Absolute and relative facial selectivities in organocatalytic asymmetric chlorocyclization reactions

Nastaran Salehi Marzijarani,[‡] Roozbeh Yousefi,[‡] Arvind Jaganathan,[†] Kumar Dilip Ashtekar,[‡] James E. Jackson,^{*‡} and Babak Borhan^{*‡}

⁺ Department of Chemistry, Michigan State University, East Lansing, MI 48824 ⁺Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268

babak@chemistry.msu.edu, jackson@chemistry.msu.edu

Table of Contents:

Ι.	General remarks:
II.	General procedure for the catalytic asymmetric chlorocyclization of
	unsaturated amide 1b:
III.	Procedure for synthesis of unsaturated amide substrate 1b:
IV.	Labeling studies of 1,1-unsaturated amide:
	IV.a. Procedure for the synthesis of labeled amide substrate 1b-D:S8
	IV.b1. Procedure for the non-catalyzed chlorocyclization of labeled
	unsaturated amide 1b-D :S11
	IV.b2. Calculations to determine diastereomeric ratio of 2b-D via non-
	catalyzed cyclization of 1b-D :S12
	IV.b3. Effects of chlorine source, solvent and concentration on the
	diastereoselectivity of chlorocyclization of labeled amide 1b-D
	in the absence of any catalyst:S14
	IV.b4. Changing the electronics of the aryl group and its effect on
	diastereoselectivity of non-catalyzed chlorocyclization of
	unsaturated amide 1b-D :
	IV.c1. Procedure for the catalytic asymmetric chlorocyclization of
	labeled unsaturated amide 1b-D :
	IV.c2. Calculations to determine the quantity of the four isomeric
	products 2b-D obtained through (DHQD) ₂ PHAL catalyzed
.,	chlorocyclization:
V.	Effect of other chlorine sources on the face selectivity of chlorenium
N/I	attack and/or ring-closure:
VI.	Absolute stereochemical assignment of C-6 configuration for 2b-D :
	VI.a. General Procedure for the synthesis of labeled epoxy alcohols
VIII	3a and 3b-D :
	General procedure for the synthesis of carbamate substrate IC :
VIII.	General procedure for the catalytic asymmetric chlorocyclization of
IV	Carbamates III /I-PTUT
i۸.	of earbamates in CHCL Hexano:
v	Procedure for synthesis of laboled earbamate substrate 10 D :
Λ.	T TOLEGUIE TO SYTUTESIS OF ADELED CALDAITALE SUDSTALE IC-D

XI.	Procedure for the non-catalyzed chlorocyclization of labeled	
	unsaturated carbamate 1c-D:	.S35
XII.	Procedure for the catalytic asymmetric chlorocyclization of	
	labeled unsaturated carbamate 1c-D:	.S36
XIII.	(DHQD) ₂ PHAL catalyzed chlorocyclization of 1c-D monitored by	
	¹ HNMR and HPLC:	.S36
XIV.	Absolute stereochemical assignment at the deuterated center of	
	substrates 2c-D and ent-2c-D:	.S37
XV.	General procedure for the synthesis of labeled epoxy sulfonamides	
	ent-3c and ent-3c-D:	.S38
XVI.	E/Z ratios of recovered labeled starting materials	.S42
XVII.	Summaries of quantum chemical modeling (a) Uncatalyzed	
	Reaction B:	.S44
XVIII	I.Summaries of quantum chemical modeling (b) (DHQD) ₂ PHAL-	
	catalyzed Reaction C:	.S45
XIX.	References:	.S46
XX.	NMR spectra:	.S47

I. General remarks:

NMR spectra were obtained using a 300, 500, or 600 MHz NMR spectrometers (VARIAN INOVA). Chemical shifts are reported in parts per million (ppm) and are referenced using the residual ¹H peak from the deuterated solvent. For HRMS (ESI) analysis, a Waters 2795 (Alliance HT) instrument was used and referenced against Polyethylene Glycol (PEG-400-600).

Column chromatography was performed using Silicycle 60 Å, 35-75 μ m silica gel. Pre-coated 0.25 mm thick silica gel 60 F254 plates were used for analytical TLC and visualized using UV light, iodine, potassium permanganate stain, *p*-anisaldehyde stain or phosphomolybdic acid in EtOH stain. TLC analyses were performed on silica gel plates (pre-coated on aluminum; 0.20 mm thickness with fluorescent indicator UV254).

All reagents were purchased from commercial sources and used without purification unless otherwise mentioned. THF and Et₂O were freshly distilled from Nabenzophenone ketyl whereas CH_2Cl_2 and PhCH₃ were distilled over CaH₂. Trifluoroethanol was purchased from Aldrich or Alfa Aesar and used without further purification. Flash silica gel (32-63 μ m) was used for column chromatography. Enantiomeric excess for all products was judged by HPLC analysis using DAICEL CHIRALPAK OJ-H or AD-H columns. Diastereomeric ratios were determined by crude NMR analysis. All known compounds were characterized by ¹H and ¹³C NMR and are in complete agreement with samples reported elsewhere.

Abbreviations used: DCDMH = 1,3-dichloro-5,5-dimethylhydantoin; DCDPH = 1,3-

dichloro-5,5-diphenylhydantoin; TCCA = trichloroisocyanuric acid; DiCh.T = dichloramine-T; Ch.T = Chloramine-T; NCS = N-chlorosuccinimide; TLC = Thin layer chromatography; DCM = Dichloromethane; THF = Tetrahydrofuran; EtOAc = Ethyl Acetate; Hex = Hexane; n-PrOH = n-Propanol.

II. General procedure for the catalytic asymmetric chlorocyclization of unsaturated amide 1a:

(DHQD)₂PHAL (1.56 mg, 312 μ L of a 5 mg/mL solution in TFE, 2 mol%) was introduced to a suspension of DCDPH (35 mg, 0.11 mmol, 1.1 equiv) in trifluoroethanol (TFE, 2.2 mL) in a screw capped vial equipped with a stir bar at -30 °C. After stirring vigorously for 10 min, the substrate (0.10 mmol, 1.0 equiv) was added in a single portion. The vial was capped and the stirring was continued at -30 °C till the reaction was complete (TLC). The reaction was quenched by the addition of 10% aq. Na₂SO₃ (3 mL) and diluted with DCM (3 mL). The organics were separated and the aqueous layer was extracted with DCM (3 x 3 mL). The combined organics were dried over Na₂SO₄, concentrated and purified by column chromatography on silica gel using EtOAc-Hexanes as the eluent to give product **2a** in 96% yield and 90% *ee*. Resolution of enantiomers: CHIRALCEL OJ-H, 5% IPA-Hexane, 0.8 mL/min, 260 nm, RT1 = 18.0 min, RT2 = 34.0 min. Analytical data for **2a**: ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 7.0 Hz, 2H), 7.48 – 7.51 (m, 1H), 7.36 – 7.46 (m, 6H), 7.30 – 7.34 (m, 1H), 4.50 (d, J = 15.0 Hz, 1H), 4.23 (d, J = 15.0 Hz, 1H), 3.92 (d, J = 12.0 Hz, 1H), 3.85 (d, J = 12.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 163.0, 141.5, 131.5, 128.7, 128.4, 128.3, 128.2, 127.3, 124.9, 87.56, 64.93, 51.04. HRMS (ESI) Calculated Mass for C₁₆H₁₄NOCI: ([M+H]⁺) = 271.0764, Found ([M+H]⁺) = 271.0765.

III. Procedure for the synthesis of unsaturated amide substrate 1b:

S-4, (3-bromoprop-1-en-2-yl)benzene

NBS (8.58 g, 48.23 mmol, 1.14 equiv) was added to a solution of α -methylstyrene (5.0 g, 42.31 mmol, 1.0 equiv) in chloroform (7 mL) at room temperature. Reaction was refluxed for 15 h. After completion, the reaction mixture was filtered and concentrated to remove chloroform. Crude sample was subjected to column chromatography using hexane (100%) to afford **S-4** in 60% yield. Analytical data for **S-4**: ¹H NMR (500 MHz, CDCl₃) δ 7.27-7.39 (m, 5H), 5.54 (d, *J* = 1.2 Hz, 1H), 5.47 (d, *J* = 1.2 Hz, 1H), 4.37 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 144.2, 137.6, 128.5, 128.3, 126.1, 117.2, 34.2.

S-5, 2-phenylprop-2-en-1-amine

Allyl bromide S-4 (4.5 g, 22.96 mmol, 1.0 equiv) dissolved in THF (85 mL) and H₂O (21

mL), was treated with NaN₃ (1.79 g, 27.53 mmol, 1.2 equiv) at room temperature. After TLC analysis revealed the complete consumption of starting material (~ 3 h), PPh₃ (9.04 g, 34.46 mmol, 1.5 equiv) was added to the reaction vessel. After 2 h at ambient temperature, the reaction was concentrated to remove most of the THF. The resulting suspension was diluted with aq. HCl and extracted with ether (3x). The aqueous layer was then basified by adding solid KOH and extracted with ether (3x). The combined organics were dried (Na₂SO₄) and concentrated to give the crude amine, which was usually pure enough to use in the next step. Analytical data for **S-5**: ¹H NMR (500 MHz, CDCl₃) δ 7.27-7.40 (m, 5H), 5.33 (d, *J* = 1.2 Hz, 1H), 5.20 (d, *J* = 1.2 Hz, 1H), 3.70 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.4, 139.5, 132.3, 131.5, 128.3, 111.0, 45.8.

1b, N-(2-phenylallyl)benzamide

A solution of 2-phenylprop-2-en-1-amine **S-5** (1.20 g, 9.0 mmol, 1.0 equiv), triethylamine (1.04 mL, 18.0 mmol, 2.0 equiv) and a catalytic amount of DMAP in DCM (50 mL) was cooled in an ice bath. To this solution, benzoyl chloride (1.57 mL, 13.5 mmol, 1.5 equiv) was added drop wise. After the completion of the reaction, it was allowed to warm to room temperature. It was quenched with water and extracted with DCM (3 x 25 mL). The combined organics were washed with brine (1 x 30 mL), dried over Na₂SO₄ and concentrated under reduced pressure to give the product as a colorless solid in 89% yield after column chromatography (10% EtOAc-Hexanes). Analytical data for **1b**: MP: 123 – 125 °C.; Rf: 0.46 (30% EtOAc-Hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.7 (d, *J* = 8.5 Hz, 2H), 7.43-7.47 (m, 3H), 7.27-7.39 (m, 5H), 6.30 (br s,

1H), 5.49 (s, 1H), 5.29 (s, 1H), 4.52 (d, J = 6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 144.2, 138.3, 134.4, 131.5, 128.6, 128.5, 128.09, 126.9, 126.04, 114.0, 43.7. HRMS (ESI) Calculated Mass for C₁₆H₁₅NO: ([M+H]⁺) = 237.1154, Found ([M+H]⁺) = 237.1154.

IV. Labeling studies of 1,1-unsaturated amide:

To explore the stereocontrol in chlorocyclization reactions, we replaced one of the vinylic protons with deuterium. This leads to diastereotopic products with two stereogenic carbons, the quaternary carbon and the carbon attached to the chlorine (Scheme S1). Having two stereocenters on the final product provides the opportunity to investigate the face selectivity in the chlorination and the subsequent attack of the

Scheme S1. Two plausible intermediates for a stepwise process: Open (forming two diastereomers) and bridged (forms one diastereomer) cations.

internal nucleophile. To execute this idea, the deuterated amide substrate **1b-D** was synthesized from 3-bromoprop-1-yne in 4 steps.

IV.a. Procedure for the synthesis of labeled amide substrate 1b-D:

4, 2-(prop-2-yn-1-yl)isoindoline-1,3-dione

Potassium phthalimide (3.0 g, 16.2 mmol, 1.0 equiv) was added to a solution of 3bromoprop-1-yne (2.8 mL of 80% wt. in toluene, 19.1 mmol, 1.18 equiv) in dry DMF (15 mL) at room temperature. After stirring the reaction at 80 °C for 8 h, it was poured into an ice cold water. The solid was filtered, washed with water and dried under vacuum. A white solid was obtained in 61% yield after recrystallization with DCM and Hexanes. Analytical data for **4**: ¹H NMR (500 MHz, CDCl₃) δ 7.89-7.85 (m, 2H), 7.70-7.74 (m, 2H), 4.44 (d, *J* = 2.5 Hz, 2H), 2.21 (t, *J* = 2.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 134.2, 131.9, 123.5, 76.7, 71.5, 27.0.

5, Deuterated 2-(2-phenylallyl)isoindoline-1,3-dione¹

A mixture of compound **4** (800 mg, 4.33 mmol, 1.0 equiv), NaBPh₄ (1.48 g, 4.33 mmol, 1.0 equiv), HOAc (247 μL, 4.33 mmol, 1.0 equiv), PdCl₂(PPh₃)₂ (91 mg, 0.13 mmol,

0.03 equiv), and D₂O (8.7 mL) was heated in a sealed tube under nitrogen at 50 °C for 12 h. After that, the solvents and volatiles were removed under reduced pressure and the mixture was subjected to column chromatography to afford compound **5** as a pale yellow powder in 53% yield. Analytical data for **5**: ¹H NMR (600 MHz, CDCl₃): δ 7.82 (d, J = 6.0, 3.0 Hz, 2H), 7.68 (dd, J = 6.0, 3.0 Hz, 2H), 7.48 (dd, J = 7.8 Hz, 2H), 7.32 (m, 2H), 7.26 (t, J = 7.2 Hz, 1H), 5.12 (t, J = 1.8 Hz, 1H), 4.69 (d, J = 1.8 Hz, 2H), ¹³C NMR (150 MHz, CDCl₃): δ 167.9, 142.3, 138.5, 133.9, 132.0, 128.4, 128.0, 126.4, 123.3, 113.6 (t, J = 23.7 Hz), 41.4. IR (cm⁻¹, NaCl plate): 2918, 2495, 1704; HRMS (C₁₇H₁₂DNO₂): Calc. [M+H]⁺: 265.1088, Found [M+H]⁺: 265.1086.

6, Deuterated 2-phenylprop-2-en-1-amine

Compound **5** (3.7 g, 18.9 mmol, 1.0 equiv) was dissolved in MeOH (40 mL). NH₂NH₂.H₂O (1.7 mL) was introduced into the reaction vessel and the resulting suspension was stirred at room temperature overnight. The reaction was then diluted with water (100 mL) and most of MeOH was removed by rotary evaporation. Concentrated HCI (19 mL) was added and the resulting suspension was stirred for a further 60 min at ambient temperature. The precipitated solids were filtered and the filter cake was washed with water. The combined filtrates were basified with solid NaOH and extracted with EtOAc and concentrated to give deuterated 2-phenylprop-2-en-1-amine **6**, which was used in the next step without any purification. Analytical data for **6**: ¹H NMR (600 MHz, CDCl₃): δ 7.26-7.4 (1H, 5H), 5.19 (t, *J* = 1.8 Hz, 1H), 3.69 (s, 2H), 1.39 (br s, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 149.7, 139.7, 128.4, 127.6, 126.1, 110.9 (t, *J* = 24 Hz), 46.1. HRMS (ESI) Calculated Mass for C₉H₁₀DN: ([M+H]⁺) =

135.1033, Found $([M+H]^+) = 135.1034$.

1b-D, Deuterated N-(2-phenylallyl)benzamide

A solution of labeled 2-phenylprop-2-en-1-amine 6 (50 mg, 0.37 mmol, 1.0 equiv) and pyridine (63 mg, 0.74 mmol, 2.0 equiv) in DCM (2.5 mL) was cooled in an ice bath. To this, benzoyl chloride (80 mg, 0.57 mmol, 1.5 equiv.) was added drop wise. After the addition was complete, the reaction was allowed to warm to room temperature. After 3 h, the reaction was diluted with an equal amount of water and extracted with DCM (3 x 5 mL). The combined organics were washed with brine (1 x 3 mL), dried over Na₂SO₄ and concentrated under reduced pressure to give the product as a yellow solid. It was recrystallized from MeOH to obtain the pure product as a colorless solid in 51% yield [95% D-incorporated, (87:13) E:Z ratio of isomers]. Analytical data for 1b-D: ¹H NMR (600 MHz, CDCl₃): δ 7.69 (d J = 8.4 Hz, 2H), 7.47 (m, 3H), 7.38 (t, J = 7.8 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 6.15 (br s, 1H), 5.3 (t, J = 1.8 Hz, 1H), 4.52 (d, J = 5.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 167.3, 144.1, 138.2, 134.4, 131.4, 128.6, 128.5, 128.1, 126.8, 126.0, 113.7 (t, J = 24.0 Hz), 43.6; IR (cm⁻¹, NaCl plate): 3340, 2345, 1647. HRMS (C₁₆H₁₄DNO): Calc. [M+H]⁺: 239.1294, Found [M+H]⁺: 239.1297.

IV.b1. Procedure for the non-catalyzed chlorocyclization of labeled unsaturated amide 1b-D:

Substrate 1b-D (24 mg, 0.10 mmol, 1.0 equiv) was added to a solution of DCDPH (35 mg, 0.11 mmol, 1.1 equiv) in TFE or CHCl₃ (2.2 mL) in a screw-capped vial equipped with a stir bar. After stirring vigorously for 10 h, the reaction was guenched by the addition of 10% aq. Na₂SO₃ (3 mL) and diluted with DCM (3 mL). The organics were separated and the aqueous layer was extracted with DCM (3 x 3 mL). The combined organics were dried over anhydrous Na₂SO₄. Pure products were isolated by column chromatography on silica gel using EtOAc-Hexanes (1:19) as the eluent to give the desired product 2b-D in 87% yield as a mixture of two diastereomers (85:15 dr) (analyzed by ¹HNMR). Analytical data for **2b-D**: ¹H NMR (500 MHz, CDCl₃): δ 8.05 (dd, J = 1.5, 11.5 Hz, 2H), 7.32-7.50 (m, 8H), 4.49 (d, J = 15.0 Hz, 1H), 4.22 (d, J = 15.0Hz, 1H), 3.91 (s, 1H); ¹H NMR (500 MHz, C₆D₆): δ 8.23 (m, 2H), 7.0-7.15 (m, 8H), 4.23 (d, J = 15.0 Hz, 1H), 3.98 (d, J = 15.0 Hz, 1H), 3.41 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 163.0, 141.5, 131.6, 128.7, 128.4, 128.3, 128.2, 127.4, 124.9, 87.5, 64.9, 50.8 (t, J = 23.7 Hz). HRMS (ESI) Calculated Mass for C₁₆H₁₄ONCID: ([M+H]⁺) = 273.0905, Found ($[M+H]^+$) = 273.0900.

IV.b2. Calculations to determine diastereomeric ratio of 2b-D via non-catalyzed cyclization of 1b-D:

The synthesized starting material **1b-D** contains 5% unlabeled amide **1b**, the integral value of each diastereomeric product was calculated by subtracting the integral value of the overlapping non-labeled product as depicted in Scheme S2. Peaks **a**, **b**, **c**, **d** (AB quartet) belongs to the non-labeled substrate. The integral values of peaks **a** and **d** are equivalent ($\mathbf{a} = \mathbf{d} = 2.47$) and so are the integral values for peaks **b** and **c** ($\mathbf{b} = \mathbf{c} = 3.10$). Peaks **e** and **f** belong to the deuterated product and overlap with **b** and **d**, respectively. To obtain the corrected value of **e**, the integral value of **c** is subtracted from the overall integral of **b** and **e** ($\mathbf{e} = 100 - 3.10 = 96.90$). Similarly, to evaluate the integral of **f**, the integral value of **a** is subtracted from the overall integral value of **d** and **f** (**f** = 33.60 - 2.47 = 31.13). This calculation results in a 76:24 *anti:syn* ratio prior to 13% correction for the presence of the Z-olefin.

Scheme S2. ¹H NMR of labeled 2b-D, cyclized under non-catalyzed condition.

For correction of the *E*/*Z* isomeric mixture, we used the following equations. Defining the fraction of product that arises from attack of CI^+ on the olefin *syn* to the nucleophile as (**S**), and that *anti* to the nucleophile as (**A**), the following equations can be derived:

$$(D1-anti) = E \frac{S}{(A+S)} + Z \frac{A}{(A+S)}$$
(i)
$$(D2-syn) = Z \frac{S}{(A+S)} + E \frac{A}{(A+S)}$$
(ii)

After rearrangement and cross-multiplying, we get equation (*iii*). Since the dihydrogen corrected amount of *syn* and *anti* products are known (see correction discussed above), the corresponding values can be inserted in the below equation (*iii*) to evaluate the ratio of *anti*-addition to *syn*-addition for the final corrected value.

$$\% \frac{D1}{D2} = \frac{(\mathbf{s} \times \mathbf{Z}) - (\mathbf{A} \times \mathbf{E})}{(\mathbf{A} \times \mathbf{Z}) - (\mathbf{S} \times \mathbf{E})}$$
(*iii*)

Replacing the numbers would give:

$$\% \frac{D1}{D2} = \frac{(31.13 \times 13) - (96.90 \times 87)}{(96.90 \times 13) - (31.13 \times 87)} = 5.54$$

Hence, %**D1** = 84.7 and %**D2** = 15.29. i.e. *anti*-addition: *syn*-addition = 85:15 This result suggests that the reaction does not go through a bridged chloronium intermediate, as two diastereomers resulting from *syn* and *anti* addition were observed in the absence of any catalyst. Other conditions such as changes in chlorenium source, solvent, and concentration were utilized to investigate the *syn/anti* diastereoselectivity. IV.b3. Effects of chlorenium source, solvent and concentration on the diastereoselectivity of chlorocyclization of labeled amide 1b-D in the absence of any catalyst:

Most of the chlorenium sources result in diastereoselectivities in the range of 78:22 to 85:15 *anti:syn* cyclization except TCCA that gave 65:35 *dr*, nonetheless still favoring *anti* (Table S1, entries 1-8). Change of solvent from TFE to CHCl₃ or MeCN led to similar diastereoselectivity (Table S1, entries 1, 10-11). Other solvents such as DCM, toluene, and CHCl₃:Hex (1:1) yield more of the *anti*-cyclized product (Table S1, entries 9,12-13). Dilution plays an important role in the diastereoselectivity of this reaction. Decreasing the concentration of both substrate and DCDPH in TFE led to the formation of more *syn* product (Table S1, entries 14-20). Keeping the concentration of DCDPH constant (0.11 M), concentration of substrate in TFE was decreased from 0.10 M to 0.005 M (Table S1, entries 21-24). This led to a similar trend with an increase in the *syn* product. Conversely, when the concentration of substrate was kept constant at 0.01 M in TFE and concentration of DCDPH was lowered from 0.11 M (10.0 equiv) to 0.011 M (1.1 equiv), no significant changes were observed in diastereoselectivity (Table S1, entries 25-28).

Table S1. Screen of chlorenium source, solvents and effect of concentration on syn/anti ratio.

Entry	Cl⁺ source	Solvent	[Sub]	[CI ⁺]	time	dr (A:B) (anti:syn)
1	DCDPH	TFE	0.05 M	0.05 M	12 h	85:15
2	DCDMH	TFE	0.05 M	0.05 M	12 h	79:21
3	DiCh.T	TFE	0.05 M	0.05 M	12 h	90:10
4	N-Chlorosaccharin	TFE	0.05 M	0.05 M	12 h	86:14
5	TCCA	TFE	0.05 M	0.05 M	12 h	65:35
6	NCS	TFE	0.05 M	0.05 M	72 h	80:20
7 ^a	N-Chlorophthalimide	TFE	0.05 M	0.05 M	72 h	78:22
8 ^b	Ch.T	TFE	0.05 M	0.05 M	72 h	80:20
9	DCDPH	CHCl₃:Hex (1:1)	0.05 M	0.05 M	12 h	97:3
10	DCDPH	CHCl₃	0.05 M	0.05 M	12 h	85:15
11	DCDPH	MeCN	0.05 M	0.05 M	12 h	86:14
12	DCDPH	DCM	0.05 M	0.05 M	12 h	97:3
13	DCDPH	toluene	0.05 M	0.05 M	12 h	98:2
14	DCDPH	TFE	0.5 M	0.5 M	12 h	88:12
15	DCDPH	TFE	0.2 M	0.2 M	12 h	88:12
16	DCDPH	TFE	0.1 M	0.1 M	12 h	88:12
17	DCDPH	TFE	0.05 M	0.05 M	12 h	85:15
18	DCDPH	TFE	0.01 M	0.01 M	12 h	69:31
19	DCDPH	TFE	0.005 M	0.005 M	12 h	62:38

20	DCDPH	TFE	0.0025 M	0.0025 M	12 h	56:44
21	DCDPH	TFE	0.10 M	0.11 M	12 h	84:16
22	DCDPH	TFE	0.05 M	0.11 M	12 h	82:18
23	DCDPH	TFE	0.01 M	0.11 M	12 h	66:34
24	DCDPH	TFE	0.005 M	0.11 M	12 h	61:39
25	DCDPH	TFE	0.01 M	0.011 M	12 h	69:31
26	DCDPH	TFE	0.01 M	0.022 M	12 h	61:39
27	DCDPH	TFE	0.01 M	0.055 M	12 h	62:38

^a 82% conversion after 3 days. ^b 58% conversion after 3 days.

IV.b4. Changing the electronics of the aryl group and its effect on the diastereoselectivity of non-catalyzed chlorocyclization of unsaturated amide 1a-

D:

Electronic properties of the benzoyl group with the labeled amide substrate were varied to see the effect of nucleophilicity on the diastereoselectivity of this reaction. Both electron donating and withdrawing groups yield more *syn* product as compared to substrate **1b-D** (Table S2, entries 2-4).

Table S2. Effects of nucleophile on the *anti:syn* ratio.

Entry	Substrate label	Product label (yb-D)	dr (A:B) (anti:syn)
1	1b-D , $Ar = C_6H_5$	2b-D	76:24
2	9b-D , $Ar = 4$ -OMe-C ₆ H ₅	12b-D	78:22
3	10b-D , Ar = 4-Me-C ₆ H ₅ -	13b-D	76:24
4	11b-D , Ar = $3,5-(NO_2)_2-C_6H_5$	14b-D	57:43

General procedure for the synthesis of labeled substrates 9b-D to 11b-D:

Substrates **9b-D** to **11b-D** were synthesized similarly to that described for substrate **1b-D** with the only difference being the choice of the amine protecting groups.

$$\begin{array}{c} \begin{array}{c} D \\ Ph \end{array} \xrightarrow{H} \\ Ph \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ Ph \end{array} \xrightarrow{D} \\ \begin{array}{c} H \\ Ph \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ Ph \end{array} \xrightarrow{DCDPH (1.1 equiv)} \\ \hline TFE (0.02 \text{ M}), \text{ rt} \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ Ph \\ \begin{array}{c} D \\ Ph \end{array} \xrightarrow{O} \\ \begin{array}{c} H \\ Ph \end{array} \xrightarrow{O} \end{array} \xrightarrow{O} \\ \begin{array}{C} H \\ Ph \end{array} \xrightarrow{O} \end{array} \xrightarrow{O} \\ \begin{array}{C} H \\ Ph \end{array} \xrightarrow{O} \end{array} \xrightarrow{O} \begin{array}{O} \\ Ph \end{array} \xrightarrow{O} \end{array} \xrightarrow{O} \end{array} \xrightarrow{O} \begin{array}{O} Ph \end{array} \xrightarrow{O} \end{array} \xrightarrow{O}$$

9b-D, Deuterated 4-methoxy-N-(2-phenylallyl)benzamide

Analytical data for **9b-D**: ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 7.0 Hz, 2H), 7.34 (*t*, *J* = 7.0 Hz, 2H), 7.29 (d, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 9.0 Hz, 2H), 6.07 (br s, 1H), 5.28 (s, 1H), 4.50 (d, *J* = 5.5 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 162.2, 144.3, 138.3, 128.7, 128.6, 128.1, 126.7, 126.1, 113.75, 113.70 (t, *J* = 22.0 Hz), 55.4, 43.7.

10b-D, Deuterated 4-methyl-N-(2-phenylallyl)benzamide

Analytical data for **10b-D**: ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 7.0 Hz, 2H), 7.33 (t, *J* = 6.5 Hz, 2H), 7.28 (d, *J* = 7.0 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.17 (br s, 1H), 5.28 (s, 1H), 4.51 (dd, *J* = 5.5 Hz, *J* = 1.0 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.2, 144.25, 141.9, 138.3, 131.6, 129.2, 128.6, 128.1, 126.9, 126.0, 113.7 (t, *J* = 24.0 Hz), 43.6, 21.4. HRMS (ESI) Calculated Mass for C₁₇H₁₆DNO: ([M+H]⁺) = 253.1451, Found ([M+H]⁺) = 253.1450.

11b-D, Deuterated 3,5-dinitro-N-(2-phenylallyl)benzamide

Analytical data for **11b-D**: ¹H NMR (500 MHz, CDCl₃) δ 9.10 (s, 1H), 8.86 (s, 2H), 7.42 (d, *J* = 7.5 Hz, 2H), 7.26-7.36 (m, 3H), 6.69 (br s, 1H), 5.31 (s, 1H), 4.57 (d, *J* = 5.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 162.7, 148.6, 143.2, 137.7, 137.6, 128.7, 128.4, 127.2, 126.0, 121.0, 114.8 (t, *J* = 24.0 Hz), 44.3.

General procedure for the non-catalyzed chlorocyclization of labeled 9a-D to 11b-

D:

Substrates **12a-D** to **14b-D** were synthesized similarly to that described for substrate **2b-D**.

12b-D, Deuterated 5-(chloromethyl)-2-(4-methoxyphenyl)-5-phenyl-4,5-

dihydrooxazole

Analytical data for **12b-D**: ¹H NMR (500 MHz, C_6D_6) δ 8.20 (d, J = 8.5 Hz, 2H), 6.90-7.10 (m, 5H), 6.68 (d, J = 9.0 Hz, 2H), 4.22 (d, J = 15 Hz, 1H), 3.99 (d, J = 15 Hz, 1H), 3.42 (s, 1H), 314 (s, 3H); HRMS (ESI) Calculated Mass for $C_{17}H_{15}DNO_2CI$: ([M+H]⁺) = 303.1010, Found ([M+H]⁺) = 303.1004. 13b-D, Deuterated 5-(chloromethyl)-5-phenyl-2-(p-tolyl)-4,5-dihydrooxazole

Analytical data for **13b-D**: ¹H NMR (500 MHz, CDCl₃) δ 7.94-7.97 (m, 2H), 7.39-7.45 (m, 3H), 7.34-7.37 (m, 1H), 7.26-7.28 (m, 3H), 4.51 (d, *J* = 14.5 Hz, 1H), 4.24 (d, *J* = 14.5 Hz, 1H), 3.93 (s, 1H), 2.42 (s, 3H); HRMS (ESI) Calculated Mass for C₁₇H₁₅DNOCI: ([M+H]⁺) = 287.1061, Found ([M+H]⁺) = 287.1057.

14b-D, Deuterated 5-(chloromethyl)-2-(3,5-dinitrophenyl)-5-phenyl-4,5-

dihydrooxazole

Analytical data for **14b-D**: ¹H NMR (500 MHz, CDCl₃) δ 9.20 (s, 3H), 7.37-7.45 (m, 5H), 4.63 (d, *J* = 15.5 Hz, 1H), 4.35 (d, *J* = 15.5 Hz, 1H), 3.96 (s, 1H).

IV.c1. Procedure for the catalytic asymmetric chlorocyclization of labeled unsaturated amide 1b-D:

DCDPH (35 mg, 0.11 mmol, 1.1 equiv) was suspended in trifluoroethanol (TFE, 2.2 mL) in a screw-capped vial equipped with a stir bar. The resulting suspension was

cooled to -30 °C in an immersion cooler. (DHQD)₂PHAL (1.56 mg, 312 mL of a 5 mg/mL solution in TFE, 2 mol%) was then introduced. After stirring vigorously for 10 min, unsaturated amide 1b-D (24 mg, 0.10 mmol, 1.0 equiv) was added in a single portion. The vial was capped and the stirring was continued at -30 °C till the reaction was complete (TLC). The reaction was guenched by the addition of 10% ag. Na₂SO₃ (3 mL) and diluted with DCM (3 mL). The organics were separated and the aqueous layer was extracted with DCM (3 x 3 mL). The combined organics were dried over anhydrous Na₂SO₄. The pure product was isolated by column chromatography on silica gel using EtOAc-Hexanes (1:19) as the eluent in 93% yield. The resulting two enantiomers (ignoring the stereochemistry at the labeled carbon (C-6) as it is not distinguishable by chiral HPLC) were separated using a chiral pack OJ-H column (5% IPA in hexanes; 0.8 mL/min; 265 nm; $RT_1 = 17.9$ (S enantiomer) and $RT_2 = 34.3$ (R enantiomer)) and an R to S ratio of 93:7 was obtained. Analytical data for 2b-D: ¹H NMR (500 MHz, CDCl₃): δ 8.05 (dd, J = 1.5, 11.5 Hz, 2H), 7.32-7.50 (m, 8H), 4.49 (d, J = 15.0 Hz, 1H), 4.22 (d, J = 15.0 Hz, 1H), 3.91 (s, 1H); ¹H NMR (500 MHz, C₆D₆): δ 8.23 (m, 2H), 7.0-7.15 (m, 8H), 4.23 (d, J = 15.0 Hz, 1H), 3.98 (d, J = 15.0 Hz, 1H), 3.41 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 163.0, 141.5, 131.6, 128.7, 128.4, 128.3, 128.2, 127.4, 124.9, 87.5, 64.9, 50.8 (t, J = 24.0 Hz). HRMS (ESI) Calculated Mass for $C_{16}H_{14}ONCID$: ([M+H]⁺) = 273.0905, Found ([M+H]⁺) = 273.0900.

IV.c2. Calculations to determine the quantity of the four isomeric products 2b-D obtained through (DHQD)₂PHAL catalyzed chlorocyclization:

(DHQD)₂PHAL catalyzed chlorocyclization of labeled amide **1b-D** was investigated. The high enantioselectivity of the final cyclized product must be the result of high facial selectivity of the ring-closing event. However, understanding the enantioselectivity at both alkene ends is important to fully comprehend the role of the chiral catalyst. Desymmetrization of dichlorohydantoin by binding to the cinchona alkaloid catalyst *in the absence of substrate* is observable by NMR.² But with 1,1-disubstituted alkene substrates, the pi face selectivity of chlorenium delivery is not evident from the products formed, in which the chlorine atom resides on a non-stereogenic carbon. To measure the face selectivity of the chlorenium attack, deuterated substrate **1b-D** was utilized. Reaction of the labeled substrate under optimized asymmetric catalytic conditions results in products that enable analysis of olefin face selectivity for chlorenium delivery and ring closure via chiral HPLC and ¹H NMR spectroscopy (see Scheme S3).^{2b}

In order to obtain the ratio of four isomeric products, two groups of products epimeric at C5 (5*R* versus 5*S*) were separated by chiral HPLC [with (93:7) *er* favoring *R* configuration at C-5 as determined by crystallography].³ Since HPLC does not separate deuterated from non-deuterated analogs, we obtained D1En2/D2En2 (set1) and D1En1/D2En1 (set2) after HPLC purification using OJ-H chiral column (Scheme S3). Set1 contains two diastereomers (5*R*,6*R*) and (5*R*,6*S*), while set2 has diastereomers (5*S*,6*S*) and (5*S*,6*R*). Note that each set contains epimeric C6 compounds, reflecting

the diastereomers engendered by the deuterium labels. ¹H NMR analysis of these two sets reveal a *dr* of (99:1) for set1 (obtained from chiral HPLC separation of the major enantiomer at C-5), and a *dr* of (73:27) for set2 (obtained from chiral HPLC separation of the minor enantiomer). These diastereomeric ratios are the finalized values after correction for the amount of non-labeled product and *E/Z* mixture of the starting material. The corrections are described below.

Steps toward the calculation of the final corrected *dr* numbers are as follows. The *dr* ratios were calculated by subtracting the integral value of the non-labeled product from the overall integral of the diastereomers as explained earlier for the non-catalyzed chlorocyclization analysis. The ¹H NMR of the starting material **1b-D** shows 13% *Z* olefin as contaminant. For correction of the *E*/*Z* isomeric mixture, we used the following equations. Defining the fraction of product that arises from C6-Pro-*S* attack of Cl⁺ on the olefin as **B** (*bottom face attack*), and that from the C6-Pro-*R* attack of Cl⁺ as **T** (*top face attack*), the following equations can be derived:

$$(5R, 6R) = E \quad \frac{B}{(T+B)} + Z \quad \frac{T}{(T+B)}$$
(iv)
$$(5R, 6S) = Z \quad \frac{B}{(T+B)} + E \quad \frac{T}{(T+B)}$$
(v)

After rearrangement and cross-multiplying, we get equation (*vi*). Since the diastereomeric ratio is available from ¹H NMR analysis, the corresponding values can be inserted in equation (*vi*) to evaluate the ratio of *syn*-addition to *anti*-addition for the final corrected value.

$$\% \frac{\boldsymbol{B}}{\boldsymbol{T}} = \frac{(5R, 6S) \times Z - (5R, 6R) \times E}{(5R, 6R) \times Z - (5R, 6S) \times E}$$
(vi)

For an example, lets walk through the calculation of *anti:syn* (D1:D2) ratio of the major enantiomer (En2) using ¹H NMR analysis [D1En2/D2En2 (set1), shown in Scheme S3]. The synthesized starting material **1b-D** contains 5% unlabeled amide **1b**, the integral value of each diastereomer was calculated by subtracting the integral value of the overlapping non-labeled product as depicted in Scheme S4. Peaks **a**, **b**, **c**, **d** (AB quartet) belongs to the non- labeled substrate. The integral values of peaks **a** and **d** are equivalent (**a** = **d** = 2.05) and so are the integral values for peaks **b** and **c** (**b** = **c** = 3.60). Peaks **e** and **f** belong to the deuterated product and overlap with **b** and **d**, respectively. To obtain the corrected value of **e**, the integral value of **c** is subtracted from the overall integral of **b** and **e** (**e** = 100 – 3.60 = 96.4). Similarly to evaluate the integral of **f**, the integral value of **a** is subtracted from the overall integral value of **d** and **f** (**f** = 16.49 – 2.05 = 14.44). This calculation results in 87:13 *anti:syn* ratio prior to 13% correction for the *Z*-olefin.

Scheme S3. Face selectivity in chlorine delivery was measured by using chiral HPLC and ¹H NMR.

Assuming similar stereoselectivity of *E* and *Z* isomers, the major diastereomer (*anti*) (5*R*,6*S*) product [which was found to be *anti* diastereomer through derivatization studies], results from bottom face (**B**) attack of Cl⁺ (C6-Pro-*S* attack) on the *E* olefin (major contribution) and top face (**T**) attack of Cl⁺ (C6-Pro-*R* attack) onto the *Z* olefin

(minor contribution). Similarly, the minor diastereomer (*syn*) (5*R*,6*R*), results from top face (**T**) attack of Cl⁺ on the *E* olefin (major contribution) and bottom face (**B**) attack of Cl⁺ on *Z* olefin (minor contribution). In order to correct for 13% *Z* olefin impurity, we used equation (*vi*):

$$\% \frac{B}{T} = \frac{(14.44 \times 13) - (96.40 \times 87)}{(96.40 \times 13) - (14.44 \times 87)} = 2662.04$$

Hence, %**B** = 99.96 and %**T** = 0.04. i.e. *anti*-addition:*syn*-addition = >99:1

Scheme S4. ¹H NMR spectrum of the major enantiomer 5*R*-2b-D, cyclized under catalyzed condition.

V. Effect of other chlorine sources on the face selectivity of chlorenium attack and/or ring-closure

Dichloramine.T salt is as effective as DCDPH in chlorocyclization of unsaturated amide **1b-D** yielding the *anti* product 5*R*,6*S*-**2b-D** in 91% yield and 92:8 *er*. The ratio of each isomer is shown in Scheme S5 (top). Replacing DCDPH with TCCA, however results in a significant drop in enantioselectivity apparent from loss of C-5 selectivity (Scheme S5, bottom). The facial selectivity in chlorenium delivery suffers also, albeit not to the same extent (82:18).

Scheme S5. Change of chlorine source to DichT (top) and TCCA (bottom) and their effects on ratio of four isomers.

Borohydride reduction of oxazoline **2b** followed by sodium hydride mediated cyclization of the resulting chlorohydrin intermediate returned 1,1-disubstituted epoxy amide **3b**. ROESY and NOESY studies on the corresponding epoxy amide **3b** show that H_a (2.80 ppm) has a *syn* orientation with the phenyl group and H_b (3.10 ppm) has an *anti* orientation with the phenyl group. After assignment of H_a and H_b, the labeled substrate **2b-D** as a mixture (synthesized in the presence of the (DHQD)₂PHAL) was reduced with BH₃.THF, followed by base treatment to yield the desired labeled epoxy amide **3b**-**D**. ¹H NMR analysis of the epoxy amide **3b-D** shows only a peak at 3.10 ppm, which suggests that the deuterium has a *cis* orientation with respect to the phenyl group. Based on this finding, the deuterated carbon is assigned as the *R* configuration in the corresponding epoxy amide **3b-D**. Since the epoxy amide is formed through the *S_N*2

opening of the corresponding chlorohydrin intermediate, amide **2b-D** (major product) is assigned the *S* configuration at C-6.

VI.a. General Procedure for the synthesis of epoxy alcohols 3b and 3b-D:

Oxazoline **2b** or **2b-D** (127 mg, 0.47 mmol, 1.0 equiv, 93:7 *er* after chiral chromatographic separation) was placed in a pre-dried flask. 1,4-Dioxane (10 mL) and 1*N* hydrochloric acid (10 mL) were added to the flask. The resulting mixture was stirred for 4 h at 50 °C. After it was cooled to room temperature, the reaction mixture was neutralized with saturated NaHCO₃ and subsequently extracted six times with EtOAc. The combined organic layers was dried over Na₂SO₄ and the solvent was evaporated under reduced pressure. Column chromatography of the crude isolate gave the product **7** (94 mg) or **7-D** in 69% yield. Analytical data for **7**: ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.0 Hz, 1H), 7.34-7.35 (m, 4H), 7.30 (t, *J* = 7.0 Hz, 1H), 6.50 (br s, 1H), 4.11 (dd, *J* = 14.5 Hz, *J* = 7.0 Hz, 1H), 3.92 (d, *J* = 11.5 Hz, 1H), 3.85 (d, *J* = 11.5 Hz, 1H), 3.75 (dd, *J* = 14.0 Hz, *J* = 5.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 141.0, 133.8, 131.8, 128.6, 128.0, 126.9, 125.5, 76.7,

52.0, 48.0. HRMS (ESI) Calculated Mass for $C_{16}H_{16}NO_2CI$: ([M+H]⁺) = 290.0948, Found ([M+H]⁺) = 290.0948. Analytical data for **7-D**: ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 7.0 Hz, 2H), 7.45 (t, *J* = 7.0 Hz, 1H), 7.35-7.39 (m, 4H), 7.30 (t, *J* = 7.0 Hz, 1H), 6.51 (br s, 1H), 4.12 (dd, *J* = 14.5 Hz, *J* = 6.5 Hz, 1H), 3.91 (s, 1H), 3.74 (dd, *J* = 14.0 Hz, *J* = 5.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 141.0, 133.7, 131.8, 128.5, 128.0, 126.9, 125.5, 76.7, 51.8 (t, *J* = 23.0 Hz), 48.0. HRMS (ESI) Calculated Mass for C₁₆H₁₅DCINO₂: ([M+H]⁺) = 291.1010, Found ([M+H]⁺) = 291.1011.

K₂CO₃ (7.2 mg, 0.052 mmol, 1.5 equiv) was added to a solution of **3b** or **3b-D** (10 mg, 0.035 mmol, 1.0 equiv) in MeOH:H₂O (10:1, 1.0 mL) at 0 °C and then warmed to room temperature. After completion of the reaction, monitored by TLC, MeOH was removed under reduced pressure. The remaining aqueous suspension was extracted with EtOAc and H₂O. The organics were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified with column chromatography to yield **3b** (5.5 mg) or **3b-D** in 62% yield. Analytical data for **3b**: ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 7.0 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.25-7.44 (m, 7H), 6.29 (br s, 1H), 4.22 (dd, *J* = 14.5 Hz, *J* = 7.0 Hz, 1H), 4.01 (dd, *J* = 14.5 Hz, *J* = 4.5 Hz, 1H), 3.11 (d, *J* = 5.0 Hz, 1H), 2.81 (d, J = 5.0 Hz, 1H). HRMS (ESI) Calculated Mass for C₁₆H₁₅NO₂: ([M+H]⁺) = 254.1181, Found ([M+H]⁺) = 254.1178. Analytical data

for **3b-D**: ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 7.5 Hz, 2H), 7.22-7.56 (m, 8H), 6.39 (br s, 1H), 4.27 (dd, *J* = 14.5 Hz, *J* = 7.0 Hz, 1H), 4.06 (dd, *J* = 14.5 Hz, *J* = 5.0 Hz, 1H), 3.14 (s, 1H). HRMS (ESI) Calculated Mass for C₁₆H₁₄DNO₂: ([M+H]⁺) = 255.1244, Found ([M+H]⁺) = 255.1252.

VII. General procedure for the synthesis of carbamate substrate 1c:

A solution of di-*tert*-butyl dicarbonate (0.71 g, 3.14 mmol, 1.1 equiv) in dry DCM (1 mL) was added under nitrogen at 0 °C to a solution of amine **S-5** (0.5 g, 2.85 mmol, 1.0 equiv) and triethylamine (0.87 mL, 6.27 mmol, 2.2 equiv) in dry DCM (2 mL). The reaction mixture was stirred at room temperature for 24 h. The solvent was removed in *vacuo*, and the residue was dissolved with DCM (6 mL) and water (4 mL). The aqueous layer was extracted with DCM (3 × 5 mL). The combined organic extracts were washed with water (5 mL), dried with MgSO₄, filtered, and concentrated. The resulting mixture was purified by flash chromatography on silica gel using 10% EtOAchexane to give carbamate **1c** (*tert-butyl (2-phenylallyl)carbamate)* in 89% yield. Analytical data for **1c**: ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 7.5 Hz , 2H), 7.30-7.38 (m, 2H), 7.25-7.29 (m, 1H), 5.41 (s, 1H), 5.21 (s, 1H), 4.61 (br s, 1H), 4.17 (d, *J* = 5.0 Hz, 2H), 1.42 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ

127.9, 126.1, 112.9, 79.4, 44.3, 28.4. HRMS (ESI) Calculated Mass for $C_{14}H_{19}NO_2$: ([M+Na]⁺) = 256.1313, Found ([M+Na]⁺) = 256.1322.

VIII. General procedure for the catalytic asymmetric chlorocyclization of carbamates in *n*-PrOH:

A screw-capped vial equipped with a stir bar was charged with 1.3 mL of a 0.21 mg/mL stock solution of $(DHQD)_2PHAL$ in *n*-PrOH [0.30 mg $(DHQD)_2PHAL$, 1 mol%]. After cooling to -30 °C in an immersion cooler, DCDMH (9.5 mg, 0.041 mmol, 1.3 equiv) and benzoic acid (2.3 mg, 0.019 mmol, 0.5 equiv) were added sequentially. After stirring vigorously for 10 min, the substrate (0.037 mmol, 1.0 equiv) in *n*-PrOH (0.2 mL, precooled to reaction temperature) was added in a single portion. The vial was capped and the stirring was continued at -30 °C until the reaction was complete as judged by TLC. The reaction was quenched by the addition of 2% aq. NaOH (3 mL) and diluted with DCM (3 mL). The organics were separated and the aqueous layer was extracted with DCM (3 x 3 mL). The combined organics were dried over anhydrous Na₂SO₄ and concentrated in the presence of a small quantity of silica gel. Pure product *ent-***2c** (*5-*(*chloromethyl)-5-phenyloxazolidin-2-one*) was isolated by column chromatography on a short silica gel column using EtOAc-hexane as the eluent (87% yield). The resulting two enantiomers were separated using a chiral pack AD-H column (10% IPA in

hexanes; 1.0 mL/min. Analytical data for *ent-***2c**: ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.42 (m, 5H), 5.77 (br s, 1H), 4.11 (d, *J* = 9.0 Hz, 1H), 3.84 (d, *J* = 12.0 Hz, 1H), 3.79 (d, *J* = 8.5 Hz, 1H), 3.75 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 158.1, 139.8, 128.9, 128.8, 124.7, 83.8, 50.7, 49.4. HRMS (ESI) Calculated Mass for C₁₀H₁₀CINO₂ :([M+H]⁺) = 212.0478, Found ([M+H]⁺) = 212.0479.

IX. General procedure for the catalytic asymmetric chlorocyclization of carbamates in CHCl₃-Hexane:

 $(DHQD)_2PHAL$ (6 mg, 20 mol%) was introduced to a suspension of DCDMH (9.5 mg, 0.041 mmol, 1.3 equiv) in CHCl₃-hexane (1:1 mixture, 1.3 mL) in a screw-capped vial equipped with a stir bar. The resulting suspension was cooled to 0 °C in an immersion cooler. After stirring vigorously for 10 min, the substrate (0.037 mmol, 1.0 equiv) in CHCl₃-hexane (1:1 mixture, 0.2 mL, pre-cooled to reaction temperature) was added in a single portion. The vial was capped and the stirring was continued at 0 °C until the reaction was complete (TLC). The reaction was quenched by the addition of 2% aq. NaOH (3 mL) and diluted with DCM (3 mL). The organics were separated and the aqueous layer was extracted with DCM (3 x 3 mL). The combined organics were dried over anhydrous Na₂SO₄ and concentrated in the presence of a small quantity of silica gel. Pure products were isolated by column chromatography on a short silica gel

column using EtOAc-hexane (20-50%) as the eluent. Analytical data is similar to the part VIII.

X. Procedure for the synthesis of labeled carbamate substrate 1c-D:

Synthesis of compound **6** was shown previously. Boc-protection of the primary amine **6** to provide **1c-D** was carried out similar to the procedure for synthesis of non-labeled carbamate **1c**. The desired compound **1c-D** was synthesized in 50% yield with 86:14 *E*:*Z* ratio and 93% deuterium incorporation. Analytical data for **1c-D**: ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 7.0 Hz, 2H), 7.25-7.34 (m, 3H), 5.2 (t, *J* = 1.5 Hz, 1H), 4.61 (br s, 1H), 4.17 (d, *J* = 5.0 Hz, 2H), 1.42 (s, 9H); ¹H NMR (500 MHz, C₆D₆) δ 7.30 (d, *J* = 7.0 Hz, 2H), 7.01-7.20 (m, 3H), 5.00 (s, 1H), 4.18 (br s, 1H), 4.07 (d, *J* = 5.5 Hz, 2H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 155.7, 144.9, 138.7, 128.5, 127.9, 126.1, 112.9 (t, *J* = 250 Hz), 79.4, 44.4, 28.4. HRMS (ESI) Calculated Mass for C₁₄H₁₈DNO₂: ([M+Na]⁺) = 257.1376, Found ([M+Na]⁺) = 257.1380.

XI. Procedure for the racemic chlorocyclization of labeled unsaturated carbamate

1c-D:

Substrate **1c-D** (15 mg, 0.064 mmol, 1.0 equiv) was added to a solution of DCDMH (15 mg, 0.072 mmol, 1.2 equiv) in CHCl₃:Hexane (1:1) (2.5 mL) or *n*-PrOH (2.5 mL) in a screw-capped vial equipped with a stir bar. After stirring vigorously for 12 h, the reaction was quenched by the addition of 2% aq. NaOH (3 mL) and diluted with DCM (3 mL). The organics were separated and the aqueous layer was extracted with DCM (3 x 3 mL). The combined organics were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Pure products were isolated by column chromatography on silica gel using EtOAc-Hexanes as the eluent to give the desired product **2c-D** as a mixture of two diastereomers (97:3 *dr*) and (84:16) for reactions carried out in *n*-PrOH and CHCl₃/Hexane, respectively (as analyzed by ¹H NMR). The resulting two enantiomers were separated using a chiral pack AD-H column (10% IPA in hexanes; 1.0 mL/min. Analytical data for **2c-D**: ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.43 (m, 5H), 5.29 (br s, 1H), 4.11 (dd, *J* = 8.5 Hz, *J* = 1.0 Hz, 1H), 3.83 (s, 1H), 3.79 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.8, 139.8, 128.93, 128.90, 124.7,

83.7, 50.4 (t, J = 22.0 Hz), 49.3. HRMS (ESI) Calculated Mass for C₁₀H₉DNO₂CI: ([M+H]⁺) = 213.0541, Found ([M+H]⁺) = 213.0541.

XII. Procedure for the catalytic asymmetric chlorocyclization of labeled unsaturated carbamate 1c-D:

Procedure for the synthesis of carbamates **2c-D** and *ent-***2c-D** is identical to the one reported for the non-labeled **2c** and *ent-***2c** (Section XI).

XIII. (DHQD)₂PHAL catalyzed chlorocyclization of 1c-D monitored by ¹H NMR and HPLC:

To investigate the face selectivity of the chlorenium delivery, the labeled substrate **1c**-**D** was cyclized under both optimized catalytic conditions (i.e. cyclization in *n*-PrOH and in CHCl₃/Hexane) (see manuscript for details). Analysis of product ratios was accomplished using chiral HPLC and ¹H NMR spectroscopy (after the correction for considering the *E*:*Z* ratios) similar to that explained for amide substrate **1b-D** and previously reported alkenoic acid **1a-D**.^{2b}
XIV. Absolute stereochemical assignment at the deuterated center of substrate

2c-D and ent-2c-D:

Tosyl protection of oxazolidinone ent-2c followed by cesium carbonate mediated ring opening of the resulting chlorohydrin intermediate returned 1,1-disubstituted epoxy sulfonamide *ent*-3c. ROESY study on the corresponding epoxy amide *ent*-3c show that H_a (2.75 ppm) has a syn orientation with the phenyl group and H_b (3.20 ppm) has an anti orientation with the phenyl group. After assignment of Ha and Hb, the labeled substrate ent-2c-D as a mixture (synthesized in the presence of the (DHQD)₂PHAL) was protected with tosyl chloride and sodium hydride, followed by cesium carbonate treatment to yield the desired labeled epoxy sulfonamide ent-3c-D. ¹H NMR analysis of the epoxy sulfonamide ent-3c-D shows only a peak at 2.75 ppm, which suggests that the deuterium has an *anti* orientation with respect to the phenyl group. Based on this finding, the deuterated carbon is assigned the R configuration for the corresponding epoxy sulfonamide ent-3c-D (see Figure S2b). Since the epoxide is formed through the $S_N 2$ ring opening of the corresponding chlorohydrin intermediate, substrate ent-3c-D (major product) is assigned as the S configuration on the labeled C6 center. Similar procedure was applied to substrate 2c-D to afford epoxide 3c-D (Figure S2c).

XV. General procedure for synthesis of labeled epoxy sulfonamides ent-3c and

ent-3c-D:

Figure S1. The X-ray structure of 5S-8.4

To a stirred suspension of NaH (60% wt., 12 mg, 0.28 mmol, 2.0 equiv) in a mixture of THF (0.8 mL) and DMF (0.5 mL) at 0 °C were added successively substrate *ent-***2c-D** or *ent-***3c** (30 mg, 0.14 mmol, 1.0 equiv) in THF (1.0 mL) and *p*-TsCl (35.2 mg, 0.18 mmol, 1.3 equiv). Stirring was continued for 18 h at room temperature, at which time the reaction was quenched by the addition of a saturated solution of NH₄Cl (2.0 mL) at -78 °C with vigorous stirring. The mixture was extracted with Et₂O, and the extract was washed successively with HCl (3 mL), NaHCO₃ (3 mL), H₂O (3 mL). The

combined organics were dried over MgSO₄ and the solvent was removed under reduced pressure. Purification by column chromatography on silica gel afforded the Ntosyl oxazolidinone (*5-(chloromethyl)-5-phenyl-3-tosyloxazolidin-2-one)* **8** in 93% yield. Analytical data for **8**: ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.34-7.41 (m, 3H), 7.29-7.33 (m, 4H), 4.52 (d, *J* = 9.5 Hz, 1H), 4.22 (d, *J* = 9.5 Hz, 1H), 3.72 (dd, *J* = 17.5 Hz, *J* = 12.5 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.3, 145.8, 138.1, 133.9, 129.8, 129.4, 129.1, 128.2, 124.4, 81.3, 52.8, 50.6, 21.7. HRMS (ESI) Calculated Mass for C₁₇H₁₆NO₄SCI: ([M+H]⁺) = 366.0567, Found ([M+H]⁺) = 366.0559. Absolute configuration of 5*S*-**8** (CCDC 1416555 is the corresponding Cambridge Structural Database deposition number) was determined by single crystal X-ray diffraction (XRD).⁴

Two diastereomers could be obtained from the deuterated substrate depending on the reaction condition. Analytical data for deuterated 5R,6S-**8-D** (diastereomer B obtained from chlorocyclization in CHCl₃-Hex): ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 8.5 Hz, 2H), 7.36-7.41 (m, 3H), 7.29-7.33 (m, 4H), 4.51 (d, *J* = 9.5 Hz, 1H), 4.22 (d, *J* = 9.0 Hz, 1H), 3.73 (s, 1H), 2.43 (s, 3H). HRMS (ESI) Calculated Mass for C₁₇H₁₅DCINO₄S: ([M+H]⁺) = 367.0630, Found ([M+H]⁺) = 367.0626.

Analytical data for deuterated 5S,6S-**8-D** (diastereomer A obtained from chlorocyclization in *n*-PrOH): ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 8.5 Hz, 2H), 7.35-7.41 (m, 3H), 7.29-7.33 (m, 4H), 4.51 (d, *J* = 9.0 Hz, 1H), 4.21 (d, *J* = 9.5 Hz, 1H), 3.69 (s, 1H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.3, 145.9, 138.1, 134.0, 129.9, 129.4, 129.2, 128.3, 124.5, 81.2, 52.8, 50.4 (t, *J* = 23.0 Hz), 21.7. HRMS (ESI)

S39

Calculated Mass for $C_{17}H_{15}DCINO_4S$: ([M+H]⁺) = 367.0630, Found ([M+H]⁺) = 367.0626.

A catalytic amount of cesium carbonate (2 mg, 0.03 g.mmol⁻¹) was added to a solution of N-tosyl oxazolidinone **8** or **8-D** (20 mg, 0.55 mmol) in methanol (1mL). The reaction was stirred at room temperature for 12 h and was then concentrated in vacuum. The residue was purified by chromatography on a silica-gel column using a mixture of hexanes and ethyl acetate as the eluent to give the product in 86% yield (87% conversion). Analytical data for *ent*-**3c**: ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.5 Hz, 2H), 7.25-7.33 (m, 7H), 4.51 (t, *J* = 4.0 Hz, 1H), 3.58 (dd, *J* = 8.5 Hz, *J* = 13.5 Hz, 1H), 3.46 (dd, *J* = 4.5 Hz, *J* = 13.5 Hz, 1H), 3.20 (d, *J* = 5.0 Hz, 1H), 2.74 (d, *J* = 5.0 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.7, 137.0, 136.6, 129.8, 128.6, 128.3, 127.0, 125.7, 58.6, 53.0, 45.6, 21.5. HRMS (ESI) Calculated Mass for C₁₆H₁₇NO₃S: ([M+H]⁺) = 304.1007, Found ([M+H]⁺) = 304.1003.

Analytical data for 2S,3R-*ent*-**3c-D** (diastereomer A obtained from chlorocyclization in *n*-PrOH): ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.25-7.33 (m, 7H), 4.51 (dd, *J* = 4.5 Hz, *J* = 8.0 Hz, 1H), 3.59 (dd, *J* = 8.5 Hz, *J* = 13.5 Hz, 1H), 3.46 (dd, *J* = 4.0 Hz, *J* = 13.5 Hz, 1H), 2.74 (s, 1H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.6, 137.0, 136.5, 129.7, 128.6, 128.3, 127.0, 125.7, 58.5, 52.7 (t, *J* = 26.8 Hz), 45.6, 21.5. HRMS (ESI) Calculated Mass for C₁₆H₁₆DNO₃S: ([M+Na]⁺) = 327.0890, Found ([M+Na]⁺) = 327.0886.

S40

Analytical data for 2R,3R-*ent*-**3c-D** (diastereomer B obtained from chlorocyclization in CHCl₃:Hex): ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.5 Hz, 2H), 7.25-7.32 (m, 7H), 4.51 (t, *J* = 4.0 Hz, 1H), 3.59 (dd, *J* = 8.0 Hz, *J* = 13.5 Hz, 1H), 3.46 (dd, *J* = 4.5 Hz, *J* = 13.5 Hz, 1H), 3.19 (s, 1H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.6, 137.0, 136.6, 129.8, 128.6, 128.3, 127.0, 125.7, 58.5, 52.7 (t, *J* = 28.0 Hz), 45.7, 21.5. HRMS (ESI) Calculated Mass for C₁₆H₁₆DNO₃S: ([M+Na]⁺) = 327.0890, Found ([M+Na]⁺) = 327.0886.

Figure S2. Summary of stereochemical assignments coupled with the NMR spectra of the epoxides.

XVI. *E/Z* ratios of recovered labeled starting materials

To ensure that various *syn:anti* addition ratios seen as a function of starting material and reaction conditions are independent of *cis-trans* isomerization of the starting olefin during the course of the reaction (for example, reversibility of a putative cationic species that could stereo-randomize the starting olefin, see Scheme 3 in the main text) a detailed analysis of the starting material geometry at various reaction conversions for each reaction was performed. The data in Table S2 clearly shows that the stereochemical integrity of the starting material for labeled substrates **1b-D** and **1c-D** recovered during the course of *Reactions B, C*, and *C*' do not change.

Table S3. *E*/*Z* ratios of recovered labeled starting materials at various conversions.

	Ph H	$\begin{array}{c} \underline{Reactive} \\ R = O \\ (DHQD) \\ DCD \\ DCD \\ \end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Reactio R = C ₆ (DHQD) ₂ F DCDPH, -30 °C	Image: B 1b-D, R = C H5 1c-D, R = O TFE C C Photogram D Photogram SR,6S-2b-	$\begin{array}{c} & & \\$	on C Bu PHAL PHAL PHAL CI Ph NH CI Ph NH CI Ph NH CI Ph NH CI Ph NH
Entry	Substrate, <i>Reaction</i> ^[a]	Conv. ^[b]	<i>E/Z</i> ratio (1b-D or 1c-D) ^[c]
1	1 b-D , <i>B</i>	0%	90 : 10
2	1 b-D , <i>B</i>	28%	90 : 10
3	1 b-D , <i>B</i>	30%	90 : 10
4	1 b-D , <i>B</i>	31%	90 : 10
5	1b-D, <i>B</i>	49%	90 : 10
6	1b-D, <i>B</i>	59%	89:11
7	1b-D, <i>B</i>	76%	90 : 10
8	1 c-D , <i>C</i>	0%	92:8
9	1 c-D , <i>C</i>	42%	90 : 10
10	1с-D , <i>С</i>	56%	89:11
11	1 c-D , <i>C</i>	68%	90 : 10
12	1 c-D , <i>C</i>	80%	91:9
13	1c-D, <i>C'</i>	0%	92:8
14	1c-D, <i>C'</i>	8%	92:8
15	1 c-D , <i>C'</i>	17%	92:8
16	1 c-D , <i>C'</i>	26%	91:9
17	1c-D, C'	60%	91:9

^a1.1 equiv chlorine source was added; 2, 20, and 1 mol% catalyst loadings were used in reactions **B**, **C**, and **C'**, respectively; ^bConversion% of **2b-D** was measured by ¹H NMR analysis of the crude reaction; $^{c}E/Z$ isomeric ratios of the recovered starting material were measured by ¹H NMR analysis.

ADD Values in SMD TEE		2.19 8.48 3.61 2.47	4.40 4.54 8.54
ANS AND THE SOLUTION + EDF2/6-316*	5 8 8 33 5 8 8 33	0 [0] 11 12 12 12 13 12 12 12 12 12 12 12 12 12 12	28 [0] 88 26 2 75 -3 75 -3
AG values from the	-90.3 -37.9 -46.8 -113.9	-128. -126. -89.8 -151.9	-166.2 -161.4 -142.3 -184.4
OV UDENDE LOU I-DIOUS UI SONIPA O		3.10 0.17 0.08 1.54	5.86 5.38 5.00
VVC // 200 1-biobauol 2310*	7 4 5	6 [0] 9 46 1 -31	5 [0] 1 [0] 6 -31 26 -31 26
De values from TI Aus	-93.7 -39.7 -47.9 117.0	133.4 130.3 -93.2 155.5 165.0	173.2 167.3 146.8 189.2 204.7
UND CHCl3		92 46 16	51 28 42 76
VVC ANING CHCI3 SOLAHOL		[0] 2. -22. -30.	[0] -15 -30,
UND IL WOLL SON (SOC HO)	93.33 40.50 48.99 15.60	33.83 30.90 91.36 55.98 64.59	74.33 68.82 47.04 89.75 05.09
(IOUI/IEDA) AION	99 - 39 - 77 - 50 -1	88 -1 59 -1 36 -1 37 -1	76 -1 91 -1 92 -1 21 -1 25 -2
(IOUI/JEDA)	-5.9 -11.8 -12.7	-17.8 -14.5 -21.3 -21.3 -20.3	-29.7 -25.9 -28.7 -29.2 -29.2
Thopanol Esolv (9.38 3.66 3.85 0.75	3.03 8.84 4.84 0.60 4.60	6.69 1.39 3.06 3.60 8.26
(IOW/IESA) AIOST	66 11 06 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 -2 38 -1 31 -2 34 -2 18 -2	80 -3 85 -3 85 -3 85 -3 85 -3 89 -3 89 -3
SWD CHCI3 Ecci	-14.2 -14.2 -14.2 -14.2	-23.4 -19.3 -22.9 -21.0	-37.8 -32.8 -33.2 -34.1 -38.5
Salues Adg values		1.10 1.97 4.52 9.98	0.56 9.09 9.98
(Intervention) (Keal/mol)	800 8 80 8 80 8	43 [0] 53 - 2 95 - 2 41 - 2	52 [0] 96 51 -1 50 -2
VE = LI+EDES(VA	-84. -26. -34.	-110. -111. -68. -134.	-136. -135. -113. -155.
Souley HDD Send		3.04 3.17 5.65 1.78	1.73 2.74 5.36 1.78
(Iour/lecal) a	<u>6629</u>	0 [0] 8 2 3 4 [0] 9 9 9 11	5 -22 6 -22 7 -4 6 -3 7 -4 7 -4 7 -4 7 -4 7 -5 7 -
LI DHO VAIUS	-52.5 12.8 5.3 -76.8	-39.7 -52.7 -11.5 -76.3 -71.4	-26.8 -48.5 -48.5 -29.5 -72.1
Components (Le Starting		4.42 6.60 8.74 0.49	8.91 2.39 9.99 0.49
Q Grei	ب ور در م	8 [0] 6 3 7 -3	2 -3 - 2 - 3
	.1342 .9313 .5657 .5484	.0655 .0585 .0585 .0072 .0954	.9969 9827 9612 0128 0455
(10)	1374 -747 1207 -914	2122 2122 2122 2122 2122	2869 2869 2869 2870 2870
Components (kcal/man		80 80 29	38 10 26 29
AHrel vs Sense		[0] -7. 22. -30. -32.	[0] -13. -36. -32.
	8364 9228 0288 1442	2868 6486 1654 0206 0432	2096 4342 2703 7988 7355
(ne) OHD	374.0 47.86 207.5 14.50	21.95 121.9 121.9 122.0	59.82 869.8 869.8 869.8 869.8
EDES/e-316* V	선수선형	-210^{-10}	-28 -21 -21 -21 -21
Components (, Starting		7.80 3.49 0.93	.3.58 <mark>.3.33</mark> .7.52 3.14
Ereit	2 2 2 2 20 2 7 2	2 [0] 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 3 3 3 5 3 3 3 5 3 3 3 5 3 5	55 [0] 96 -1 17 -3
(ne) Asiaus	.2068 .1454 .7713 .6336	3522 3646 3148 4015 4050	.4976 .5192 .5029 .5574
EDEZ/6-316+ EDE	-1374 -748 -1207 -1207	-2122 -2122 -2122 -2122 -2122	-2870 -2870 -2870 -2870 -2870
		it)	lex 4a)
	mer	e 1b al con in tex nplex	es 1b comp Fig.
	confo	strat initia g. 4b t con	strat nitial wn ir ict
	west -NH	ie suk ie 1b in Fi _i roduc	i 1b) i S (sho produ
	CH2 lo Intoin	alker alker howr zed p	alken Ikene est T: ized J
	CPh=(bduct bhyda	H + 1 ar (in TS (s cycli: rodu	H + 2 Ir low Ir cycl
	IH IHCH2 Ed pro chloro	OCDM olecular ecular ecular scular	CDM ecular lecula lecula
Species	DCDN. PhCON Cyclize Mono	Sum E Unime bimole bimole	Sum D Bimolo termo termo

XVII. Summaries of computational modeling: (a) Uncatalyzed reaction:

Uncatalyzed chlorocyclization reaction summary. This spreadsheet summarizes the uncatalyzed chlorocyclization "Unimolecular" and "bimolecular" label refer to the number of substrate alkene molecules involved in the scheme, not energetics as computed at the EDF2/6-31G* and T1 levels of theory. Energies for each structure are listed in atomic Monochlorohydantoin byproduct is the lowest energy tautomer, with H on the N from which CI had been abstracted. (PhCONHCH₂CPh=CH₂) energies represent the most stable conformer as determined at the EDF2/6-31G* level. Dichlorodimethylhydantoin, the chlorenium delivery reagent. TFE = 2,2,2-trifluoroethanol. Alkene substrate units (hartrees; 1 H = 627.51 kcal/mol), while derived energy differences are shown in kcal/mol. DCDMH = total molecularity.

energetics as computed at the B3LYP-D3/6-31G*//PM6 level of theory with further explorations of solvation effects. All calculations were performed with the Spartan '16 quantum chemistry package. Energies for each structure are listed in kcal/mol (except for the abstracted. "Unimolecular" and "bimolecular"labels refer to the number of substrate alkene molecules involved in the scheme, not DHQD)>PHAL-catalyzed chlorocyclization reaction summary. This spreadsheet summarizes the catalyzed chlorocyclization rifluoroethanol. Alkene substrate (PhCONHCH2CPh=CH2) energies represent the most stable conformer as determined at the EDF2/6-31G* level. Monochlorohydantoin byproduct is the lowest energy tautomer, with H on the N from which Cl had been nitial total electronic energies, which are also listed in atomic units (hartrees; 1 H = 627.51 kcal/mol). All derived energy differences are shown in kcal/mol. DCDMH = Dichlorodimethylhydantoin, the chlorenium delivery reagent. TFE = 2,2,2. otal molecularity

XVIII. Summaries of computational modeling (b)

XIX. References:

- (1) Zeng, H.; Hua, R. J. Org. Chem. 2008, 73, 558.
- (2) (a) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. *J. Am. Chem. Soc.* 2010, *132*, 3298; (b) Yousefi, R.; Ashtekar, K. D.; Whitehead, D. C.; Jackson, J. E.; Borhan, B. *J. Am. Chem. Soc.* 2013, *135*, 14524.
- (3) Jaganathan, A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.; Borhan, B. *Angew. Chem. Int. Ed.* **2011**, *50*, 2593.
- (4) Garzan, A.; Jaganathan, A.; Salehi Marzijarani, N.; Yousefi, R.; Whitehead, D. C.; Jackson, J. E.; Borhan, B. *Chem. Eur. J.* **2013**, *19*, 9015.

ĊI

