Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Incorporation of Redox-Inactive Cations Promotes Iron Catalyzed Aerobic C-H Oxidation at Mild Potentials

Teera Chantarojsiri, Joseph W. Ziller, Jenny Y. Yang

Table of Contents

General Information & Synthesis	1
Figure S1. Solid state structure of 2Ba .	2
Figure S2. Solid state structure of [3Ba] ⁺	3
Figure S3. Solid state structure of [4Ba] ²⁺	3
Figure S4. Solid state structure of 3K	4
Figure S5. Solid state structure of 4K	4
Table S1. Oxidation catalysis under rigorously dry conditions.	5
Figure S6. Comparison between oxidation reactivity in ambient and dry conditions.	5
Figure S7. UV-vis spectra of $3K$ (top), $3Ba$ (middle), and $Fe(Cl)(Ph_2salenCl_4)$ (C) (bottom) with additional 10 equivalents of <i>tert</i> -BuOOH over 12 hours. Black trace represents $t = 0$ time point where blue trace represents the end point.	
Figure S8. UV-vis spectra of aerobic oxidation of $2K$ (top) and $2Ba$ (bottom), under air at room temperature. Black trace represents $t = 0$ time point whereas blue trace represents the end point	7
Figure S9. UV-vis spectra of 4K (top) and 4Ba (bottom)	8
Figure S10. EPR spectra of $3K$ (black), $3Ba$ (red), and Fe(Cl)(Ph ₂ salenCl ₄) (C) (blue), showing characteristics of S = $5/2$ Fe complexes.	9
Table S2. Crystal data and structure refinement for 2Ba	10
Table S3. Crystal data and structure refinement for 3K .	11
Table S4. Crystal data and structure refinement for 3Ba	12
Table S5. Crystal data and structure refinement for 4K.	13
Table S6 Crystal data and structure refinement for 4Ba	14

General Information & Synthesis

All reagents were purchased from commercial suppliers and used without purification. Unless otherwise noted, all organic chemical manipulations were performed in air. Cyclohexene was passed through a short basic alumina plug before catalytic studies to get rid of stabilizers. Compounds were purified via flash column chromatography using Sorbent Technologies 60 Å, 230-400 mesh silica gel, unless otherwise stated. Unless otherwise noted, inorganic metal complexations were performed in a Vacuum Atmospheres Co. drybox under a nitrogen atmosphere. Anhydrous solvents were sparged with UHP argon (Praxair) and passed through columns containing Q-5 and molecular sieves before use. ¹H NMR spectra were recorded at 500 MHz on Bruker instruments. ¹H NMR spectra chemical shifts are reported as δ values in ppm relative to residual protio solvent: CDCl₃ (7.26 ppm), CD₃CN (1.94 ppm). Electrospray ionization mass spectra (ESI-MS) were obtained on a Micromass LCT and collected at the University of California-Irvine Mass Spectrometry Facility. Elemental analyses were performed on a Perkin Elmer 2400 Series II CHNS elemental analyzer. Ultraviolet-visible (UV-vis) spectra were collected in a 10 mm pathlength quartz cuvette or 1 mm pathlength, using an Agilent Technologies Cary 60 UV-vis spectrometer and 8453 Diode-array UV-vis spectrometer equipped with Unisoku cryostat.

Electrochemical experiments were performed under an atmosphere of nitrogen in a solution containing 0.2 M Bu₄NPF₆ in acetonitrile. Glassy carbon was used as the working and auxiliary electrode and a silver wire was used as a pseudoreference electrode. Ferrocene and cobaltocene were used as internal standards, and all potentials are referenced to the ferrocenium/ferrocene couple. Cyclic voltammetry experiments were performed with a Pine Wavedriver 10 or 20 potentiostat and Pine Aftermath software version 1.2.7359.

Synthesis of FeMsalen (2M)

In 5 mL CH₃OH, **1M** (0.15 mmol, 1 equiv) and Fe(OAc)₂ (28.5 mg, 0.165 mmol, 1.1 equiv) were dissolved and heated at 65°C for 1 h. The reaction changed color from yellow to dark brown. The volume was reduced under vacuum before recrystallization by Et₂O diffusion. Crystals suitable for X-ray crystallography were obtained with Et₂O diffusion into an CH₃CN solution. **2K**: Yield 75.8 mg (77.3 %) ESI-MS m/z calcd C₂₃H₂₄F₃FeKN₂O₉S 656.0 (M), found 656.0, Calcd C₂₃H₂₄F₃FeKN₂O₉S (656.45 g·mol⁻¹): C, 42.08; H, 3.69; N, 4.27. Found: C, 41.86; H, 3.31; N, 4.09. **2Ba**: Yield 114.8 mg (85.0 %) ESI-MS m/z calcd [C₂₄H₂₇BaF₃FeN₂O₁₀S]⁺ 786.0 (M-CF₃SO₃+CH₃O⁻), found 785.9, Calcd C₂₄H₂₄F₆FeBaN₂O₁₂S₂ (903.74 g·mol⁻¹): C, 31.90; H, 2.68; N, 3.10. Found: C, 32.18; H, 2.72; N, 2.87.

Synthesis of FeClMsalen (3M)

In 5 mL EtOH, **1M** (0.1 mmol, 1 equiv), FeCl₃ (18 mg, 0.11 mmol, 1.1 equiv), and triethylamine (30 μ L, 0.2 mmol, 2 equiv) were dissolved and heated at 80°C for 1 h. The reaction changed color from yellow to dark brown with precipitate. The precipitate was collected after vacuum filtration. Crystals suitable for X-ray crystallography were obtained with Et₂O diffusion into an CH₃CN solution. **3K**: Yield 53.8 mg (77.8 %) ESI-MS m/z calcd C₂₂H₂₄ClFeKN₂O₆ 542.0 (M-CF₃SO₃-), found 542.0, Calcd C₂₃H₂₄ClF₃FeKN₂O₉S (691.90 g·mol⁻¹): C, 39.93; H, 3.50; N, 4.05. Found: C, 40.21; H, 3.56; N, 3.83. **3Ba**: Yield 32.0 mg (34.0 %) ESI-MS m/z calcd [C₂₃H₂₇BaClFeN₂O₇]⁺ 671.9 (M-CF₃SO₃-+CH₃O-) found 671.9 Calcd C₃₁H₄₁BaClF₆FeN₃O₁₄S₂ (1086.00 g·mol⁻¹): C, 34.27; H, 3.80; N, 3.87. Found: C, 34.36; H, 3.64; N, 3.65.

Synthesis of $[Fe_2(\mu-Oxo) (salenM)_2]$ (4M)

In 2 mL CH₃CN, **2M** (0.033 mmol) were exposed to air overnight. The resulting solution was recrystallized. Crystals suitable for X-ray crystallography were obtained with Et₂O diffusion into an CH₃CN solution. **4K**: Yield 29.3 mg (87.7 %) ESI-MS m/z calcd for C₄₅H₄₈F₃Fe₂K₂N₄O₁₆S₁⁺ 1179.1 (M-CF₃SO₃) found 1179.1, Calcd C₄₆H₄₈F₆Fe₂K₂N₄O₁₉S₂ (1328.90 g·mol⁻¹): C, 41.58; H, 3.64; N, 4.22. Found: C, 41.49; H, 3.39; N, 4.10. **4Ba**: Yield 40.7 mg (88.9 %) m/z calcd C₄₇H₄₈Ba₂F₉Fe₂N₄O₂₂S₃⁺ 1674.9 (M-CF₃SO₃⁻), found 1674.7 Calcd C₄₈H₅₆Ba₂F₁₂Fe₂N₄O₂₉S₄ (1895.54 g·mol⁻¹): C, 30.41; H, 2.98; N, 2.96. Found: C, 30.26; H, 2.99; N, 3.25.

General Procedure for NMR Experiments

An O_2 saturated solution (0.25 mL) of 1 M cyclohexene and 20 mM benzene, as an internal standard, in CD_3CN was mixed with an O_2 saturated solution (0.25 mL) of 1 mM Fe complexes (or blank solution in the control experiments) in an NMR tube. The headspace was topped off with extra O_2 and tightly capped. NMR spectra were taken 24 hours after with a long delay time (12.6 seconds).

Solid State Structures

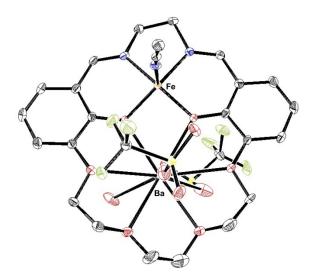
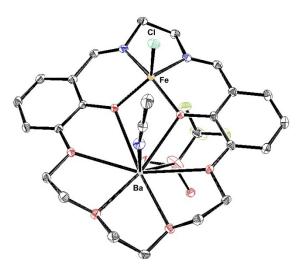
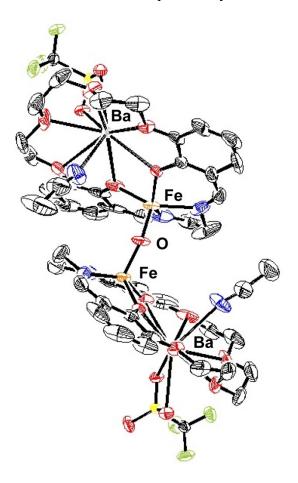




Figure S1. Solid state structure of 2Ba. Ellipsoids were drawn at 50% probability

Figure S2. Solid state structure of [**3Ba**]⁺. Outer sphere trifluoromethanesulfonate (OTf⁻) anion is omitted for clarity. Ellipsoids are drawn at 50% probability.

Figure S3. Solid state structure of [**4Ba**]²⁺. Outer sphere trifluoromethanesulfonate (OTf) anions are omitted for clarity. Ellipsoids are drawn at 50% probability.

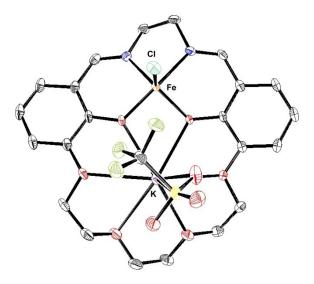
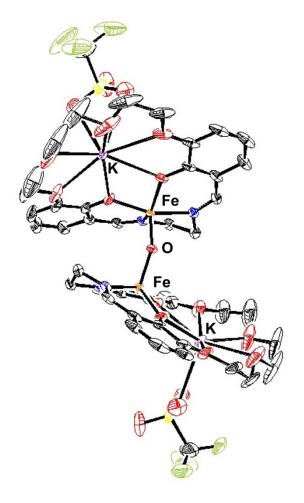



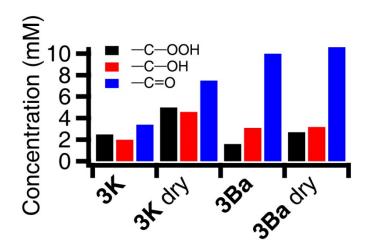
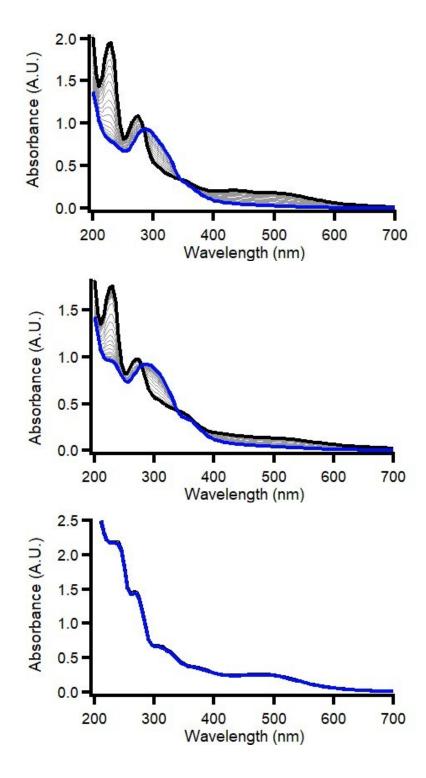
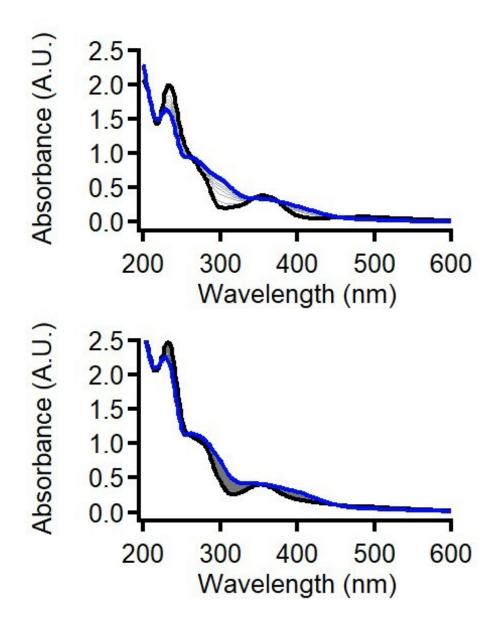
Figure S4. Solid state structure of 3K. Ellipsoids are drawn at 50% probability.

Figure S5. Solid state structure of **4K** (connectivity only). Ellipsoids are drawn at 50% probability.

Table S1. Oxidation catalysis under rigorously dry conditions.

Complexes	Cyclohexene Hydroperoxide (mM)	Cyclohexenol (mM)	Cyclohexenone (mM)	Turnover Number*
3K	5.0	4.6	7.5	39.2
3Ba	2.7	3.2	10.6	48.6
С	0	0.35	0	0.7
No Fe control	1	0.4	0	0.8

^{*-}OOH was not counted toward turnover number

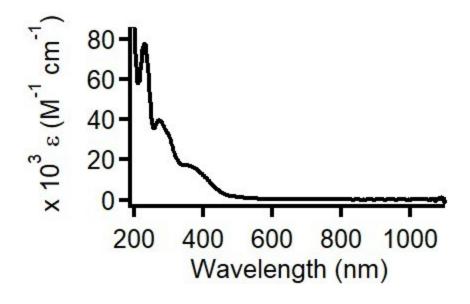

Figure S6. Comparison between oxidation reactivity in ambient and dry conditions.

Figure S7. UV-vis spectra of **3K** (top), **3Ba** (middle), and Fe(Cl)(Ph₂salenCl₄) (**C**) (bottom) with additional 10 equivalents of *tert*-BuOOH over 12 hours. Black trace represents t = 0 time point whereas blue trace represents the end point.

Figure S8. UV-vis spectra of aerobic oxidation of **2K** (top) and **2Ba** (bottom), under air at room temperature. Black trace represents t = 0 time point whereas blue trace represents the end point.

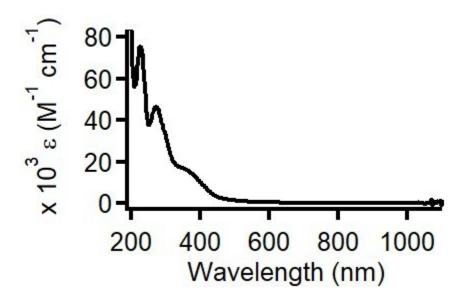
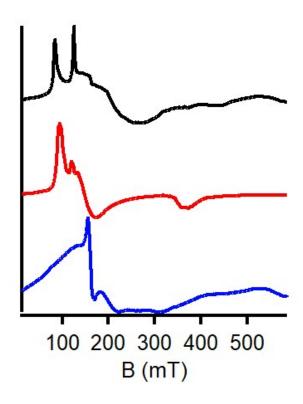



Figure S9. UV-vis spectra of 4K (top) and 4Ba (bottom)

Figure S10. EPR spectra of **3K** (black), **3Ba** (red), and $Fe(Cl)(Ph_2salenCl_4)$ (C) (blue), showing characteristics of S = 5/2 Fe complexes.

Table S2. Crystal data and structure refinement for 2Ba.

Empirical formula $C_{52} H_{54} Ba_2 F_{12} Fe_2 N_6 O_{24} S_4$

Formula weight 1889.63

Temperature 88(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group $P\bar{1}$

Unit cell dimensions $a = 10.8491(7) \text{ Å} \quad \alpha = 75.9118(8)^{\circ}.$

b = 11.7518(8) Å $\beta = 86.5298(8)^{\circ}$.

c = 14.5176(10) Å $\gamma = 71.8096(8)^{\circ}$.

Volume 1705.3(2) Å³

Z 1

Density (calculated) 1.840 Mg/m³
Absorption coefficient 1.792 mm⁻¹

F(000) 936 Crystal color orange

Crystal size $0.399 \times 0.195 \times 0.100 \text{ mm}^3$

Theta range for data collection 1.877 to 29.047°

Index ranges $-14 \le h \le 14, -15 \le k \le 15, -19 \le l \le 19$

Reflections collected 21189

Independent reflections 8297 [R(int) = 0.0177]

Completeness to theta = 25.500° 99.9 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7458 and 0.6271

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 8297 / 0 / 499

Goodness-of-fit on F^2 1.034

Final R indices [I>2sigma(I) = 7734 data] R1 = 0.0221, wR2 = 0.0542 R indices (all data, 0.73 Å) R1 = 0.0243, wR2 = 0.0554 Largest diff. peak and hole 1.316 and -0.511 e.Å $^{-3}$

Table S3. Crystal data and structure refinement for 3K.

Empirical formula C23 H24 Cl F3 Fe K N2 O9 S

Formula weight 691.90
Temperature 128(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic

Space group P2₁/n

Unit cell dimensions $a = 11.2530(13) \text{ Å} \quad \alpha = 90^{\circ}.$

b = 17.652(2) Å $\beta = 90.075(2)^{\circ}$.

 $c = 13.5982(15) \text{ Å} \qquad \gamma = 90^{\circ}.$

Volume 2701.2(5) Å³

Z 4

Density (calculated) 1.701 Mg/m³
Absorption coefficient 0.965 mm⁻¹

F(000) 1412 Crystal color red

Crystal size $0.356 \times 0.218 \times 0.139 \text{ mm}^3$

Theta range for data collection 1.890 to 28.760°

Index ranges $-15 \le h \le 15, -22 \le k \le 23, -17 \le 1 \le 17$

Reflections collected 31457

Independent reflections 6588 [R(int) = 0.0528]

Completeness to theta = 26.000° 100.0 % Absorption correction None

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 6588 / 0 / 370

Goodness-of-fit on F² 1.033

Final R indices [I>2sigma(I) = 5410 data] R1 = 0.0349, wR2 = 0.0849R indices (all data, 0.73 Å) R1 = 0.0464, wR2 = 0.0912

Extinction coefficient n/a

Largest diff. peak and hole 0.455 and -0.902 e.Å-3

Table S4. Crystal data and structure refinement for 3Ba.

Empirical formula C26 H27 Ba Cl F6 Fe N3 O12 S2

Formula weight 980.26
Temperature 88(2) K
Wavelength 0.71073 Å
Crystal system Triclinic
Space group P-1

Unit cell dimensions a = 9.7023(6) Å $\alpha = 106.9710(10)^{\circ}$.

b = 12.7853(7) Å β = 104.4130(10)°. c = 15.6368(9) Å γ = 98.1780(10)°.

Volume 1747.81(18) Å³

Z 2

Density (calculated) 1.863 Mg/m³
Absorption coefficient 1.826 mm⁻¹

F(000) 970 Crystal color black

Crystal size $0.478 \times 0.213 \times 0.194 \text{ mm}^3$

Theta range for data collection 1.431 to 29.074°

Index ranges $-13 \le h \le 12, -17 \le k \le 16, 0 \le 1 \le 21$

Reflections collected 8424

Independent reflections 8424 [R(int) = ?]

Completeness to theta = 26.000° 99.8 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.745802 and 0.606257

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 8424 / 0 / 471

Goodness-of-fit on F^2 1.077

Final R indices [I>2sigma(I) = 7898 data] R1 = 0.0209, wR2 = 0.0571 R indices (all data, 0.73 Å) R1 = 0.0232, wR2 = 0.0582

Extinction coefficient n/a

Largest diff. peak and hole 0.561 and -0.418 e.Å-3

Table S5. Crystal data and structure refinement for **4K.** Connectivity ONLY

Empirical formula $C_{46} H_{48} F_6 Fe_2 K_2 N_4 O_{19} S_2$

Formula weight 1328.90
Temperature 88(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic

Space group C2/c

Unit cell dimensions a = 32.941(2) Å $\alpha = 90^{\circ}$.

b = 8.2524(6) Å $\beta = 108.3022(8)^{\circ}$.

 $c = 21.7664(15) \text{ Å} \qquad \gamma = 90^{\circ}.$

Volume 5617.7(7) Å³

Z 4

Density (calculated) 1.571 Mg/m³
Absorption coefficient 0.834 mm⁻¹

F(000) 2720 Crystal color red

Crystal size $0.429 \times 0.312 \times 0.185 \text{ mm}^3$

Theta range for data collection 1.302 to 28.779°

Index ranges $-42 \le h \le 44, -10 \le k \le 11, -29 \le l \le 29$

Reflections collected 32509

Independent reflections 6863 [R(int) = 0.0198]

Completeness to theta = 25.500° 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7458 and 0.6629

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 6863 / 0 / 337

Goodness-of-fit on F^2 1.055

Final R indices [I>2sigma(I) = 6128 data] R1 = 0.0931, wR2 = 0.2677 R indices (all data, 0.74 Å) R1 = 0.0990, wR2 = 0.2740 Largest diff. peak and hole 2.931 and -1.625 e.Å-3

Table S6. Crystal data and structure refinement for 4Ba.

Empirical formula $[C_{26} H_{27} Ba F_6 Fe N_3 O_{12.5} S_2]_{\infty}$

Formula weight 952.81
Temperature 88(2) K
Wavelength 0.71073 Å
Crystal system Orthorhombic

Space group Pbcm

Unit cell dimensions a = 9.5075(4) Å $\alpha = 90^{\circ}$.

b = 27.3543(12) Å β = 90°. c = 28.8412(12) Å γ = 90°.

Volume 7500.8(6) Å³

Z 8

Density (calculated) 1.687 Mg/m³
Absorption coefficient 1.631 mm⁻¹

F(000) 3776 Crystal color orange

Crystal size $0.284 \times 0.190 \times 0.098 \text{ mm}^3$

Theta range for data collection 1.489 to 29.033°

Index ranges $-12 \le h \le 12, -36 \le k \le 35, -37 \le l \le 39$

Reflections collected 89405

Independent reflections 9791 [R(int) = 0.0457]

Completeness to theta = 25.500° 99.9 %
Absorption correction Numerical

Max. and min. transmission 0.6566 and 0.4943

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 9791 / 11 / 439

Goodness-of-fit on F^2 1.025

Final R indices [I>2sigma(I) = 7734 data] R1 = 0.0680, wR2 = 0.1813 R indices (all data, 0.73 Å) R1 = 0.0849, wR2 = 0.1950

Largest diff. peak and hole 3.301 and -2.011 e.Å-3