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A. QUANTUM OPTICAL OPERATORS

We define, herein, the quantum optical operators we have
used in our work. a and a† are N -dimensional column vec-
tors for the bosonic annihilation and creation operators, re-
spectively. That is,

a ≡ (a1, a2, ..., aN )T , a† ≡ (a†1, a
†
2, ..., a

†
N )T (1)

where [ai, a
†
j ] = δij .

The N -mode displacement operator is defined as below
with the displacement vector α = (α1, α2, ..., αN ),

D̂N (α) = exp{αa† −α∗a}. (2)

The N -mode squeezing operator is defined as below with
the squeezing parameter matrix ζ = diag(ζ1, ζ2, ..., ζN ).

ŜN (ζ) = exp{a
Tζ†a

2
− (a†)Tζa†

2
}. (3)

The N -mode rotation operator is defined as below with a
unitary matrix U ,

R̂N (U) = exp{(a†)T ln(U)a}. (4)

B. EXPERIMENTAL PARAMETERS FOR QUANTUM
OPTICAL OPERATIONS

We present, here, the parameters used in the trapped-ion
device for the quantum optical operations. The displacement
operator with two modes is rewritten as follows,

D̂2(α) = D̂(αX, αY)

= exp{αXa
†
X − α

∗
XaX}exp{αYa

†
Y − α

∗
YaY}. (5)

As seen in Eq. 5, the displacement operations of the X and
Y modes can be implemented independently.

The squeezing operator with the two mode parameter ζ =
diag(ln

√
ω1, ln

√
ω2) = diag(ζX, ζY) can be rewritten as fol-

lows,

Ŝ2(ζ) = Ŝ(diag(ζX, ζY))

= exp{ζX
2

(aXaX − a†Xa
†
X)}exp{ζY

2
(aYaY − a†Ya

†
Y)}.
(6)
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In the trapped-ion experiment, the squeezing operations
are limited to the range of ζX(ζY) ≤ 4 in Eq. (6). Since
ÛDok involves the squeezing and inverse squeezing opera-
tions, we can freely rescale the squeezing parameters with a
single arbitrary constant. In our experiment, we rescale the
squeezing parameters by a factor of 1/25, diag(ζX, ζY) =
diag(ln(

√
ω1/25), ln(

√
ω2/25)) for the first squeezing oper-

ation and diag(ζ ′X, ζ
′
Y) = diag(ln(

√
ω′1/25), ln(

√
ω′2/25))

for the anti-squeezing in the Eq. (2) of the main text. As dis-
cussed in Ref [1], the Doktorov operation ÛDok in Eq. (2) of
the main text can be expressed in terms of the ladder operators
as

a′† =
1

2
(J − (J t)−1)a+

1

2
(J + (J t)−1)a† +

1√
2
α (7)

where J = ζ′Uζ−1. Since J is invariant for the parameter
sets (ζ′, ζ) and (ζ′/25, ζ/25) as an example, the resulting
ÛDok is maintained.

The two mode rotation operation can be written simply with
a rotation angle θ,

R̂2(U) = R̂(θ) = eθ(â
†
XâY−âXâ

†
Y) (8)

where U =

(
cos θ sin θ
− sin θ cos θ

)
becomes the unitary rotation

matrix. The rotation angle θ is controlled by Raman laser
beams in the trapped-ion simulation.

TABLE I. Parameters for the trapped-ion simulation of SO2→SO+
2

and SO−2→SO2 .

SO2→SO+
2 SO−2→SO2

αX, αY (−0.026, 1.716) (1.360,−0.264)
ω′1, ω

′
2 (1112.7, 415) (1178.4, 518.9)

ζ′X, ζ
′
Y (0.288,−0.204) (0.317,−0.093)

U

(
0.982 0.188
−0.188 0.982

) (
0.998 0.065
−0.065 0.998

)
θ 0.1892 0.065

ω1, ω2 (1178.4, 518.9) (989.5, 451.4)
ζX, ζY (0.317,−0.093) (0.229,−0.162)

C. QUANTUM OPTICAL OPERATIONS IN TRAPPED-ION
SYSTEM

We implement the quantum optical operations (D̂, Ŝ and
R̂) via controlling Raman laser beams. Fig. 1 shows the en-
ergy diagram of a trapped 171Yb+. The two levels in hyper-
fine structure of 2S1/2 manifold are usually used to realize
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a qubit, which are denoted as |↓〉 ≡ |F = 0,mF = 0〉 and
|↑〉 ≡ |F = 1,mF = 0〉. The red color (mode X) and blue
color (mode Y) harmonic oscillators stand for the motional
degrees of freedom. The Raman process is implemented via
the virtual energy level, which is 10.8 THz detuned from P1/2

level, |e〉.
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FIG. 1. Energy level diagram of 171Yb+ with two motional modes
and basic Raman transitions. The electronic levels (|↑〉 , |↓〉) with
the difference ωhf , and the phonon levels of modes X and Y with
the frequencies of ωX and ωY are involved in the Raman process. By
controlling the frequency difference of Raman1 and Raman2, we can
implement single mode and two modes quantum operations.

Our quantum optical operations are implemented in a way
that the phase coherence among them are well preserved. All
the operations are internal-state dependent, which requires
one frequency in Raman 1, ωR1, and two frequencies and
phases in Raman 2, ωR2,1 and ωR2,2, where Raman 1 and
Raman 2 are counter-propagating towards the ion. Here, we
show how the quantum optical operations are implemented
with these laser beams. We start from the light-matter interac-
tion Hamiltonian as shown in the following equation,

H =
~ωhf

2
σZ + ~ωX(a†XaX +

1

2
) + ~ωY(a†YaY +

1

2
)

+
∑
j=1,2

~g
2

(σ+ + σ−)(ei(
~k·~r−ωL,jt+φj) + e−i(

~k·~r−ωL,jt+φj)),

(9)

where g is the Rabi frequency, σ+ = |↑〉 〈↓| and σ− = |↓〉 〈↑|,
effective laser frequencies ωL,j = ωR1−ωR2,j , phases φj and
~k · ~r = kXx+ kYy.

The interaction Hamiltonian with respect to H0 =
~ωhf

2
σZ + ~ωX(a†XaX +

1

2
) + ~ωY(a†YaY +

1

2
) with ro-

tating wave approximation and the Lamb-Dicke approxima-
tion η2X(Y) (2 〈n〉+ 1) � 1, where Lamb-Dicke param-

eters ηX =
√

2kX
√
~/2MYbωX = 0.080 and ηY =

√
2kY

√
~/2MYbωY = 0.087, can be written as

HI =
∑
j=1,2

~g
2
σ+{1 + iηX(aXe

−iωXt + a†Xe
iωXt)

+ iηY(aYe
−iωYt + a†Ye

iωYt)

− ηXηY(aXe
−iωXt + a†Xe

iωXt)(aYe
−iωYt + a†Ye

iωYt)}
e−iδjteiφj + h.c., (10)

where δj = ωL,j − ωhf .
When we consider the resonant terms, we have the follow-

ing effective Hamiltonian. By setting δ1 = ωX, δ2 = −ωX,
as shown in Fig. 2a, the displacement operation D̂ of a single
mode (here, mode X as an example) is written as

D̂(αX, 0)

= exp
{
−iαX(σ+e

iφA − σ−e−iφA)(a†Xe
−iφB + aXe

iφB )
}
,

(11)

where αX = tgD = t
ηX~g

2
, φA = φ1 + φ2 and φB =

φ2 − φ1. When φ1 = φ2 = π/2, D̂(αX, 0) becomes
σx−dependent displacement operation. We change it to
σz−dependent displacement operation with additional π/2
carrier rotation pulses (along σy and σ−y axis) before and af-
ter σx−dependent displacement.

Similarly, by setting δ1 = ωX − δS, δ2 = −ωX − δS, as
shown in Fig. 2b, the squeezing operation Ŝ of a single mode
(here, mode X as an example) is written as

Ŝ(ζX, 0) = exp
{
−iζX(a†Xa

†
Xe

iφB + aXaXe
−iφB)σz

}
,

(12)

where ζX = tgS = t
~η2Xg2

8
(

1

δ1
− 2

δ1 − ωX
+

1

δ1 − 2ωX
) and

φB = φ2 − φ1. In our experiment, the δS is set as five times
of anti-Jaynes-Cummings coupling Rabi frequency (ηXg).

For rotation operation R̂, we set δ1 = −ωX − δR, δ2 =
−ωY −δR, which leads the configuration shown in Fig. 2c. In
our experiment, the δR is also set as five times of anti-Jaynes-
Cummings coupling Rabi frequency (ηXg).

R̂(θ) = exp
{
−iθ(a†XaYe

−iφB + aXa
†
Ye

iφB)σz

}
. (13)

where θ = tgR = t
~ηXηYg2

4
(

1

−δ1
+

1

−δ1 + ωX − ωY
+

1

δ1 − ωX
+

1

δ1 + ωY
) and φB = φ2 − φ1.

When we only consider the Hilbert space with electronic
state |↓〉, all the above σz−dependent force can be simpli-
fied to the quantum optical operations shown in Appendix B.
The optical phase instability between Raman 1 and Raman
2 caused by the beam fluctuation does not influence the co-
herence of quantum operations, since all the phases φB of all
these quantum operations are controlled by RF sources on Ra-
man 2.
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FIG. 2. Trapped-ion implementation of the quantum optical operations. The Hilbert space is composed of two phonon modes of X and Y and
the internal electronic state |↑〉 and |↓〉. The quantum operations are implemented via control the frequency and phase of ωR2,1 and ωR2,2.
(a) Coherent displacement operation D̂ and (b) squeezing operation Ŝ on X mode as an example. (c) Rotation operation R̂ between X and Y
modes.

We confirm the phase coherence between D̂ and Ŝ by ex-
perimentally reconstructing the Wigner function of a coher-
ent displacement state and a squeezed vacuum state. The
comparisons with theoretical calculation are shown in Fig. 3.
We reconstruct the Wigner function by using the iterative
maximum-likelihood algorithm on the phonon number distri-
bution for eight different angles in the phase space[2, 3]. The
phonon number distribution is construct in three steps: (i) pre-
pare the initial coherent state or squeezed vacuum state, (ii)
coherent push the initial state with eight different angles, (iii)
apply the standard Jaynes Cummings coupling and resolve the
distribution through the fitting of the observed oscillations.

D. METHOD FOR COLLECTIVE PROJECTION
MEASUREMENTS

We explain in this section the pulse sequence for the de-
tection of population in an arbitrary phonon state |Σ,nX,nY〉,
where we indicate the internal qubit state Σ (↓ or ↑) of the
phonon state (|nX,nY〉).

The first step is to transfer the population in the target state
|↓,nX,nY〉 to |↓, 0, 0〉: it is performed by applying a sequence
of π-pulse transitions, as shown in Fig. 4a, i.e., with the fol-
lowing steps,

a : |↓,nX,nY〉
π−Carrier−−−−−−→ |↑, nX , nY 〉

π−BlueX−−−−−−→ |↓, nX − 1, nY 〉
... −→ ... |↓, 0, nY 〉
π−Carrier−−−−−−→ |↑, 0, nY 〉

π−BlueY−−−−−−→ |↓, 0, nY − 1〉
... −→ ...|↓, 0, 0〉 (14)

The second step is to obtain the population in |↓, 0, 0〉 by
using the sequence as shown in Fig. 4b-f. The important
technique used in this process is called uniform red sideband
transition, which is a full population transfer independent of
the initial motion state[2], it exchanges the state population
between |↓,nX + 1, nY〉 and |↑,nX,nY〉 when it is uniform
red sideband on mode X, or |↓,nX,nY + 1〉 and |↑,nX,nY〉
when it is uniform red sideband on mode Y. In the real exper-
iment setting, the maximum phonon number are restricted to
nX(Y) < 10.

b: Apply the fluorescence detection and record the event
M1 of detecting photons or no photons.

c: Apply a uniform red sideband transition on mode X,
which transfers all the states of |↓,nX > 0,nY〉 to |↑〉 state.

d: Apply the fluorescence detection and record the event
M2 of detecting photons or no photons.

e: Apply a uniform red sideband transition on Y mode,
which transfers all the states of |↓,nX,nY > 0〉 to |↑〉 state.
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FIG. 3. Coherent displacement and squeezed vacuum state Wigner functions. (a) and (b) represents for the coherent displacement state with
αX = 0.5. c. and d. represents for the squeezed vacuum state with ζX = 0.5.
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FIG. 4. Detection method for the example of state |↓, nX = 2, nY = 2〉. The lower (purple grid) and the upper (orange grid) layers represent
the internal states of |↓〉 and |↑〉. The internal states have no fluorescence and fluorescence, respectively, during the internal state detection.

f: Apply the fluorescence detection and record the event
M3 of detecting photons or no photons.

In the above multiple-detection stages, there are four situa-
tions for the recorded data M1M2M3

{B∀∀,DB∀,DDB,DDD} → {P1, P2, P3, P4}. (15)

Here, D means detecting no photons, B means detecting
photons, ∀ stands for both situations. Typically, we repeat the
experiments for 2000 times to get the probability for each case
noted as P1, P2, P3, P4. The population of the target state is
the probability of case P4.

Within the above collective projection measurements,
Fig. 3c shows the experimentally measured result for the fi-
delity of the detection sequence of an arbitrary state |nX,nY〉,

noted as FD.M . The infidelity mainly comes from the im-
perfection of π-pulse and uniform red-transition on X and Y
mode.

E. MEASUREMENT-ERROR CORRECTIONS FOR THE
EXPERIMENTAL RAW DATA

We mainly consider two error sources to correct the exper-
imental raw data: i) the inefficiency of fluorescence detection
of internal states; ii) the infidelity of the collective projection
measurement discussed in section D.

Our fluorescence detection can distinguish the internal
states |↑〉 and |↓〉 with the corresponding detection fidelities
are η↑→↑ (97.2%) state and η↓→↓ (99.3%) for state, respec-
tively. To correct this inefficiency, we use the value of P4,
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FIG. 5. Comparison between the raw and the corrected experimental data for the spectroscopy of SO2→SO+
2 . The horizontal axis is the Fock

state |nX′ , nY′〉 and the vertical axis is the transition intensity to the state from the |0, 0〉 state.

which is obtained by 1-(P1 + P2 + P3). The real population
(PR) of detecting photons scattered from the |↑〉 state is not
exactly same to the measured population (PM ). The relation
between them is given as PM = PR η↑→↑ + (1 − PR)(1 −
η↓→↓), thus

PR ≡ Corr(PM ) =
PM − (1− η↓→↓)
η↓→↓ + η↑→↑ − 1

(16)

For the correction of the second part, as discussed in the
Appendix C, we have to include the fidelity FD,M .

In order to correct the raw experimental data, we consider
these two imperfections. For the experiment raw data, our
corrected data is written accordingly as,

P ′4 =
1− Corr(P1 + P2 + P3)

FD.M
(17)

Fig. 5 compares the raw experimental data and corrected
data for the photoelectron spectroscopy of SO2.
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