Supporting Information

Extraction of nickel from NiFe-LDH into Ni₂P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting

Fang-Shuai Zhang,[‡] Jia-Wei Wang,[‡] Jun Luo,^b Rui-Rui Liu,^b Zhi-Ming Zhang,^{*b} Chun-Ting He,^{*a} and Tong-Bu Lu^{*ab}

Catalysts	η at 10 mAcm ⁻²	η at 100 mAcm ⁻²	Tafel slope	Mass loading	Substr ate ^b	References
	(mV) ^c	(mV)	(mVdec ⁻¹)	(mg cm ⁻²)		
P-NiFe	205	230	32	~1.0	NF	This work
NiFe-LDH	250	280	70	~1.0	NF	This work
NiFe-LDH@r- GO	225	N.A.	39	0.25	NF	Angew. Chem. Int. Ed. 2014, 53, 7584.
NiFe-LDH@CNT	~260	N.A.	31	0.25	CFP	J. Am. Chem. Soc. 2013, 135, 8452.
Fe(PO ₃) ₂	177 ^d	221	51.9	~8.0	NF	PNAS2017, 114, 5607.
Gelled FeCoW	191	~250	37	0.21	NF	Science 2016,352, 333.
CoP@ rGO	280	440	75	0.28	GCE	J. Am. Chem. Soc. 2016, 138, 14686.
CoMnP	330	N.A.	61	0.28	GCE	J. Am. Chem. Soc. 2016, 138, 4006.
NiCoP@C	330	N.A.	96	0.25	GCE	Angew. Chem. Int. Ed. 2017 , 56, 3897.
NiFeSe	N.A.	270	47.2	~1.5	NF	ACS Appl. Mater. Interfaces 2016, 8, 19386
Pulse- Electrodeposited NiFeOOH	260	N.A.	N.A.	~0.1	Au	ACS Catal. 2015, 5, 6680.
Electro-oxidized Co _{0.37} Ni _{0.26} Fe _{0.37} O	232	~280	38	N.A.	CC	ACS Cent. Sci. 2015, 1, 244.
NiFeO _x	230	260	31.5	1.5	CFP	Nat. Commun. 2015, 6, 7261.
Fe-doped Ni ₃ S ₂	N.A.	253	65.5	~7.9	NF	J. Mater. Chem. A 2015, 3, 23207.
Co ₃ O ₄ @C nanowire array	220	N.A.	61	~0.2	Cu foil	J. Am. Chem. Soc. 2014, 136, 13925.
MoS ₂ /Ni ₃ S ₂	218	290	88	9.7	NF	Angew. Chem. Int. Ed. 2016 , 55, 6702.
CoMn-LDH	324	N.A.	43	0.142	GCE	J. Am. Chem. Soc. 2014, 136, 16481.
CoFe ₂ O ₄ /C NRAs	240	290	45	1.03	NF	Adv. Mater. 2017, 29, 1604437.
Co ₄ N nanowire array	257	N.A.	44	~0.82	CC	Angew. Chem. Int. Ed. 2015, 54, 14710.
FeP@rGO	260	N.A.	175	~0.71	CFP	J. Mater. Chem. A 2016, 4, 9750.
Ni ₃ Se ₂ ^c	290	N.A.	142	0.022	NF	Energy Environ. Sci. 2016, 9, 1771.
Ni ₃ C@C	~320	N.A.	46	0.285	GCE	Adv. Mater. 2016, 28, 3326.
W _{0.5} Co _{0.4} Fe _{0.1}	250	310	32	N.A.	NF	Angew. Chem. Int. Ed. 2017 , 56, 4502.
CoTe ₂	357	N.A.	32	0.25	GCE	Angew. Chem. Int. Ed.2017, 10.1002/anie.201701531.
CoAl-LDH	252	N.A	36	0.05	GCE	Adv. Mater.2016, 28, 7640.

Table S1. A comparison of the OER overpotentials for the reported electrocatalysts.^a

a) The electrolyte is 1.0 M KOH unless otherwise stated. η is overpotential. b) NF = nickel foam; GCE = glassy carbon electrode; CFP = carbon fiber paper; CC = carbon cloth. c) The overpotentials obtained from the chronoamperometric measurements.

d) The overpotentials obtained from Tafel slope.

Table S2. A comparison of the reported bifunctional electrocatalysts on nickel foam (NF)for overall water splitting in 1.0 M KOH (or NaOH) solution.

Catalysts	OER $\eta@10$ mAcm ⁻² (mV)	HER $\eta @ 10$ mAcm ⁻² (mV)	Cell voltage (10 mAcm ⁻² for overall water splitting) (V)	Substrate	Reference
P-NiFe	205	75	1.51	NF	
NiFe-LDH	250	230	1.73	NF	This work
IrO ₂ (+) / Pt/C (-)	320	45	1.58	NF	
NiFe-LDH	240	210	1.70	NF	Science 2014, 345, 1593.
NiFe-LDH@ DG10	210	115@20 mAcm ⁻²	1.5@20 mAcm ⁻²	NF	Adv. Mater. 2017, 29, 1700017.
Porous MoO ₂	260	25	1.53	NF	Adv. Mater. 2016, 28, 3785.
NiSe nanowire	N.A.	96	1.63	NF	Angew. Chem. Int. Ed. 2015, 54, 9351.
Ni ₂ P	290	220	1.63 (5 mg cm ⁻² loading)	NF	<i>Energy Environ. Sci.</i> 2015 , <i>8</i> , 2347.
Ni _{2/3} Fe _{1/3} @rGO	240	~550	N.A.	NF	ACS Nano 2015, 9, 1977.
Ni ₃ FeN nanoparticles	280	158	N.A.	NF	Adv. Energy Mater. 2016, 6, 1502585.
Fe- and O-doped Co ₂ P	274	88	1.54	NF	ACS Nano 2016, 10, 8738.
NiCoP	280	35	1.58	NF	Nano Lett. 2016, 16, 7718
MoS ₂ /Ni ₃ S ₂	218	110	1.56	NF	Angew. Chem. Int. Ed. 2016, 55, 6702.
Co-Mn carbonate hydroxide	N.A.	180	1.68	NF	J. Am. Chem. Soc. 2017, 139, 8320.

Fig. S1. SEM images of NiFe-LDH nanosheets on NF.

Fig. S2. XRD pattern for NiFe-LDH.

Fig. S3. SEM images of $Ni_2P@FePO_x$ samples prepared at the phosphorization temperature of a) 473, b) 573, c) 673 and d) 773 K for 3 h.

Fig. S4. SEM images of $Ni_2P@FePO_x$ samples prepared with varying time scales (1, 3 and 5 h) of phosphorization at 573 K. a) 1, b) 3 and c) 5 h.

Fig. S5. XRD patterns for $Ni_2P@FePO_x$ (left) and P-Ni (right), demonstrating the existence of Ni_2P species in $Ni_2P@FePO_x$ and P-Ni.

Fig. S6. HRTEM image of $Ni_2P@FePO_x$ sample, showing the crystalline nanoparticles are embedded in the amorphous substrate.

Fig. S7. EELS of iron in Ni₂P@FePO_x with the comparison of Fe_2O_3 sample, indicating that the amorphous substrate is not the Fe_2O_3 species.

Fig. S8. EDS of Ni₂P@FePO_x sample by SEM.

Fig. S9. LSV curves for P-NiFe (red) and bare NF (black) at the scan rate of 5 mV/s for a) HER, and b) OER.

Fig. S10. HRTEM image of P-NiFe after 25 h of CCE for HER.

Fig. S11. HAADF-STEM image and EDS elemental mapping images for P-NiFe after 25 h of CCE for HER.

Fig. S12. XRD pattern of P-NiFe after 25 h of CCE for HER.

Fig. S13. XPS results for as-prepared Ni₂P@FePO_x (top) and P-NiFe after 25 h of CCE for HER (bottom), showing a) Ni 2p, b) Fe 2p and c) P 2p signals.

Fig. S14. XPS results for P-NiFe after LSV measurement and before CCE for HER, indicating the surface oxidation of Ni_2P into $Ni(OH)_2$ occurs rapidly in solution.

Fig. S15. Raman spectra for P-NiFe, and P-NiFe after 25 h of CCE for HER and OER, respectively.

Fig. S16. EIS plots of P-NiFe (red) and NiFe-LDH (black) after 25 h of CCE for HER a) and OER b), respectively.

Fig. S17. CVs of P-NiFe (blue) and NiFe-LDH (red) after 25 h of CCE for HER a) and OER b) in 1.0 M KOH solution at varying scan rates, with the plots of the capacitive current density (*j*) as a function of scan rate (*v*).

Fig. S18. SEM image of P-NiFe after 25 h of CCE for HER in 1.0 M KOH.

Fig. S19. Calculated free energies of H* adsorption on the surface of different catalytic active sites of the catalysts.

Fig. S20. Current density trace of CCE at 1000 mA/cm² for NiFe-LDH in 1.0 M KOH.

Fig. S21. HRTEM image of P-NiFe after 25 h of CCE for OER.

Fig. S22. EDS elemental mapping images of P-NiFe after 25 h of CCE for OER by STEM-HAADF.

Fig. S23. XRD pattern of P-NiFe after 25 h of CCE for OER.

Fig. S24. XPS results for as-prepared P-NiFe (top) and P-NiFe after 25 h of CCE for OER (bottom), showing a) Ni 2p, b) Fe 2p and c) P 2p signals.

Fig. S25. XPS results for P-NiFe after LSV measurement and before CCE for OER, indicating the surface oxidation of Ni₂P into Ni(OH)₂ occurs rapidly in solution.

Fig. S26. SEM image of P-NiFe after 25 h of CCE for OER in 1.0 M KOH.

Fig. S27. DFT calculation. The primitive steps and energy diagram of the OER process on the model surface structure of Ni₂P, Ni₂P@Ni(OH)₂, Ni₂P@FeO(OH)₃, NiFeO(OH)₃ (NiFe-LDH), and Ni₂P@NiFeO(OH)₃ (P-NiFe after OER).

Fig. S28. LSV curves for P-NiFe before (black) and after (red) 100 h of overall water splitting at 10 mA/cm².