Electronic Supplementary Information

for

Models for Aerobic Carbon Monoxide Dehydrogenase: Synthesis, Structures and Properties of Paramagnetic $Mo^{V}O(\mu$ -S)Cu^I Complexes

Craig Gourlay,[†] David J. Nielsen, [†] David J. Evans, [†] Jonathan M. White^{†,#} and Charles G. Young^{§,*}

 [†] School of Chemistry and [#]Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia. [§] Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.

Supplementary Information

Table S1. Microanalytical, mass spectrometric and Selected IR data.S2**Section S1.** Representative Infrared Spectra, Synthetic Yield and Full IR Band Listings.S3

Cmpd (Yield)	Elemental Analysis, %, found (calcd)				m/z	Major Infrared Bands (cm ⁻¹)		
OAr	С	Н	N	S	$[M+H]^+$	<i>v</i> (BH)	v(CN)	v(Mo=O)
1	49.07	6.92	14.98	3.74	812.2	2445	1508	896
OPh	(48.86)	(6.71)	(15.54)	(3.95)		2482		
2	50.80	7.29	13.97	3.49	866.9 ^a	2444	1508	922 ^b
OC ₆ H ₄ ^t Bu-2	(51.24)	(7.21)	(14.54)	(3.70)		2476		932 ^b
3	51.18	7.12	14.21	3.45	868.5	2445	1508	904
$OC_6H_4^{s}Bu-2$	(51.24)	(7.21)	(14.54)	(3.70)		2478		
4	50.59	7.21	13.85	3.45	868.3	2445	1503	904
OC ₆ H ₄ ^s Bu-4	(51.24)	(7.21)	(14.54)	(3.70)		2474		
5	52.54	6.61	14.04	3.45	888.6	2448	1510	895
OC ₆ H ₄ Ph-4	(52.79)	(6.59)	(14.21)	(3.61)		2481		
6	51.37	7.19	13.87	3.38	868.3	2441	1507	898
OC ₆ H ₄ ^t Bu-3	(51.24)	(7.21)	(14.54)	(3.70)		2485		
7	53.31	7.50	13.61	3.47	925.6	2446	1508	907
$OC_6H_3^{t}Bu_2-3,5$	(53.33)	(7.64)	(13.65)	(3.47)		2474		

 Table S1. Microanalytical, mass spectrometric and selected IR data.

^a For [M]⁺. ^b Single band at 918 cm⁻¹ observed in solution (MeCN).

Section S1. Representative Infrared Spectra, Synthetic Yields and Full IR Band Listings.

80-<u>136</u> 1400-84 70-65-1510 1482 264 1280 60-**5**: $OAr = OC_6H_4Ph-4$

Transmittance / Wavenumber (cm-1)

1 (OPh): Yield 30%. IR (cm⁻¹) KBr: 2965 s, 2927 s, 2866 s, 2808 m, v(BH) 2482 w and 2445 w, 1585 m, v(CN) 1508 s, 1488 s, 1481 s, 1459 m, 1400 m, 1384 m, 1362 m, 1296 s, 1282 m, 1266 s, 1247 m, v(CC) 1194 s, 1163 m, 1106 w, 1081 w, 1070 s, v(CC) 1047 s, 1020 s, 985 w, 957 w, 929 w, v(Mo=O) 902 s, 855 m, 842 m, 817 w, 794 m, 772 m, 755 m, 733 s, 691 w, 628 w, 595 m, 504w, 459 w, 426 w.

2 (OC₆H₄^tBu-2): Yield 34%. IR (cm⁻¹) KBr: 2960 s, 2918 s, 2866 s, 2808 m, v(BH) 2476 w and 2447 w, 1588 m, v(CN) 1508 s, 1477 s, 1457 m, 1437 m, 1418 w, 1397 m, 1384 m, 1361 m, 1291 w, 1256 s, v(CC) 1193 s, 1153 w, 1153 w, 1127 m, 1104 m, 1091 m, 1068 s, v(CC) 1046 s, 1020 s, 981 w, v(Mo=O) 932 s and 922 s (918 s in MeCN), 871 m, 828 w, 792 m, 782 m, 775 m, 739 s, 732 s, 628 w, 609 m, 568 w, 460 w, 444 w, 425 w.

3 (OC₆H₄^sBu-2): Yield 53%. IR (cm⁻¹) KBr: 2962 s, 2925 s, 2867 s, 2807 m, v(BH) 2477 w and 2447 w, 1588 m, v(CN) 1508 s, 1478 s, 1459 m, 1444 m, 1399 m, 1384 m, 1362 m, 1296 m, 1264 sh, 1249 s, v(CC) 1194, 1151 w, 1105 w, 1069 s, v(CC) 1045 s, 1019 s, 983 w, 929 w, v(Mo=O) 9032 s, 875 w, 844 m, 817 w, 794 m, 794 m, 773 m, 733 s, 631 m, 610 w, 489 w, 425 w.

4 (OC₆H₄^sBu-4): Yield 41%. IR (cm⁻¹) KBr: 2962 s, 2924 s, 2867 s, 2807 m, v(BH) 2474 w and 2445 w, 1601 m, v(CN) 1503 s, 1458 m, 1399 m, 1382 m, 1361 m, 1297 m, 1277 s, 1267 s, v(CC) 1194, 1170 w, 1152 w, 1128 m, 1105 m, 1098 m, 1068 s, v(CC) 1045 s, 1019 s, 982 w, v(Mo=O) 904 s, 865 w, 830 w, 817 w, 794 m, 773 m, 766 m, 733 s, 717 w, 628 w, 590 w, 566 w, 551 w, 492 w, 427 w.

5 (OC₆H₄Ph-4): Yield 47%. IR (cm⁻¹) KBr: 2963 s, 2920 s, 2864 s, 2806 m, v(BH) 2481 w and 2448 w, 1595 m, v(CN) 1510 s, 1482 s, 1458 m, 1400 m, 1384 m, 1361 m, 1280 s, 1264 s, v(CC) 1195 s, 1169 m, 1151 w, 1116 m, 1104 m, 1069 s, v(CC) 1043 s, 1018 s, 981 w, v(Mo=O) 898 s, 860 w, 836 m, 794 m, 765 m, 732 s, 710 w, 696 w, 645 w, 597 m, 494 w, 459 w.

6 (OC₆H₄^tBu-3): Yield 33%. IR (cm⁻¹) KBr: 2960 s, 2924 s, 2864 s, 2805 m, v(BH) 2468 w and 2441 w, 1587 m, 1563 m, v(CN) 1506 s, 1481 s, 1460 m, 1418 m, 1398 m, 1380 m,

S4

1359 m, 1286 s, 1262 s,1239 m, v(CC) 1191 s, 1151 w, 1104 w, 1095 w, 1068 m, v(CC) 1045 s, 1018 m, 995 m, 983 w, 938 m, v(Mo=O) 897 s, 874 w, 823 m, 815 w, 793 m, 775 m, 733 s, 700 w, 664 w, 639 w, 620 m, 566 w, 520 w, 492 w, 446 w, 424 w.

7 (OC₆H₃^tBu₂-3,5): Yield 42%. IR (cm⁻¹) KBr: 2964 s, 2925 s, 2865 s, 2806 m, v(BH) 2474 w and 2446 w, 1579 m, v(CN) 1509 s, 1491 s, 1459 m, 1423 m, 1400 m, 1384 m, 1361 m, 1300 m, 1245 w, 1224 w, v(CC) 1199, 1151 w, 1104 w, 1092 w, 1069 m, v(CC) 1045 s, 1022 m, 978 w, 927 w, v(Mo=O) 907 s, 865 w, 818 w, 794 m, 772 m, 732 s, 647 m, 627 m, 566 w, 521 w, 494 w, 460 m, 425 w.