and MALDI-TOF MS (measured in the linear mode using DCTB as a matrix and TFAAg as a cationization agent) spectra of PDMS-(OSiMe₂Vi)₂ (Table 2, entry 11, $M_{n,NMR}$ = 3.00 kg mol⁻¹, D = 1.14).

Figure S11. ¹H and ²⁹Si{¹H} NMR (in CDCl₃), and MALDI-TOF MS (measured in the linear mode using DCTB as a matrix and TFAAg as a cationization agent) spectra of PDMS-(OSiAllylMe₂)₂ (Table 2, entry 12, $M_{n,NMR} = 2.77 \text{ kg mol}^{-1}$, D = 1.13).

Figure S12. ¹H and ²⁹Si{¹H} NMR (in CDCl₃), and MALDI-TOF MS (measured in the reflector mode using DCTB as a matrix and TFANa as a cationization agent) spectra of PDMS-[OSi(CH₂Cl)Me₂]₂ (Table 2, entry 13, $M_{n,NMR} = 3.14 \text{ kg mol}^{-1}$, D = 1.10).

Figure S13. ¹H and ²⁹Si{¹H} NMR (in CDCl₃), and MALDI-TOF MS (measured in the reflector mode using DCTB as a matrix and TFANa as a cationization agent) spectra of PDMS-[OSi(CH₂Br)Me₂]₂ (Table 2, entry 14, $M_{n,NMR} = 3.08 \text{ kg mol}^{-1}$, D = 1.13).

Figure S14. ¹H, ²⁹Si{¹H}, and ¹⁹F NMR (in CDCl₃), and MALDI-TOF MS (measured in the linear mode using DCTB as a matrix and TFAAg as a cationization agent) spectra of PDMS-(OSiMe₂C₆F₅)₂ (Table 2, entry 15, $M_{n,NMR} = 3.38 \text{ kg mol}^{-1}$, D = 1.13).

Figure S15. ¹H and ²⁹Si{¹H} NMR (in CDCl₃), and MALDI-TOF MS (measured in the linear mode using DCTB as a matrix and TFAAg as a cationization agent) of PDMS-[Si(OEt)₃]₂ (Table 2, entry 16, $M_{n,NMR} = 3.25$ kg mol⁻¹, D = 1.11).

Figure S16. ¹H and ²⁹Si{¹H} NMR (in CDCl₃), and MALDI-TOF MS (measured in the linear mode using DCTB as a matrix and TFAAg as a cationization agent) spectra of PMPS-(OSiEt₃)₂ (Table 3, entry 1, $M_{n,NMR} = 5.60$ kg mol⁻¹, D = 1.16).

Figure S17. ¹H and ²⁹Si{¹H} NMR (in CDCl₃), and MALDI-TOF MS (measured in the linear mode using DCTB as a matrix and TFAAg as a cationization agent) spectra of PMVS-(OSiMe₂Ph)₂ (Table 3, entry 3, $M_{n,NMR} = 3.64$ kg mol⁻¹, D = 1.11).

Figure S18. ¹H, ²⁹Si{¹H}, and ¹⁹F NMR (in CD₃CN), and MALDI-TOF MS (measured in the linear mode using DCTB as a matrix and TFAAg as a cationization agent) spectra of PMTFPS-(OSiMe₂Ph)₂. (Table 3, entry 5, $M_{n,NMR} = 6.00 \text{ kg mol}^{-1}$, D = 1.12).

Figure S19. ¹H NMR spectra of (a) α, ω -bis[dimethyl(phenyl)silyl]-terminated PMVS-*b*-PDMS-*b*-PMVS (Table 3, entry 11, $M_{n,NMR} = 11.2$ kg mol⁻¹, D = 1.07), (b) α, ω -bis[dimethyl(phenyl)silyl]-terminated poly[dimethylsiloxane-*co*-methyl(vinyl)siloxane] obtained by the semi-batch method (Table 3, entry 10, $M_{n,NMR} = 6.34$ kg mol⁻¹, D = 1.13), and (c) α, ω -bis[dimethyl(phenyl)silyl]-terminated poly[dimethylsiloxane] obtained by the premix method ($M_{n,NMR} = 12.9$ kg mol⁻¹, D = 1.37) measured in CDCl₃.

Figure S20. ²⁹Si{¹H} NMR spectra of (a) α, ω -bis[dimethyl(phenyl)silyl]-terminated PMVS-*b*-PDMS-*b*-PMVS (Table 3, entry 11, $M_{n,NMR} = 11.2$ kg mol⁻¹, D = 1.07), (b) α, ω -bis[dimethyl(phenyl)silyl]-terminated poly[dimethylsiloxane-*co*-methyl(vinyl)siloxane] obtained by the semi-batch method (Table 3, entry 10, $M_{n,NMR} = 6.34$ kg mol⁻¹, D = 1.13), and (c) α, ω -bis[dimethyl(phenyl)silyl]-terminated poly[dimethylsiloxane] obtained by the premix method ($M_{n,NMR} = 12.9$ kg mol⁻¹, D = 1.37) measured in CDCl₃.

Figure S21. A monomeric sequence of the poly[dimethylsiloxane-*co*-methyl(vinyl)siloxane] (Table 3, entry 10) simulated based on the population of the triad monomeric sequences observed in the ²⁹Si{¹H} NMR measurement, $n(D^{(Me2)})/n(D^{(Me,Vi)})$, and *D*.

Figure S22. ¹H and ²⁹Si{¹H} NMR spectra of α, ω -bis(triethylsilyl)-terminated PDPS-*b*-PDMS-*b*-PDPS (Table 3, entry 12, $M_{n,NMR} = 11.7$ kg mol⁻¹, D = 1.06) measured in CDCl₃.

References

- 1 C. J. Teng, W. P. Weber and G. Cai, *Macromolecules*, 2003, 36, 5126–5130.
- 2 F. A. Cotton, C. A. Murillo, X. Wang and C. C. Wilkinson, Inorg. Chem., 2006, 45, 5493-5500.
- 3 C. F. H. Allen, C. O. Edens and J. Van Allan, Org. Syn. Coll., 1955, 3, 394-.
- 4 M. Issac and A. Wallberg, US Pat., 2009011821A1, 2009
- 5 M. Calas, M. Ouattara, G. Piquet, Z. Ziora, Y. Bordat, M. L. Ancelin, R. Escale and H. Vial, *J. Med. Chem.*, 2007, **50**, 6307–6315.
- 6 F. A. Cotton, C. A. Murillo, X. Wang and C. C. Wilkinson, Dalton. Trans., 2006, 0, 4623-4631.
- 7 P. Lu, J. K. Paulasaari and W. P. Weber, Organometallics, 1996, 15, 4649-4652.
- 8 C. Le Roux, H. Yang, S. Wenzel, S. Grigoras and M. A. Brook, Organometallics, 1998, 17, 556-564.
- 9 V. V. Zuev and A. V. Kalinin, Phosphorus, Sulfur, Silicon Relat. Elem., 2003, 178, 1289-1294.
- 10 T. G. Selin, US Pat., 3481965, 1969
- 11 S. J. Angyal and W. K. Warburton, J. Chem. Soc., 1951, 2492-2494.
- 12 N. Aoyagi, Y. Furusho and T. Endo, Synlett, 2014, 25, 983-986.
- 13 A. Le Berre, C. Renault and P. Giraudeau, Bull. Soc. Chim. Fr., 1971, 9, 3245-3251.