Supporting Information for

Reactivity of Highly Lewis Acidic Diborane(4) towards Pyridine and Isocyanide: Formation of Boraalkene-Pyridine Complex and *ortho*-Functionalized Pyridine Derivatives

Yuhei Katsuma,¹ Hiroki Asakawa,¹ Makoto Yamashita²*

¹ Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, 112-8551, Tokyo, Japan.

² Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 Aichi (Japan)

E-mail: makoto@oec.chembio.nagoya-u.ac.jp

General

All manipulations involving the air- and moisture-sensitive compounds were carried out in glovebox (KIYON, Korea and ALS Technology, Japan) under argon atmosphere. Benzene- d_6 was dried over Na/Ph₂C=O and was distilled under reduced pressure. Pentane (Super Dehydrated, Kanto Chemical. Co., Inc.) was directly used as received. NMR spectra were recorded at 22 °C on 500 or 400 MHz spectrometers unless otherwise noted. Chemical shifts are reported in ppm relative to the residual protiated solvent for ¹H, deuterated solvent for ¹³C, and external BF₃·OEt₂ for ¹¹B nuclei. Data are presented in the following space: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, sept = septet, m = multiplet, br = broad, brs = broad singlet), coupling constant in hertz (Hz), and signal area integration in natural numbers. The unsymmetrical diborane(4) **1** was synthesized according to the literature.¹ Elemental analyses were performed at the A Rabbit Science Co., Ltd. or Instrumental Analysis Room, School of Engineering, Nagoya University. Melting points (m.p.) were determined with a MPA100 OptiMelt (Tokyo Instruments, Inc.) and were uncorrected. UV/vis spectrum was spectrometer. Melting points (m.p.) were determined with a MPA100 OptiMelt (Tokyo Instruments, Inc.) and were uncorrected.

Synthesis of 4

In a glovebox, a toluene solution (30 mL) of Xyl-NC (174 mg, 1.33 mmol) was added to a toluene solution (235 mL) of **1** (500 mg, 1.33 mmol) and pyridine (1.08 mL, 13.3 mmol) in a 250 mL Schlenk flask at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be blue.

Volatiles were removed from the reaction mixture under reduced pressure. The residue was precipitated from toluene/hexane to afford blue solids of **4** (67.2 mg, 0.115 mmol, 9%). Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from hexane (-35 °C). ¹H NMR (400 MHz, C₆D₆) δ

1.09 (s, 12H, CH₃ of pin), 2.19 (s, 3H, *p*-CH₃ of Mes), 2.25 (s, 6H, *o*-CH₃ of Ar), 2.31 (s, 3H, *p*-CH₃ of Mes), 2.51 (s, 6H, CH₃), 2.83 (s, 6H, CH₃), 5.87 (t, J = 7 Hz, 2H, 3,5-CH of pyridine), 6.13 (t, J = 7 Hz, 1H, 3-CH of pyridine), 6.77 (s, 2H, CH of Mes), 6.91 (dd, J = 7, 2 Hz, 1H, 4-CH of Xyl), 6.95-7.05 (m, 3H), 8.04 (dd, J = 7, 1 Hz, 1H, 2-CH of pyridine); ¹¹B NMR (160.5 MHz, C₆D₆) δ 29 (s), 24 (s); Decomposition of **4** in solution at room temperature (as described in the main text) prevented us to perform complete characterization with ¹³C NMR spectrum; mp 87.0-89.8 °C (decomp.); Anal. Calcd for C₃₈H₄₈B₂N₂O₂: C, 77.83; H, 8.25; N, 4.78; Found: C, 77.95; H, 7.98; N, 4.51.

Estimation of NMR yield for the formation of 4

In a glovebox, a toluene solution (7.9 mL) of Xyl-NC (10.5 mg, 79.8 μ mol) was added to a toluene solution (7.9 mL) of **1** (30.0 mg, 79.8 μ mol) and pyridine (64.6 μ L, 798 μ mol) in a 30 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.7 mg, 81.5 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **4** (51%).

Figure S1. The ¹H NMR spectrum of the crude product for the synthesis of 4

Monitoring the stability of 4 in solution by UV-vis spectroscopy

Solids of 4 (11.7 mg, 20.0 μ mol) was dissolved in hexane (10.0 mL). An aliquot (1.00 mL) of the resulting solution was diluted to 10 mL with hexane in a volumetric flask two times to prepare a 100 μ M solution. The

solution was pipetted into a 1 cm quarts cell. For the experiment with pyridine, a 0.300 M hexane solution (10 μ L) of pyridine added to 100 μ M solution (3 mL) of **4** to prepare a mixture of 4 with 10 eq. pyridine. The decay of the absorption at 648 nm was monitored with UV-vis spectroscopy.

Figure S2. Time course for the decomposition of **4** by using UV-vis spectrum of **4** in hexane (monitored with the absorption maximum at 648 nm); red: no additive, blue: with 10 equiv. of pyridine

Monitoring the stability of 4 in solution by ¹H NMR spectroscopy

In a glove box, a freshly prepared benzene- d_6 solution (600 µL) of **4** (5.0 mg, 8.5 µmol) was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectra were recorded at 0, 13, and 24 h. In both aliphatic and aromatic region, decomposition of **4** and formation of **2** as an intermediate were detected.

Figure S3. Time course for the decomposition of **4** by using ¹H NMR spectra of **4** in C_6D_6 (aliphatic region)

Figure S4. Time course for the decomposition of 4 by using ¹H NMR spectra of 4 in C_6D_6 (aromatic region)

Synthesis of 5

In a glovebox, a pyridine solution (15 mL) of Xyl-NC (525 mg, 4.00 mmol) was added to a pyridine solution (15 mL) of **1** (1500 mg, 3.99 mmol) in a 100 mL flask at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be green. Volatiles were removed from

the reaction mixture under reduced pressure. The residue was recrystallized from hexane (-35 °C) to afford yellow crystals of **5** (823 mg, 1.40 mmol, 35%). ¹H NMR (500 MHz, C₆D₆) δ 0.96 (br s, 12H, CH₃ of pin), 2.08 (br s, 6H, *o*-CH₃ of Mes or Xyl), 2.15 (s, 3H, *p*-CH₃ of Xyl), 2.23 (s, 3H, *p*-CH₃ of Mes), 2.33 (br s, 6H, *o*-CH₃ of Mes or Xyl), 2.52 (br s, 6H, *o*-CH₃ of Mes or Xyl), 5.09 (m, 1H, CH), 5.49 (dd, *J* = 10, 5 Hz, 1H, CH), 5.61 (dd, *J* = 10, 1 Hz, 1H, CH), 5.96 (s, 1H, CH), 6.73 (s, 2H, CH of Mes), 6.77-6.81 (m, 3H, CH), 6.88-6.94 (m, 3H, CH of Xyl); ¹¹B NMR (160.5 MHz, C₆D₆) δ 47 (s), 24 (s); ¹³C NMR (126 MHz, C₆D₆) δ 18.0 (br, CH₃), 21.23 (CH₃), 21.25 (CH₃), 22.71 (br, CH₃), 22.72 (CH₃), 23.3 (br, CH₃), 24.4 (CH₃ of pin), 83.2 (4° of pin), 108.5 (CH), 120.6 (CH), 121.0 (CH), 122.9 (4°), 124.0 (CH), 127.1 (CH), 128.4 (CH), 128.8 (CH), 129.0 (CH), 135.9 (CH), 136.3 (4°), 136.7 (br, 4°), 138.0 (4°), 138.1 (br, 4°), 141.2 (4°), 141.3 (br, 4°); mp 190.5-193.9 °C (decomp.); Anal. Calcd for C₃₈H₄₈B₂N₂O₂: C, 77.83; H, 8.25; N, 4.78; Found: C, 77.90; H, 8.35; N, 4.91.

Estimation of NMR yield for the formation of 5

In a glovebox, a pyridine solution (600 μ L) of Xyl-NC (10.5 mg, 79.8 μ mol) was added to a pyridine solution (600 μ L) of **1** (30.0 mg, 79.8 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A

benzene- d_6 solution (1200 µL) of 1,3,5-trimethoxybenzene (13.4 mg, 79.8 µmol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **2** (82%).

Figure S5. The ¹H NMR spectrum of the crude product for the synthesis of 5

Synthesis of 6

In a glovebox, a pyridine solution (15 mL) of Xyl-NC (349 mg, 2.66 mmol) was added to a pyridine solution (15 mL) of **1** (500 mg, 1.33 mmol) in a 100 mL flask at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be red. Volatiles were removed from the reaction mixture under reduced pressure. The residue was

recrystallized from benzene at room temperature to afford yellow crystals of **6** (88.7 mg, 0.124 mmol, 9%). Because of the existence of the equilibrium, signals in the ¹H, ¹¹B, and ¹³C NMR spectrum (¹H NMR spectrum at room temperature is shown in Figures S6 and S7) could not be assigned as noted in the main text. However, four low-field signals were exchanged their positions upon cooling the CD_2Cl_2 solution of **6** down to -80 °C (Figure S8). As judged by HH COSY experiment (Figure S9), these four signals were divided to two groups and the blue-colored signal decreased its integral ratio upon cooling (Figure S8). mp 187.9-191.0 °C (decomp.); Anal. Calcd for $C_{47}H_{57}B_2N_3O_2$: C, 78.67; H, 8.01; N, 5.86; Found: C, 78.59; H, 7.90; N, 6.04.

Figure S6. ¹H NMR spectrum of **6** (C_6D_6 , RT): The most low-field shifted doublet was used for the estimation of the ¹H NMR yield (see below).

Figure S7. ¹H NMR spectrum of 6 (CD₂Cl₂, RT)

Figure S8. VT ¹H NMR spectrum of **6** (CD₂Cl₂) in the range of room temperature to -80 °C; dotted blue line: major isomer at RT, dotted red line: minor isomer at RT

Figure S9. HH COSY spectrum of **6** (CD₂Cl₂) at -50 °C; color of lines for correlation corresponds to the color in Figure S8 (above)

Estimation of NMR yield for the formation of 6

In a glovebox, a pyridine solution (8 mL) of Xyl-NC (21.1 mg, 161 μ mol) was added to a pyridine solution (8 mL) of **1** (30.0 mg, 79.8 μ mol) in a 30 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.4 mg, 79.8 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **6** (52%).

Figure S10. The ¹H NMR spectrum of the crude product for the synthesis of 6

Estimation of NMR yield for the formation of 6 from 5

In a glovebox, a benzene- d_6 solution (200 µL) of Xyl-NC (10.5 mg, 79.8 µmol) was added to a benzene- d_6 solution (800 µL) of **5** (46.8 mg, 79.8 µmol) and in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, a benzene- d_6 solution (300 µL) of 1,3,5-trimethoxybenzene (13.3 mg, 79.1 µmol) was added to the crude product and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **6** (99%).

Figure S11. The ¹H NMR spectrum of the crude product for the synthesis of 6 from 5

General procedure for Table 1

In a glovebox, a toluene solution (y/2 mL, y = from Table 1) of Xyl-NC (10.5 mg, 79.8 μ mol) was added to a toluene solution (y/2 mL, y = from Table 1) of **1** (30.0 mg, 79.8 μ mol) and pyridine (x mL, x = from Table 1) in a vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.4 mg, 79.8 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield.

General procedure for Table 2

In a glovebox, a toluene solution (y/2 mL, y = from Table 1) of Xyl-NC (21.0 mg, 162 µmol) was added to a toluene solution (y/2 mL, y = from Table 1) of **1** (30.0 mg, 79.8 µmol) and pyridine (x mL, x = from Table 1) in a vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene- d_6 solution (600 µL) of 1,3,5-trimethoxybenzene (13.4 mg, 79.8 µmol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield.

Synthesis of 7

In a glovebox, a pyridine (4 mL, 49.5 mmol) was added to 1 (200 mg, 0.532 mmol) in a 30 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be yellow. Volatiles were removed from the reaction mixture under reduced pressure. The residue was

recrystallized from hexane ($-35 \,^{\circ}$ C) to afford yellow crystals of 7 (190 mg, 0.420 mmol, 78%). ¹H NMR (400 MHz, C₆D₆) δ 1.06 (s, 12H, CH₃ of pin), 2.15 (s, 6H, *p*-CH₃ of Mes), 2.39 (s, 12H, *o*-CH₃ of Mes), 6.52-6.65 (br, 2H, 3,5-H of pyridine), 6.79 (s, 4H, CH of Mes), 6.84-6.96 (br, 1H, 4-H of pyridine), 8.53-8.72 (br, 2H, 2,6-H of pyridine); ¹¹B NMR (160.5 MHz, C₆D₆) δ 39 (br s), -0.6 (br s); ¹³C NMR (126 MHz, C₆D₆) δ 21.1 (*p*-CH₃ of Mes), 24.9 (*o*-CH₃ of Mes), 25.1 (CH₃ of pin), 82.0 (4° of pin), 123.8 (3,5-CH of pyridine), 129.7 (CH of Mes), 135.5 (4°), 137.3 (4-CH of pyridine), 141.6 (4°), 147.3 (4°), 149.8 (2,6-CH of pyridine); mp 118.2-119.7 °C (decomp.); Anal. Calcd for C₂₉H₃₉B₂NO₂: C, 76.51; H, 8.64; N, 3.08; Found: C, 76.14; H, 8.39; N, 2.84.

Estimation of NMR yield for the formation of 7

In a glovebox, a pyridine solution (300 μ L) was added to 1 (30.0 mg, 79.8 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene- d_6 solution (600 μ L) of 1,3,5-trimethoxybenzene (13.0 mg, 77.3 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of 7 (99%).

Figure S12. The ¹H NMR spectrum of the crude product for the synthesis of 7

Synthesis of 4a

In a glovebox, a toluene solution (3 mL) of Xyl-NC (105 mg, 0.798 mmol) was added to a toluene solution (6 mL) of **1** (300 mg, 0.798 mmol) and 3-methoxypyridine (0.4 mL, 3.99 mmol) in a 30 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be blue. Volatiles were removed from the reaction mixture under reduced pressure. The residue

was recrystallized from hexane (-35 °C) to afford blue crystals of **4a** (276 mg, 0.448 mmol, 56%). ¹H NMR (400 MHz, C₆D₆) δ 1.07 (s, 12H, CH₃ of pin), 2.14 (s, 3H, *p*-CH₃ of Mes), 2.17 (s, 6H, *o*-CH₃ of Xyl or Mes), 2.30 (s, 3H, *p*-CH₃ of Mes), 2.48 (s, 6H, *o*-CH₃ of Xyl or Mes), 2.84 (s, 6H, *o*-CH₃ of Xyl or Mes), 2.87 (s, 3H, OCH₃), 5.96 (dd, *J* = 8, 6 Hz, 1H, 5-CH of pyridine), 6.11 (ddd, *J* = 8, 3, 1 Hz, 1H, 4-CH of pyridine), 6.73 (s, 2H, CH of Mes), 6.86 (dd, *J* = 7, 7 Hz, 1H, 4-CH of Xyl), 6.91 (d, *J* = 7 Hz, 2H, 3,5-CH of Xyl), 7.00 (s, 2H, CH of Mes), 7.69 (d, *J* = 6 Hz, 1H, 6-CH of pyridine), 7.99 (d, *J* = 3 Hz, 1H, 2-CH of pyridine); ¹¹B NMR (160.5 MHz, C₆D₆) δ 29 (s), 23 (s); Similar to the case of **4**, decomposition of **4a** in solution at room temperature prevented us to perform complete characterization with ¹³C NMR spectrum; mp 91.9-92.7 °C (decomp.); Anal. Calcd for C₃₉H₅₀B₂N₂O₂: C, 75.99; H, 8.18; N, 4.54; Found: C, 75.60; H, 8.28; N, 4.14.

Estimation of NMR yield for the formation of 4a with 1 equivalent of Xyl-NC

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (10.5 mg, 79.8 μ mol) was added to a toluene solution (260 μ L) of **1** (30.0 mg, 79.8 μ mol) and 3-methoxypyridine (40.3 μ L, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.4 mg, 79.8 μ mol) was added to the crude product and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectra was recorded to estimate the NMR yield of **4a** (65%).

Figure S13. The ¹H NMR spectrum of the crude product for the synthesis of 4a

Estimation of NMR yield for the formation of 4a with 2 equivalent of Xyl-NC

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (21.0 mg, 160 μ mol) was added to a toluene solution (260 μ L) of **1** (30.0 mg, 79.8 μ mol) and 3-methoxypyridine (40.3 μ L, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.3 mg, 79.1 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **2** (44%) and **4a** (18%).

Figure S14. The ¹H NMR spectrum of the crude product for the reaction of **1** with 2 eq. Xyl-NC and 3-methoxypyridine

Synthesis of 4b

In a glovebox, a benzene- d_6 solution (300 µL) of Xyl-NC (10.5 mg, 79.8 µmol) was added to a benzene- d_6 solution (300 µL) of **1** (30.0 mg, 79.8 µmol) and 3-chloropyridine (37.5 µL, 399 µmol) in a 15 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be blue. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR

tube. After bringing the NMR tube out from the glovebox, ¹H, ¹¹B, and ¹³C NMR spectra of the crude product for the synthesis of **4b** was recorded. Since **4b** decomposed upon evaporation of solvent, all the effort to isolate **4b** was failed. Therefore, we are providing only NMR spectroscopic data for **4b**. A few single crystals suitable for X-ray analysis were obtained by recrystallization (-35 °C) of crude product from a reaction with 3chloropyridine as a solvent. ¹H NMR (400 MHz, C₆D₆) δ 1.01 (s, 12H, CH₃ of pin), 2.19 (s, 3H, *p*-CH₃ of Mes), 2.24 (s, 6H, *o*-CH₃ of Xyl or Mes), 2.26 (s, 3H, *p*-CH₃ of Mes), 2.48 (s; 6H, *o*-CH₃ of Xyl or Mes), 2.72 (s, 6H, *o*-CH₃ of Xyl or Mes), 5.67 (dd, J = 7, 6 Hz, 1H, 3-CH of pyridine), 6.17 (d, J = 7 Hz, 1H, 4-CH of pyridine), 6.77 (s, 2H, CH of Mes), 6.82 (t, J = 8 Hz, 1H, 4-CH of Xyl), 6.86 (d, J = 8 Hz, 2H, 3,5-CH of Xyl), 6.91 (s, 2H, CH of Mes), 7.70 (d, J = 6 Hz, 1H, 2-CH of pyridine), 8.22 (s, 1H, 6-CH of pyridine); ¹¹B NMR (160.5 MHz, C₆D₆) δ 28 (s), 24 (s); Similar to the case of **4**, decomposition of **4a** in solution at room temperature prevented us to perform complete characterization with ¹³C NMR spectrum.

Figure S15. The ¹H NMR spectrum(benzene- d_6) of the crude product for the synthesis of **4b** (asterisks denoted signals of 3-chloropyridine)

Figure S16. The ¹¹B NMR spectrum (benzene- d_6) of the crude product for the synthesis of 4b

Estimation of NMR yield for the formation of 4b

In a glovebox, a benzene- d_6 solution (300 µL) of Xyl-NC (10.5 mg, 79.8 µmol) was added to a benzene- d_6 solution (260 µL) of **1** (30.0 mg, 79.8 µmol) and 3-chloropyridine (37.4 µL, 399 µmol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, a benzene- d_6 solution (600 µL) of 1,3,5-trimethoxybenzene (13.5 mg, 80.3 µmol) was added to the reaction mixture and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **4b** (76%).

Figure S17. The ¹H NMR spectrum of the crude product for the synthesis of 4b

Estimation of NMR yield for the formation of 4b with 2 equivalent of Xyl-NC

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (21.0 mg, 160 μ mol) was added to a toluene solution (300 μ L) of **1** (30.0 mg, 79.8 μ mol) and 3-chloropyridine (37.4 μ L, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.5 mg, 80.3 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **2** (66%) and **4b** (26%).

Figure S18. The ¹H NMR spectrum of the crude product for the reaction of **1** with 2 eq. Xyl-NC and 3-chloropyridine

Synthesis of 4c

In a glovebox, a toluene solution (0.9 mL) of Xyl-NC (36.9 mg, 0.281 mmol) was added to a toluene solution (0.9 mL) of **1** (106 mg, 0.281 mmol) and 4-methoxypyridine (30.0 μ L, 0.281 mmol) in a 15 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be red. Volatiles were removed from the reaction mixture

under reduced pressure. The residue washed with hexane ($-35 \,^{\circ}$ C) to afford red solids of **4c** (45.5 mg, 0.0738 mmol, 26%). ¹H NMR (400 MHz, C₆D₆), δ 1.13 (s, 12H, CH₃ of pin), 2.18 (s, 3H, *p*-CH₃ of Mes), 2.23 (s, 6H *o*-CH₃ of Xyl or Mes), 2.34 (s, 3H, *p*-CH₃ of Mes), 2.48 (s, 3H, OCH₃), 2.57 (s, 6H, *o*-CH₃ of Xyl or Mes), 2.92 (s, 6H, *o*-CH₃ of Xyl or Mes), 5.48 (d, *J* = 7 Hz, 2H, 3-CH of pyridine), 6.82 (s, 2H, CH of Mes), 6.94 (t, *J* = 6 Hz, 1H, 4-CH of Xyl), 7.02 (d, *J* = 6 Hz, 2H, 3,5-CH of Xyl), 7.07 (s, 2H, CH of Mes), 7.94 (d, *J* = 7 Hz, 2H, 2,6-CH of pyridine); ¹¹B NMR (160.5 MHz, C₆D₆) δ 29 (s), 24 (s); Similar to the case of **4**, decomposition of **4c** in solution at room temperature prevented us to perform complete characterization with ¹³C NMR spectrum; mp 72.3-75.9 °C (decomp.); Anal. Calcd for C₃₉H₅₀B₂N₂O₃: C, 75.99; H, 8.18; N, 4.54; Found: C, 76.15; H, 8.24; N, 4.82.

Estimation of NMR yield for the formation of 4c

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (10.5 mg, 79.8 μ mol) was added to a toluene solution (260 μ L) of **1** (30.0 mg, 79.8 μ mol) and 4-methoxypyridine (40.3 μ L, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, a benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.4 mg, 79.8 μ mol) was added to the crude product and the resulting

mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectra was recorded to estimate the NMR yield of **4c** (80%).

Figure S19. The ¹H NMR spectrum of the crude product for the synthesis of 4c

Estimation of NMR yield for the formation of 4c with 2 equivalent of Xyl-NC

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (21.0 mg, 160 μ mol) was added to a toluene solution (300 μ L) of **1** (30.0 mg, 79.8 μ mol) and 4-methoxypyridine (42.5 μ L, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene- d_6 solution (600 μ L) of 1,3,5-trimethoxybenzene (13.5 mg, 80.3 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **2** (50%) and **4a** (39%).

Figure S20. The ¹H NMR spectrum of the crude product for the reaction of **1** with 2 eq. Xyl-NC and 4-methoxypyridine

Synthesis of 5a

In a glovebox, a toluene solution (3 mL) of Xyl-NC (105 mg, 0.798 mmol) was added to a toluene solution (2.54 mL) of **1** (300 mg, 0.798 mmol) and 3-trifluoromethylpyridine (0.460 mL, 3.99 mmol) in a 15 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of

the resulting solution turned to be green. Volatiles were removed from the reaction mixture under reduced pressure. The residue was recrystallized from pentane at room temperature to afford yellow crystals of **5a** (340 mg, 0.519 mmol, 65%). Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from hexane ($-35 \,^{\circ}$ C). ¹H NMR (400 MHz, C₆D₆) δ 0.94 (br s, 12H, CH₃ of pin), 2.00 (br s, 6H, *o*-CH₃ of Xyl or Mes), 2.06 (s, 3H, *p*-CH₃ of Mes), 2.19 (s, 3H, *p*-CH₃ of Mes), 2.24 (br s, 6H, *o*-CH₃ of Xyl or Mes), 2.48 (s, 6H, *o*-CH₃ of Xyl or Mes), 5.43 (d, *J* = 10 Hz, 1H, CH), 5.57 (d, *J* = 10 Hz, 1H, CH), 6.08 (s, 1H, CH), 6.64 (s, 2H, CH of Mes), 6.73 (s, 2H, CH of Mes), 6.91 (s, 3H) 7.50 (s, 1H); ¹¹B NMR (160.5 MHz, C₆D₆) δ 50 (s), 23 (s); ¹³C NMR (126 MHz, C₆D₆) δ 17.9 (CH₃), 21.2 (CH₃), 22.6 (CH₃), 23.1 (CH₃), 24.3 (CH₃ of pin), 83.5 (4° of pin), 112.8 (q, ²J_{FC} = 33 Hz, 4°), 115.45 (CH), 115.47 (CH), 120.0 (4°), 122.1 (CH), 124.9 (q, ¹J_{FC} = 272 Hz, CF₃), 126.3 (CH), 127.5 (CH), 127.9 (4°), 139.0 (4°), 140.5 (4°), 141.2 (br, 4°); mp 174.4-177.8 °C (decomp.); Anal. Calcd for C₃₉H₄₇B₂F₃N₂O₂: C, 71.58; H, 7.24; N, 4.28; Found: C, 71.63; H, 7.16; N, 4.17.

Estimation of NMR yield for the formation of 5a

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (10.7 mg, 80.3 μ mol) was added to a toluene solution (300 μ L) of **1** (30.0 mg, 79.8 μ mol) and 3-trifluoromethylpyridine (45.9 μ L, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.3 mg, 79.1 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **5a** (79%).

Figure S21. The ¹H NMR spectrum of the crude product for the synthesis of 5a

Synthesis of 5b

In a glovebox, a toluene solution (0.9 mL) of Xyl-NC (105 mg, 0.798 mmol) was added to a pyridine solution (2.7 mL) of **1** (300 mg, 0.798 mmol) and 3-(methoxycarbonyl)pyridine (546 mg, 3.99 mmol) in a 30 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be red. Volatiles were removed

from the reaction mixture under reduced pressure. The residue was recrystallized from hexane (-35 °C) to afford yellow crystals of **5b** (159 mg, 0.247 mmol, 31%). ¹H NMR (400 MHz, C₆D₆) δ 0.95 (br s, 12H, CH₃ of pin), 2.04 (br s, 6H, *o*-CH₃ of Xyl or Mes), 2.08 (s, 3H, *p*-CH₃ of Mes), 2.20 (s, 3H, *p*-CH₃ of Mes), 2.28 (br s, 6H, *o*-CH₃ of Xyl or Mes), 2.44 (br s, 6H, *o*-CH₃ of Xyl or Mes), 3.13 (s, 3H, OCH₃), 5.51 (d, *J* = 10 Hz, 1H, CH), 6.03 (t, *J* = 1 Hz, 1H, CH), 6.41 (dt, *J* = 10, 1 Hz, 1H, CH), 6.66 (s, 2H, CH of Mes), 6.75 (s, 2H, CH of Mes), 6.88-6.93 (br m, 3H, CH of Xyl), 8.07 (dd, *J* = 2, 1 Hz, 1H, CH); ¹¹B NMR (160.5 MHz, C₆D₆) δ 52 (s), 24 (s); ¹³C NMR (126 MHz, C₆D₆) δ 17.9 (CH₃), 21.2 (CH₃), 22.8 (br, CH₃), 23.2 (br, CH₃), 24.4 (CH₃ of pin), 50.8 (OCH₃), 83.3 (4° of pin), 113.5 (4°), 119.3 (CH), 119.9 (CH), 121.2 (4°), 124.9 (CH), 127.4 (CH), 128.5 (CH), 128.6 (CH), 128.9 (CH), 129.3 (CH), 136.5 (4°), 136.9 (br, 4°), 137.1 (4°), 138.2 (br, 4°), 139.0 (4°), 140.7 (4°), 141.4 (br, 4°), 144.8 (CH), 165.8 (C=O); mp 181.8-184.9 °C (decomp.); Anal. Calcd for C₄₀H₅₀B₂N₂O₄: C, 74.55; H, 7.81; N, 4.35; Found: C, 74.11; H, 8.17; N, 4.25.

Estimation of NMR yield for the formation of 5b

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (10.5 mg, 79.8 μ mol) was added to a toluene solution (300 μ L) of **1** (30.0 mg, 79.8 μ mol) and 3-(methoxycarbonyl) pyridine (54.0 mg, 39.9 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.6 mg, 80.9 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **5b** (67%).

Figure S22. The ¹H NMR spectrum of the crude product for the synthesis of 5b

Synthesis of 5c

In a glovebox, a toluene solution (2.5 mL) of Xyl-NC (174 mg, 1.33 mmol) was added to a toluene solution (2.5 mL) of **1** (500 mg, 1.33 mmol) and 4-trifluoromethylpyridine (770 μ L) in a 30 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be green. Volatiles were removed from the reaction mixture under reduced pressure. The residue

was recrystallized from pentane at room temperature to afford yellow crystals of **5c** (276 mg, 0.422 mmol, 32%). Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from hexane (-35 °C). ¹H NMR (400 MHz, C₆D₆) δ 0.93 (br s, 12H, CH₃ of pin), 1.97 (br s, 6H, *o*-CH₃ of Mes or Xyl), 2.15 (s, 3H, *p*-CH₃ of Mes), 2.18 (s, 3H, *p*-CH₃ of Mes), 2.27 (br s, 6H, *o*-CH₃ of Mes or Xyl), 2.41 (br s, 6H, *o*-CH₃ of Mes or Xyl), 5.26 (dd, *J* = 8, 1 Hz, 1H, CH of pyridine), 5.88 (br s, 1H, CH), 6.14 (s, 1H, CH), 6.69-6.80 (m, 5H, CH of Mes and pyridine), 6.91 (br s, 3H, CH of Xyl); ¹¹B NMR (160.5 MHz, C₆D₆) δ 49 (s), 24 (s); ¹³C NMR (126 MHz, C₆D₆, two B-bonded carbon atoms were not detected) δ 17.7 (CH₃), 21.18 (CH₃), 21.20 (CH₃), 22.6 (CH₃), 23.1 (CH₃), 24.3 (CH₃ of pin), 83.6 (4° of pin), 103.2 (CH), 119.3 (4°), 121.6 (q, ³*J*_{FC} = 4 Hz, CH), 122.6 (q, ²*J*_{FC} = 32 Hz, 4°), 124.1 (q, ¹*J*_{FC} = 272 Hz, CF₃), 127.9 (CH), 128.7 (CH), 128.9 (CH), 129.1 (CH), 136.2 (4°), 136.8 (4°), 137.3 (4°), 137.9 (CH), 138.0 (4°), 138.5 (4°), 140.2 (4°), 141.2 (4°); mp 178.0-181.5 °C (decomp.); Anal. Calcd for C₃₉H₄₇B₂F₃N₂O₂: C, 71.58; H, 7.24; N, 4.28; Found: C, 71.38; H, 7.16; N, 4.08.

Estimation of NMR yield for the formation of 5c

In a glovebox, a benzene- d_6 solution (300 µL) of Xyl-NC (10.4 mg, 79.2 µmol) was added to a benzene- d_6 solution (300 µL) of **1** (29.8 mg, 79.2 µmol) and 4-trifluoromethyl pyridine (46.2 µL, 399 µmol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, a benzene- d_6 solution (300 µL) of 1,3,5-trimethoxybenzene (13.1 mg, 78.4 µmol) was added to the crude product and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **5c** (72%).

Figure S23. The ¹H NMR spectrum of the crude product for the synthesis of 5c

Synthesis of 5d

In a glovebox, a toluene solution (3 mL) of Xyl-NC (105 mg, 0.798 mmol) was added to a toluene solution (3 mL) of **1** (300 mg, 0.798 mmol) and 4-(methoxycarbonyl)pyridine (472 µL, 3.99 mmol) in a 30 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be green. Volatiles were removed from the reaction mixture

under reduced pressure. The residue was recrystallized from hexane ($-35 \,^{\circ}$ C) to afford yellow crystals of **5d** (164.6 mg, 0.255 mmol, 32%). ¹H NMR (400 MHz, C₆D₆) δ 0.97 (s, 12H, CH₃ of pin), 2.01 (s, 6H, *o*-CH₃ of Xyl or Mes), 2.14 (s, 3H, *p*-CH₃ of Mes), 2.19 (s, 3H, *p*-CH₃ of Mes), 2.28 (br s, 6H, *o*-CH₃ of Xyl or Mes), 2.43 (s, 6H, *o*-CH₃ of Xyl or Mes), 3.29 (s, 3H, OCH₃), 5.96 (dd, *J* = 8, 1 Hz, 1H, CH), 6.13 (s, 1H, CH of pyridine), 6.66-6.75 (m, 5H, CH of Mes and Xyl), 6.78 (d, *J* = 8 Hz, 1H, CH of pyridine), 6.98 (br s, 3H, CH of Mes and pyridine); ¹¹B NMR (160.5 MHz, C₆D₆) δ 48 (s), 24 (s); ¹³C NMR (126 MHz, C₆D₆) δ 17.9 (CH₃), 21.2 (CH₃) 22.6 (CH₃), 23.1 (CH₃), 23.2 (CH₃), 24.4 (CH₃ of pin), 51.0 (OCH₃), 83.6 (4° of pin), 106.6 (CH), 122.0 (4°), 123.0 (4°), 127.5 (CH), 128.8 (CH), 128.9 (CH), 129.0 (CH) 129.3 (CH), 135.8 (CH), 136.1 (4°), 136.6 (4°), 137.6 (4°), 138.3 (4°), 140.4 (4°), 141.2 (4°), 165.3 (COO); mp 187.2-190.8 °C (decomp.); Anal. Calcd for C₄₀H₅₀B₂N₂O₄: C, 74.55; H, 7.81; N, 4.35; Found: C, 74.26; H, 7.57; N, 4.34.

Estimation of NMR yield for the formation of 5d

In a glovebox, a benzene- d_6 solution (300 µL) of Xyl-NC (10.5 mg, 79.8 µmol) was added to a benzene- d_6 solution (300 µL) of **1** (30.0 mg, 79.8 µmol) and 4-(methoxycarbonyl)pyridine (47.2 µL, 399 µmol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, a benzene- d_6 solution (300 µL) of 1,3,5-trimethoxybenzene (13.7 mg, 81.4 µmol) was added to the crude product and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **5d** (49%).

Figure S24. The ¹H NMR spectrum of the crude product for the synthesis of 5d

Confirmation for the formation of 7a-c

The reactions above were checked by ¹¹B NMR spectroscopy and two major signals in the following three experiments were tentatively assigned as 7a-c without isolation of them.

Reaction of 1 with 3-methoxypyridine

In a glovebox, 3-methoxypyridine (42.5 μ L, 421 μ mol) was added to a toluene solution (558 μ L) of **1** (15.0 mg, 39.9 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, an aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹¹B NMR spectra was recorded. In comparison with the ¹¹B NMR spectrum of **7**, we tentatively assigned this species as sp²-sp³ diborane **7a** by a coordination of pyridine derivative. ¹¹B NMR (160.5 MHz, C₆D₆) δ 39 (s), 1 (s).

Figure S25. The ¹¹B NMR spectrum of the crude product in the reaction of 1 with 3-methoxypyridine

The reaction of 1 with 4-methoxypyridine

In a glovebox, 4-methoxypyridine (40.3 μ L, 339 μ mol) was added to a toluene solution (560 μ L) of **1** (10.5 mg, 79.8 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, an aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹¹B NMR spectrum was recorded. In comparison with the ¹¹B

NMR spectrum of 7, we tentatively assigned this species as sp^2-sp^3 diborane 7b by a coordination of pyridine derivative. ¹¹B NMR (160.5 MHz, C₆D₆) δ 39 (s), -1 (s).

Figure S26. The ¹¹B NMR spectrum of the crude product in the reaction of 1 with 4-methoxypyridine

The reaction of 1 with 3-chloropyridine

In a glovebox, 3-chloropyridine (600 μ L, 6.39 mmol) was added to a solid of **1** (15.0 mg, 39.9 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, an aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹¹B NMR spectrum was recorded. In comparison with the ¹¹B NMR spectrum of **7**, we tentatively assigned this species as sp²-sp³ diborane **7c** by a coordination of pyridine derivative. ¹¹B NMR (160.5 MHz, C₆D₆) δ 40 (s), 10 (s).

Figure S27. The ¹¹B NMR spectrum of the reaction of 1 with 3-chloropyridine

Synthesis of 9a

In a glovebox, a toluene solution $(300 \ \mu\text{L})$ of Xyl-NC $(21.0 \ \text{mg}, 160 \ \mu\text{mol})$ was added to a pyridine solution $(254 \ \mu\text{L})$ of **1** $(30.0 \ \text{mg}, 79.8 \ \mu\text{mol})$ in a 15 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be red. Volatiles were removed from the reaction mixture under reduced pressure. The residue was recrystallized from hexane

(-35 °C) to afford yellow crystals of **9a** (8.0 mg, 10 μ mol, 13%). Because of the existence of the equilibrium, signals in the ¹H, ¹¹B, and ¹³C NMR spectrum could not be assigned as noted in the main text. Therefore, a characteristic signal of pyridine core at 8.42 ppm was used for the estimation of the NMR yield. ¹¹B NMR (160.5 MHz, C₆D₆, as an equilibrium mixture) δ 48 (br s), 22 (br s), 9 (br s, minor), 0.6 (br s, minor); mp 209.4-210.5 °C (decomp.); Anal. Calcd for C₄₈H₅₆B₂F₃N₃O₂: C, 73.39; H, 7.19; N, 5.35; Found: C, 73.11; H, 7.00; N, 5.40.

Figure S28. ¹H NMR spectrum of 9a as an equilibrium mixture (only signals of major species are labeled)

Figure S29. ¹¹B NMR spectrum of 9a as an equilibrium mixture

Estimation of NMR yield for the formation of 9a

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (21.2 mg, 162 μ mol) was added to a toluene solution (260 μ L) of **1** (30.0 mg, 79.8 μ mol) and 3-trifluoromethylpyridine (45.9 μ L, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.4 mg, 79.8 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **9a** (31%).

Figure S30. The ¹H NMR spectrum of the crude product for the synthesis of 9a

Synthesis of 9b

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (182 mg, 532 μ mol) was added to a toluene solution (900 μ L) of **1** (100 mg, 266 μ mol) and 3-(methoxycarbonyl)pyridine (70.4 mg, 1.33 mmol) in a 30 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be red. Volatiles were removed from the reaction mixture under reduced pressure. The residue was recrystallized

from hexane (-35 °C) to afford red crystals of **9b** (22.7 mg, 29.3 μ mol, 11%). Because of the existence of the equilibrium, signals in the ¹H, ¹¹B, and ¹³C NMR spectrum could not be assigned as noted in the main text. Therefore, a characteristic signal of pinacol moiety at 0.92 ppm was used for the estimation of the NMR yield. ¹¹B NMR (160.5 MHz, C₆D₆) δ 50 (br s), 22 (br s), 9 (br s, minor); mp 205.4-211.0 °C (decomp.); Anal. Calcd for C₄₉H₅₉B₂N₃O₄: C, 75.88; H, 7.67; N, 5.41; Found: C, 75.83; H, 7.87; N, 5.22.

Figure S31. The ¹H NMR spectrum of 9b as an equilibrium mixture (only signals of major species are labeled)

Figure S32. The ¹¹B NMR spectrum of 9b as an equilibrium mixture

Estimation of NMR yield for the formation of 9b

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (21.2 mg, 162 μ mol) was added to a toluene solution (300 μ L) of **1** (30.0 mg, 79.8 μ mol) and 3-(methoxycarbonyl)pyridine (54.6 mg, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.6 mg, 80.9 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectra was recorded to estimate the NMR yield of **9b** (24%).

Figure S33. The ¹H NMR spectrum of the crude product for the synthesis of 9b

Synthesis of 9c

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (21.0 mg, 160 μ mol) was added to a toluene solution (254 μ L) of **1** (30.0 mg, 79.8 μ mol) in a 30 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be red. Volatiles were removed from the reaction mixture under reduced pressure. The residue was recrystallized from hexane

(-35 °C) to afford red crystals of **3c** (10.8 mg, 13.7 μmol, 17%). In this case, we could isolate **9c** and characterize all the signals in NMR spectra. A characteristic signal of pyridine core at 8.02 ppm was used for the estimation of the NMR yield (Figure SX). ¹H NMR (400 MHz, C₆D₆) δ 0.84 (s, 12H, CH₃ of pin), 1.78-2.72 (br, 24H, CH₃), 1.96 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 6.36-6.96 (br, 4H, CH of 2Mes), 6.42 (dd, J = 5, 1 Hz, 1H), 6.51 (t, J = 8 Hz, 2H), 6.73-6.84 (m, 4H), 8.02 (d, J = 6 Hz, 1H, 2-CH of pyridine); ¹¹B NMR (160.5 MHz, C₆D₆) δ 49 (s), 23 (s); ¹³C NMR (126 MHz, C₆D₆) δ 19.3 (br, CH₃), 20.9 (CH₃), 21.2 (CH₃), 22.7 (CH₃), 23.7 (br, CH₃), 24.3 (CH₃ of pin), 82.4 (4° of pin), 116.9 (q, ³ $J_{FC} = 4$ Hz, CH), 120.3 (q, ³ $J_{FC} = 4$ Hz, CH), 128.7 (br, CH), 129.3 (CH), 131.0 (4°), 134.9 (CH), 136.0 (q, ² $J_{FC} = 32$ Hz, 4°), 136.8 (br, 4°), 137.1 (4°), 137.4 (4°), 137.7 (br, 4°), 140.3 (br, 4°), 141.5 (4°), 141.7 (br, 4°), 144.6 (4°), 148.7 (CH), 157.2 (4°); mp 224.1-226.8 °C (decomp.); Anal. Calcd for C₄₈H₅₆B₂F₃N₃O₂: C, 73.39; H,7.19; N, 5.35; Found: C, 73.23; H, 6.91; N, 5.16.

Figure S34. The ¹H NMR spectrum of the isolated 9c

Estimation of NMR yield for the formation of 9c

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (21.0 mg, 160 μ mol) was added to a toluene solution (260 μ L) of **1** (30.0 mg, 79.8 μ mol) and 4-trifluoromethylpyridine (46.2 μ L, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.8 mg, 82.1 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **9c** (22%).

Figure S35. The ¹H NMR spectrum of the crude product for the synthesis of 9c

Synthesis of 9d

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (21.0 mg, 160 μ mol) was added to a toluene solution (300 μ L) of **1** (30.0 mg, 79.8 μ mol) and 4-(methoxycarbonyl)yridine (47.2 μ L, 399 μ L) in a 15 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be red. Volatiles were removed from the reaction mixture under reduced pressure. The residue was recrystallized from hexane (-35 °C) to afford red crystals of **9d** (10.8 mg, 13.7 µmol, 17%). Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from hexane at room temperature. In this case, we could isolate **9d** and characterize all the signals in NMR spectra. A characteristic signal of pyridine core at 8.13 ppm was used for the estimation of the NMR yield (Figure SX). ¹H NMR (400 MHz, C₆D₆) δ 0.92 (s, 12H, CH₃ of pin), 1.85-2.69 (br, 24H, CH₃), 1.96 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 3.34 (s, 3H, OCH₃), 6.12-6.96 (br, 5H, CH), 6.46 (t, *J* = 7 Hz, 1H, CH), 6.76 (t, *J* = 8 Hz, 1H, CH), 6.83 (d, *J* = 7 Hz, 2H), 6.87 (s, 1H), 7.07 (d, *J* = 5, 2 Hz, 1H, 3-CH of pyridine), 7.60 (s, 1H, 3-CH of pyridine), 8.13 (d, *J* = 5 Hz, 1H, 2-CH of pyridine); ¹¹B NMR (160.5 MHz, C₆D₆) δ 48 (br s), 22 (br s); ¹³C NMR (126 MHz, C₆D₆, two B-bonded carbon atoms were not detected) δ 19.6 (br, CH₃), 20.9 (CH₃), 21.2 (CH₃), 23.7 (br, CH₃), 24.7 (CH₃ of pin), 51.8 (OCH₃), 82.1 (4° of pin), 120.6 (CH), 124.0 (CH), 125.2 (CH), 126.2 (CH), 128.1 (4°), 137.3 (4°), 137.9 (4°), 140.6 (4°), 141.5 (4°), 144.5 (4°), 147.6 (CH), 155.9 (4°), 135.9 (4°), 137.1 (4°), 137.3 (4°), 137.9 (4°), 140.6 (4°), 141.5 (4°), 144.5 (4°), 147.6 (CH), 155.9 (4°), 165.2 (C=O); mp 194.4-195.7 °C (decomp.); Anal. Calcd for C₄₉H₅₉B₂N₃O₄: C, 75.88; H, 7.67; N, 5.42; Found: C, 75.97; H, 7.71; N, 5.17.

Estimation of NMR yield for the formation of 9d

In a glovebox, a benzene- d_6 solution (300 µL) of Xyl-NC (20.9 mg, 159 µmol) was added to a benzene- d_6 solution (300 µL) of **1** (29.9 mg, 79.5 µmol) and 4-(methoxycarbonyl)pyridine (47.2 µL, 399 µL) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, a benzene- d_6 solution (600 µL) of 1,3,5-trimethoxybenzene (13.7 mg, 81.5 µmol) was added to the crude product and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **9d** (24%).

Figure S36. The ¹H NMR spectrum of the crude product for the synthesis of 9d

Synthesis of 10

In a glovebox, a toluene solution (5 mL) of Xyl-NC (173 mg, 1.33 mmol) was added to a toluene solution (10 mL) of **1** (500 mg, 1.33 mmol) and 4dimethylaminopyridine (163. mg, 1.33 mmol) in a 30 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be brown. Volatiles were removed from the reaction

mixture under reduced pressure. The residue was recrystallized from toluene ($-35 \,^{\circ}$ C) to afford yellow crystals of **10** (174 mg, 0.276 mmol, 21%). ¹H NMR (400 MHz, C₆D₆) δ 1.21 (br s, 6H, CH₃ of oxaboretane), 1.49 (br s, 6H, CH₃ of oxaboretane), 1.76 (s, 3H, *p*-CH₃ of Mes), 1.85 (br s, 6H, *o*-CH₃ of Xyl or Mes), 2.08 (s, 3H, *p*-CH₃ of Mes), 2.12-2.17 (br m, 12H, N(CH₃)₂ and *o*-CH₃ of Xyl or Mes), 2.32 (br s, 6H, *o*-CH₃ of Mes), 6.08 (br, 2H, 3,5-CH of DMAP), 6.25 (s, 2H, CH of Mes), 6.64 (s, 2H, CH of Mes), 6.76 (br m, 2H, 3,5-CH of Xyl), 6.86 (t, *J* = 7 Hz, 1H, 4-CH of Xyl), 8.47 (br, 2H, 2,6-CH of DMAP); ¹¹B NMR (160.5 MHz, C₆D₆) δ 42 (s), 7 (s); ¹³C NMR (126 MHz, C₆D₆) δ 20.8 (CH₃), 21.1 (CH₃), 21.2 (CH₃), 21.3 (CH₃), 21.5 (CH₃), 22.4 (CH₃), 27.5 (CH₃), 38.4 (NCH₃), 78.7 (4° of pin), 79.3 (4° of pin), 106.2 (br, CH), 121.9 (CH), 128.9 (CH), 129.1 (CH), 129.3 (CH), 135.6 (4°), 135.8 (4°), 136.0 (4°), 136.1 (4°), 138.8 (4°), 140.4 (4°), 140.9 (br, 4°), 141.5 (4°), 143.3 (br, 4°), 152.7 (4°), 154.7 (br, 4°), 192.4 (4°, C=N); mp 79.9-81.6 °C (decomp.); HRMS (ESI⁺) Calc for C₄₀H₅₃B₂N₃O₂: 629.4324, found: 629.4321.

Figure S37. The ¹H NMR spectrum (benzene- d_6) of **10**

Figure S39. The ¹³C NMR spectrum (benzene- d_6) of **10**

Estimation of NMR yield for the formation of 10

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (10.4 mg, 79.3 μ mol) was added to a toluene solution (600 μ L) of **1** (30.1 mg, 80.0 μ mol) and 4-dimethylaminopyridine (9.9 mg, 81.0 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.7 mg, 81.5 μ mol) was added to residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **10** (67%).

Figure S40. The ¹H NMR spectrum of the crude product for the synthesis of 10

Synthesis of 11

In a glovebox, a toluene solution (1.5 mL) of Xyl-NC (69.8 mg, 532 µmol) was added to a toluene solution (3 mL) of **1** (200 mg, 523 µmol) in a 15 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be green. Volatiles were

removed from the reaction mixture under reduced pressure. The residue was recrystallized from hexane (– 35 °C) to afford yellow crystals of **11** (72.8 mg, 124 μ mol, 23%). Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from hexane at room temperature. ¹H NMR (400 MHz, C₆D₆) δ

0.94 (s, 12H, CH₃ of pin), 1.82 (s, 6H, *o*-CH₃ of Xyl or Mes), 2.11 (s, 3H, *p*-CH₃ of Mes), 2.16 (s, 3H, *p*-CH₃ of Mes), 2.22-2.66 (br, 12H, *o*-CH₃ of Xyl or Mes), 5.66 (dd, J = 6, 1 Hz, 1H, CH), 5.45 (d, J = 6 Hz, 1H, CH), 6.59 (br s, 2H, CH of Mes), 6.77, (br s, 2H, CH of Mes), 6.80 (s, 1H, CH), 6.83 (t, J = 8 Hz, 1H, 4-CH of Xyl), 6.93 (d, J = 8 Hz, 2H, 3,5-CH of Xyl), 7.01 (s, 1H, CH); ¹¹B NMR (160.5 MHz, C₆D₆) δ 45 (s), 22 (s); ¹³C NMR (126 MHz, C₆D₆) δ 18.0 (CH₃), 21.16 (CH₃), 21.24 (CH₃), 22.3 (CH₃), 24.5 (CH₃), 84.3 (4° of pin), 115.6 (CH), 119.1 (CH), 123.4 (CH), 128.3 (CH), 128.7 (CH), 132.0 (CH), 137.5 (4°), 138.2 (4°), 139.7 (4°), 141.0 (4°), 141.5 (4°), 151.4 (4°), 157.3 (CH); mp 197.6-204.4 °C (decomp.); Anal. Calcd for C₃₇H₄₇B₂N₃O₂: C, 75.65; H, 8.07; N, 7.15; Found: C, 75.29; H, 8.17; N, 6.88.

Estimation of NMR yield for the formation of 11

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (10.5 mg, 79.8 μ mol) was added to a toluene solution (300 μ L) of **1** (30.0 mg, 79.8 μ mol) and pyrazine (32.5 mg, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.6 mg, 80.9 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **11** (35%).

Figure S41. The ¹H NMR spectrum of the crude product for the synthesis of 11

Synthesis of 12

In a glovebox, a toluene solution (3 mL) of Xyl-NC (105 mg, 798 µmol) was added to a toluene solution (3 mL) of 1 (300 mg, 798 µmol) and pyrimidine (320 µL, 3.99 mmol) in a 30 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be green. Volatiles were removed from the reaction mixture under reduced pressure. The residue was

recrystallized from hexane (-35 °C) to afford green crystals of **12** (209 mg, 359 µmol, 45%). ¹H NMR (400 MHz, C₆D₆) δ 0.63 (s, 3H, CH₃), 0.99 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 1.13 (s, 3H, CH₃), 1.51 (s, 3H, *p*-CH₃ of Mes), 1.56 (s, 3H, *p*-CH₃ of Mes), 2.12 (s, 3H, *o*-CH₃ of Mes or Xyl), 2.16 (s, 6H, *o*-CH₃ of Mes or Xyl), 2.44 (s, 3H, *o*-CH₃ of Mes or Xyl), 2.50 (s, 3H, *o*-CH₃ of Mes or Xyl), 2.76 (s, 3H, *o*-CH₃ of Mes or Xyl), 6.29 (dd, *J* = 7, 1 Hz, 1H, CH), 6.51 (d, *J* = 7 Hz, 1H, CH), 6.55 (br s, 1H, CH of Mes), 6.66 (br s, 1H, CH of Mes), 6.69 (br s, 1H, CH of Mes), 8.75 (t, *J* = 7 Hz, 1H, 4-CH of Xyl), 6.79 (d, *J* = 7 Hz, 2H, 3,5-CH of Xyl), 6.85 (br s, 1H, NH), 7.18 (s, 1H, CH of Mes), 8.50 (d, *J* = 1 Hz 1H, CH); ¹¹B NMR (160.5 MHz, C₆D₆) δ 56 (s), 10 (s); ¹³C NMR (126 MHz, C₆D₆, three B-bonded carbon atoms were not detected) δ 16.6 (CH₃), 20.1 (br, CH₃), 20.5 (CH₃), 21.1 (CH₃), 22.2 (CH₃), 22.5 (CH₃), 22.8 (CH₃), 25.6 (CH₃), 25.9 (CH₃), 26.0 (CH₃), 27.7 (CH₃), 81.58 (4° of pin), 81.64 (4° of pin), 110.0 (CH), 126.4 (CH), 128.5 (CH), 128.6 (CH), 128.8 (CH), 129.8 (CH), 131.4 (CH), 133.8 (4°), 133.8 (4°), 137.4 (4°), 137.6 (4°), 139.4 (4°), 140.5 (4°), 140.6 (4°), 141.0 (4°), 142.0 (4°), 150.9 (CH), 152.1 (CH), 158.6 (CH); mp 223.2-223.5 °C (decomp.); Anal. Calcd for C₃₇H₄₇B₂N_{3O₂}: C, 75.65; H, 8.07; N, 7.15; Found: C, 75.63; H, 8.04; N, 6.78.

Estimation of NMR yield for the formation of 12

In a glovebox, a toluene solution (200 μ L) of Xyl-NC (10.5 mg, 79.8 μ mol) was added to a toluene solution (368 μ L) of **1** (30.0 mg, 79.8 μ mol) and pyrimidine (32.0 μ L, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.3 mg, 79.1 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **12** (66%).

Figure S42. The ¹H NMR spectrum of the crude product for the synthesis of 12

Synthesis of 13

In a glovebox, a toluene solution (1.5 mL) of Xyl-NC (52.5 mg, 399 μ mol) was added to a toluene solution (1.5 mL) of **1** (150 mg, 399 μ mol) and pyridazine (145 μ L, 2.00 mmol) in a 15 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be brown. Volatiles were removed from the reaction mixture under reduced pressure. The residue was recrystallized

from hexane ($-35 \,^{\circ}$ C) to afford yellow crystals of **13** (74.5 mg, 128 µmol, 32%). ¹H NMR (400 MHz, C₆D₆) δ 0.53 (br s, 3H, CH₃ of pin), 0.83 (br s, 3H, CH₃ of pin), 0.91 (br s, 3H, CH₃ of pin), 0.96 (br s, 3H, CH₃ of pin), 2.17 (s, 6H, *o*-CH₃ of Mes), 2.20 (s, 3H, *p*-CH₃ of Mes), 2.26 (s, 3H, *p*-CH₃ of Mes), 2.79 (s, 3H, *o*-CH₃ of Mes), 2.90 (s, 3H, *o*-CH₃ of Mes), 4.95-5.04 (m, 2H, CH), 6.40 (d, *J* = 8 Hz, 1H, CH), 6.66 (m, 1H, CH), 6.67 (br s, 1H, CH of Mes), 6.70 (br s, 1H, CH of Mes), 6.87 (br s, 1H, CH of Mes), 6.91 (br s, 1H, CH of Mes); ¹¹B NMR (160.5 MHz, C₆D₆) δ 44 (s), 23 (s); ¹³C NMR (126 MHz, C₆D₆) δ 21.2 (CH₃), 21.3 (CH₃), 22.1 (br, CH₃), 22.4 (CH₃), 23.0 (CH₃), 23.6 (br, CH₃), 24.6 (br, CH₃), 25.3 (br, CH₃), 83.6 (4°), 106.6 (br, CH₃), 25.3 (br, CH₃), 83.6 (4°), 106.6 (br, 2H) (br, CH₃), 25.3 (br, CH₃), 83.6 (4°), 106.6 (br, 2H) (br, CH₃), 25.3 (br, CH₃), 83.6 (4°), 106.6 (br, 2H) (br, CH₃), 25.3 (br, CH₃), 83.6 (4°), 106.6 (br, 2H) (br, CH₃), 25.3 (br, CH₃), 83.6 (4°), 106.6 (br, 2H) (br, CH₃), 25.3 (br, CH₃), 83.6 (4°), 106.6 (br, 2H) (br, CH) (br

CH), 111.4 (br, CH), 127.9 (CH), 128.2 (CH), 128.6 (CH), 128.8 (CH), 129.0 (CH), 130.6 (CH), 133.4 (CH), 137.0 (4°), 137.37 (4°), 137.38 (4°), 140.29 (4°), 140.33 (4°), 141.3 (4°), 144.6 (4°); mp 54.5-57.8 °C (decomp.); Anal. Calcd for $C_{28}H_{38}B_2N_2O_2$: C, 75.65; H, 8.07; N, 7.15; Found: C, 75.29; H, 8.17; N, 6.88.

Estimation of NMR yield for the formation of 13

In a glovebox, a benzene- d_6 solution (300 µL) of Xyl-NC (10.5 mg, 79.8 µmol) was added to a toluene solution (368 µL) of **1** (30.0 mg, 79.8 µmol) and pyridazine (28.9 µL, 399 µmol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, a benzene- d_6 solution (600 µL) of 1,3,5-trimethoxybenzene (13.8 mg, 82.1 µmol) was added to the crude product and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **13** (63%).

Figure S43. The ¹H NMR spectrum of the crude product for the synthesis of 13

Synthesis of 5e

In a glovebox, a quinoline solution (5 mL) of Xyl-NC (175 mg, 1.33 mmol) was added to a quinoline solution (5 mL) of 1 (500 mg, 1.33 mmol) in a 120 mL Schlenk flask at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be green. Volatiles

were removed from the reaction mixture under reduced pressure at 90 °C. The residue was recrystallized from

hexane (-35 °C) to afford yellow crystals of **5e** (275 mg, 0.439 mmol, 33%). ¹H NMR (500 MHz, C₆D₆), δ 0.99 (br s, 12H, CH₃ of pin), 1.92 (s, 6H, *o*-CH₃ of Xyl or Mes), 2.14 (s, 3H, *p*-CH₃ of Mes), 2.22 (s, 3H, *p*-CH₃ of Mes), 2.42 (s, 6H, *o*-CH₃ of Xyl or Mes), 2.52 (s, 6H, *o*-CH₃ of Xyl or Mes), 5.55 (d, *J* = 10 Hz, 1H, CH), 5.90 (d, *J* = 10 Hz, 1H, CH), 6.63 (s, 1H, CH), 6.65-6.71 (m, 2H, CH), 6.73 (s, 2H, CH of Mes), 6.76 (s, 2H, CH of Mes), 6.78 (m, 1H, CH) , 6.93 (s, 3H, CH of Xyl), 7.39 (m, 1H, CH); ¹¹B NMR (160.5 MHz, C₆D₆) δ 50 (s), 23 (s); ¹³C NMR (126 MHz, C₆D₆) δ 17.7 (CH₃), 21.1 (CH₃), 21.2 (CH₃), 22.9 (CH₃), 24.0 (CH₃), 24.5 (CH₃), 83.4 (4°), 119.8 (CH), 122.6 (4°), 122.8 (CH), 123.5 (CH), 123.7 (CH), 126.7 (CH), 126.8 (CH), 127.4 (CH), 127.6 (CH), 128.36 (4°), 139.1 (4°), 140.4 (4°), 141.2 (4°), 141.3 (br, 4°), 141.5 (br, 4°), 141.6 (4°), 141.9 (br, 4°), 143.9 (4°); mp 160.0-162.7 °C (decomp.); Anal. Calcd for C₄₂H₅₀B₂N₂O₂: C, 79.26; H, 7.92; N, 4.40; Found: C, 79.19; H, 7.79; N, 4.33.

Estimation of NMR yield for the formation of 5e

In a glovebox, a toluene solution (300 μ L) of Xyl-NC (10.5 mg, 79.8 μ mol) was added to a toluene solution (260 μ L) of **1** (30.0 mg, 79.8 μ mol) and quinoline (47.3 μ L, 399 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.2 mg, 78.5 μ mol) was added to the crude product and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectra was recorded to estimate the NMR yield of **5e** (54%).

Figure S44. The ¹H NMR spectrum of the crude product for the synthesis of 5e

Isolation of 9e by reaction of 6e with isocyanide

In a glovebox, a toluene solution (0.9 mL) of Xyl-NC (34.3 mg, 261 μ mol) was added to a toluene solution (1.8 mL) of **5e** (166 mg, 261 μ mol) in a 15 mL vial at room temperature. During the reaction mixture was stirred at 60 °C for 2 days, the color of the resulting solution turned to be red. Volatiles were removed from the reaction mixture under reduced pressure. The residue was recrystallized from

acetonitrile (-35 °C) to afford orange crystals of **9e** (128 mg, 167 µmol, 64%). ¹H NMR (400 MHz, C₆D₆) δ 0.84 (s, 12H, CH₃ of pin), 1.65-2.80 (br, 24H, CH₃×8), 1.93 (CH₃), 2.32 (CH₃), 6.20 (t, *J* = 8 Hz, 1H, 4-CH of Xyl), 6.50 (br, 2H, CH of Mes), 6.67 (t, *J* = 8 Hz, 1H, 4-CH of Xyl), 6.67 (d, *J* = 8 Hz, 2H, 3,5-CH of Xyl), 6.91 (d, *J* = 8 Hz, 2H, 3,5-CH of Xyl), 6.98-7.06 (m, 2H, CH), 7.15 (d, *J* = 8 Hz, 2H, CH), 7.20 (d, *J* = 8 Hz, 2H, 2H, 2H, 2H, 2H, CH), 7.24 (dd, *J* = 7, 1 Hz, 2H, CH), 7.26 (dd, *J* = 7, 1 Hz, 2H, CH), 8.00 (d, *J* = 8 Hz, 1H, CH); ¹¹B NMR (160.5 MHz, C₆D₆) δ 49 (s), 24 (s); ¹³C NMR (126 MHz, C₆D₆) δ 19.6 (br, CH₃), 20.9 (CH₃), 21.3 (CH₃), 23.0 (br, CH₃), 23.8 (CH₃), 24.2 (CH₃), 25.3 (br, CH₃), 82.4 (4° of pin), 122.6 (CH), 124.9 (CH), 125.8 (CH), 126.2 (CH), 127.04 (CH), 135.0 (4°), 135.4 (4°), 137.0 (4°), 137.2 (4°), 137.9 (4°), 140.8 (4°), 141.7 (4°), 142.0 (4°), 144.7 (4°), 147.5 (4°), 156.1 (4°); mp 201.4-204.9 °C (decomp.); Anal. Calcd for C₅₃H₆₂B₂N₄O₂ (containing 1 eq. of acetonitrile): C, 78.71; H, 7.73; N, 6.93; Found: C, 78.42; H, 7.40; N, 6.62.

Estimation of NMR yield for the formation of 9e from 1

In a glovebox, a toluene solution (216 μ L) of Xyl-NC (10.3 mg, 78.9 μ mol) was added to a toluene solution (300 μ L) of **6** (50.2 mg, 78.9 μ mol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 2 days at 60 °C, volatiles were removed from the reaction mixture under reduced pressure. A benzene-*d*₆ solution (600 μ L) of 1,3,5-trimethoxybenzene (13.6 mg, 80.9 μ mol) was added to the residue and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 μ L) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **9e** (68%).

Figure S45. The ¹H NMR spectrum of the crude product for the synthesis of 9e

Estimation of NMR yield for the reaction of 1 with 2 eq. Xyl-NC and quinoline

In a glovebox, a benzene- d_6 solution (300 µL) of Xyl-NC (21.0 mg, 160 µmol) was added to a benzene- d_6 solution (300 µL) of **1** (30.0 mg, 79.8 µmol) and quinoline (47.3 µL, 399 µmol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, a benzene- d_6 solution (600 µL) of 1,3,5-trimethoxybenzene (13.5 mg, 80.3 µmol) was added to the crude product and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **3** (50%) and **5e** (21%). It should be noted that **9e** did not form at all in this reaction.

Figure S46. The ¹H NMR spectrum of the crude product for the reaction of 1 with 2 eq. Xyl-NC and quinoline

Synthesis of 4f

In a glovebox, a toluene solution (1.8 mL) of Xyl-NC (63.0 mg, 478 μ mol) was added to a toluene solution (1.8 mL) of **1** (180 mg, 478 μ mol) and isoquinoline (281 μ L, 2.40 mmol) in a 15 mL vial at room temperature. During the reaction mixture was stirred at room temperature for 5 min, the color of the resulting solution turned to be black. Volatiles were

Xyl removed from the reaction mixture under reduced pressure. The residue was recrystallized from hexane (-35 °C) to afford blue crystals of **4f** (74.3 mg, 117 μmol, 24%). ¹H NMR (400 MHz, C₆D₆) δ 1.09 (s, 12H, CH₃ of pin), 2.06 (s, 3H, CH₃), 2.33 (s, 9H, CH₃), 2.58 (s, 6H, CH₃), 2.88 (s, 6H, CH₃), 6.34 (d J = 7 Hz, 1H, 4-CH of isoquinoline), 6.69 (d, J = 8 Hz, 1H, 5-CH of quinoline), 6.70 (s, 2H, CH of Mes), 6.73 (d, J = 8 Hz, 1H, 6-CH of isoquinoline), 6.81 (dd, J = 8, 7 Hz, 1H, 7-CH of isoquinoline), 6.91 (t, J = 7 Hz, 1H, 4-CH of Xyl), 6.93 (d, J = 8 Hz, 1H, 8-CH of isoquinoline), 6.96 (d, J = 7 Hz, 2H, 3,5-CH of Xyl), 7.02 (s, 2H, CH of Mes), 7.89 (d, J = 7 Hz, 1H, 3-CH of isoquinoline), 8.81 (s, 1H, 1-CH of isoquinoline); ¹¹B NMR (160.5 MHz, C₆D₆) δ 29 (s), 24 (s); ¹³C NMR (126 MHz, C₆D₆) δ 20.2 (CH₃), 21.1 (CH₃), 21.5 (CH₃), 22.5 (CH₃), 24.7 (CH₃), 25.3 (CH₃), 81.3 (4° of pin), 120.4 (CH), 121.0 (CH), 124.8 (CH), 125.9 (CH), 126.6 (CH), 127.0 (CH), 127.9 (CH), 127.9 (CH), 129.3 (CH), 129.5 (CH), 132.2 (CH), 134.1 (4°), 134.4 (4°), 135.9 (4°), 137.5 (CH), 138.2 (4°), 141.4 (4°), 142.7 (4°), 143.0 (4°), 145.3 (4°), 148.4 (CH), 153.0 (CH); mp 100.4-102.7 °C (decomp.); Anal. Calcd for C₄₂H₅₀B₂N₂O₂: C, 79.23; H, 7.92; N, 4.40; Found: C, 78.95; H, 7.65; N, 4.36.

Estimation of NMR yield for the formation of 4f

In a glovebox, a benzene- d_6 solution (300 µL) of Xyl-NC (10.5 mg, 79.8 µmol) was added to a toluene solution (368 µL) of **1** (30.0 mg, 79.8 µmol) and isoquinoline (46.9 µL, 399 µmol) in a 15 mL vial at room temperature. After stirring the reaction mixture for 10 min at room temperature, a benzene- d_6 solution (600 µL) of 1,3,5-trimethoxybenzene (13.4 mg, 79.8 µmol) was added to the crude product and the resulting mixture was stirred for 5 min at room temperature. An aliquot (600 µL) of the resulting solution was pipetted to a screw-capped NMR tube. After bringing the NMR tube out from the glovebox, ¹H NMR spectrum was recorded to estimate the NMR yield of **4f** (50%).

Figure S47. The ¹H NMR spectrum of the crude product for the synthesis of 4f

Synthesis of 14 by hydrolysis of 5

N C N Xyl

To a THF solution (5 mL) of **5** (150 mg, 0.256 mmol) in a 20 mL J.young tube, water (0.500 mL) was added at room temperature. The reaction mixture was stirred at 50 °C for 12 h (the color of the resulting solution turned to be red). The solvent was removed in vacuo to yield

a brown oil, which was further subjected to flush chromatography on silica gel with a mixed eluent (AcOEt : hexane = 2 : 1). The first band (Rf = 0.86) was collected and solvent was removed by evaporation to afford 14 as brown oil (41.3 mg, 76 %). Spectroscopic data of 14 matched with those in the literature.²

Details for X-ray diffraction analysis

Details of the crystal data and a summary of the intensity data collection parameters are listed in Table S1. In each case a suitable crystal was mounted with mineral oil (Aldrich) or perfluoropolyalkylether (viscosity 80 cSt., abcr GmbH) to the glass fiber and transferred to the goniometer of Rigaku VariMax Saturn CCD diffractometer with graphite-monochromated MoK α radiation ($\lambda = 0.71075$ Å). All the following procedure for analysis, Yadokari-XG was used as a graphical interface.³ The structures were solved by direct methods with (SIR-2014)⁴ and refined by full-matrix least-squares techniques against F^2 (SHELXL-2014).⁵ The intensities were corrected for Lorentz and polarization effects. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions. All the obtained crystal structures except those in the main text are shown in Figures S48-S58.

,,				
	4	4a	4b	5
formula	$C_{38}H_{48}B_2N_2O_2$	$C_{45}H_{64}B_2N_2O_3$	$C_{38}H_{47}B_2ClN_2O_2$	$C_{38}H_{48}B_2N_2O_2$
fw	586.40	702.60	620.84	586.40
T (K)	93(2)	93(2)	93(2)	93(2)
λ (Å)	0.71075	0.71075	0.71075	0.71075
cryst syst	Monoclinic	Orthorhombic	Monoclinic	Monoclinic
space group	$P2_{1}/a$	$Pna2_1$	$P2_{1}/c$	$P2_{1}/n$
a, (Å)	17.600(2)	19.208(3)	10.777(5)	8.565(3)
b, (Å)	19.466(2)	13.253(2)	8.468(4)	33.036(12)
c, (Å)	20.232(3)	16.091(3)	38.298(17)	11.991(5)
α, (°)	90	90	90	90
β, (°)	96.305(2)	90	95.088(7)	90.444(4)
γ, (°)	90	90	90	90
$V, (Å^3)$	6889.6(15)	4096.2(12)	3481(3)	3393(2)
Ζ	8	4	4	4
D_{calc} , (g / cm ³)	1.131	1.139	1.185	1.148
$\mu (\mathrm{mm}^{-1})$	0.068	0.069	0.145	0.069
F(000)	2528	1528	1328	1264
cryst size (mm)	0.23×0.19×0.09	0.23×0.13×0.08	0.20×0.18×0.01	$0.21 \times 0.06 \times 0.03$
2θ range, (deg)	3.039-26.000	3.074-27.490	3.064-25.999	2.995-25.998
reflns collected	50487	32588	29769	31248
indep reflns/R _{int}	13497/0.0566	9364/0.0717	6830/0.1037	6669/0.1301
Params	817	474	418	409
GOF on F^2	1.128	1.025	1.163	1.101
$R_1, wR_2 [I \ge 2\sigma(I)]$	0.0749, 0.1645	0.0700, 0.1510	0.0983, 0.1784	0.0904, 0.1686
R_1 , wR_2 (all data)	0.0994, 0.1804	0.0952, 0.1669	0.1323, 0.1962	0.1455, 0.1963

Table S1. Crystallographic data and structure refinement details for 4, 4a, 4b, 5, 5a, 5b, 5c, 5d, 5e, 6, 7, 9a, 9b, 9c, 9d, 10, 11, 12, and 13

	5a	5b	5c	5d	5e
formula	$C_{117}H_{141}B_6F_9N_6O_6$	$C_{45}H_{62}B_2N_2O_4$	$C_{39}H_{47}B_2F_3N_2O_2\\$	$C_{40}H_{50}B_2N_2O_4$	$C_{89}H_{112}B_4N_4O_4$
fw	1963.21	716.58	654.40	644.44	1345.06
T (K)	93(2)	93(2)	93(2)	93(2)	93(2)
λ (Å)	0.71075	0.71075	0.71075	0.71075	0.71075
cryst syst	Orthorhombic	Triclinic	Monoclinic	Triclinic	Triclinic
space group	$P2_{1}2_{1}2_{1}$	<i>P</i> -1	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1
a, (Å)	16.004(4)	11.4491(18)	14.252(3)	8.4242(16)	9.894(3)
b, (Å)	21.403(5)	12.8149(17)	17.527(3)	15.698(3)	12.714(4)
c, (Å)	32.930(8)	15.929(2)	14.877(3)	28.081(5)	16.323(4)
<i>α</i> , (°)	90	74.652(8)	90	89.956(7)	101.384(5)
β, (°)	90	86.760(8)	93.855(3)	87.717(6)	91.511(4)
γ, (°)	90	65.452(5)	90	89.896(6)	100.757(4)
$V, (Å^3)$	11279(5)	2046.2(5)	3707.7(11)	3710.7(12)	1973.2(10)
Z	4	2	4	4	1
D_{calc} , (g / cm ³)	1.156	1.163	1.172	1.154	1.132
$\mu (\mathrm{mm}^{-1})$	0.080	0.072	0.081	0.073	0.067
F(000)	4176	776	1392	1384	726
cryst size (mm)	0.23×0.15×0.01	0.27×0.23×0.20	0.10×0.08×0.01	0.18×0.10×0.02	$0.24 \times 0.23 \times 0.10$
2θ range, (deg)	3.112-25.000	3.051-27.459	3.010-24.999	3.059-25.000	3.197-27.452
reflns collected	94264	16987	25208	25540	16334
indep reflns/R _{int}	19805/0.0668	9031/0.0445	6508/0.0759	12818/0.0842	8672/0.0526
Params	1511	535	482	993	490
GOF on F^2	1.143	0.968	1.101	1.061	0.992
$R_1, wR_2 [I > 2\sigma(I)]$	0.0893, 0.2177	0.0750, 0.2066	0.0767, 0.1719	0.0962, 0.1939	0.0659, 0.1350
R_1 , wR_2 (all data)	0.0961, 0.2235	0.1155, 0.2377	0.1162, 0.1975	0.1958, 0.2616	0.1217, 0.1656

	6	7	9a	9b	9c
formula	$C_{53}H_{63}B_2N_3O_2$	$C_{29}H_{39}B_2NO_2$	$C_{48}H_{56}B_2F_3N_3O_2\\$	$C_{49}H_{59}B_2N_3O_4$	$C_{48}H_{56}B_2F_3N_3O_2$
fw	795.68	455.23	785.57	775.61	785.57
T (K)	93(2)	93(2)	93(2)	93(2)	93(2)
λ (Å)	0.71075	0.71075	0.71075	0.71075	0.71075
cryst syst	Triclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
space group	<i>P</i> -1	$P2_{1}/n$	$P2_{1}/c$	<i>P</i> -1	$P2_{1}/n$
a, (Å)	11.821(3)	8.7230(16)	11.335(4)	8.034(3)	14.692(7)
b, (Å)	12.930(3)	23.773(4)	10.991(4)	10.856(4)	11.210(5)
c, (Å)	16.755(4)	13.264(3)	35.202(13)	26.173(10)	27.115(12)
α, (°)	101.050(3)	90	90	97.069(5)	90
β, (°)	95.8819(19)	99.499(3)	95.263(5)	97.132(8)	105.567(7)
γ, (°)	111.862(3)	90	90	102.212(9)	90
$V, (Å^3)$	2289.7(9)	2712.8(9)	4367(3)	2187.4(15)	4302(3)
Ζ	2	4	4	2	4
D_{calc} , (g / cm ³)	1.154	1.115	1.195	1.178	1.213
$\mu (\mathrm{mm}^{-1})$	0.069	0.067	0.080	0.073	0.082
F(000)	856	984	1672	832	1672
cryst size (mm)	0.15×0.10×0.08	0.20×0.20×0.03	0.20×0.20×0.05	0.20×0.20×0.04	0.23×0.15×0.05
2θ range, (deg)	3.052-26.000	3.006-25.000	3.026-24.997	3.020-24.998	3.002-24.999
reflns collected	16981	18336	35806	14963	35133
indep reflns/R _{int}	8800/0.0645	4741/0.0450	7671/0.0713	7572/0.0745	7551/0.0903
Params	555	317	594	538	594
GOF on F^2	0.989	1.129	1.151	1.060	1.198
$R_1, wR_2 [I > 2\sigma(I)]$	0.0652, 0.1318	0.0652, 0.1570	0.0829, 0.1914	0.0897, 0.1617	0.0985, 0.2047
R_1 , wR_2 (all data)	0.1247, 0.1605	0.0811, 0.1711	0.1014, 0.2045	0.1616, 0.2030	0.1242, 0.2199

	9d	10	11	12	13
formula	$C_{49}H_{59}B_2N_3O_4$	$C_{54}H_{69}B_2N_3O_2$	$C_{37}H_{47}B_2N_3O_2$	$C_{37}H_{47}B_2N_3O_2$	$C_{28}H_{38}B_2N_2O_2\\$
fw	775.61	813.74	587.39	587.39	456.22
T (K)	93(2)	93(2)	93(2)	93(2)	93(2)
λ (Å)	0.71075	0.71075	0.71075	0.71075	0.71075
cryst syst	Triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
space group	<i>P</i> -1	$P2_{1}/c$	$P2_{1}/a$	$P2_{1}/n$	$P2_{1}/n$
a, (Å)	10.951(2)	10.6242(17)	15.319(2)	10.981(2)	10.134(3)
b, (Å)	14.210(3)	20.635(4)	13.7912(18)	10.430(2)	18.980(6)
c, (Å)	16.118(3)	22.708(4)	17.481(3)	28.550(6)	13.580(4)
α, (°)	104.201(3)	90	90	90	90
β, (°)	92.6541(11)	100.578(3)	112.051(2)	94.578(4)	96.976(6)
γ, (°)	111.940(3)	90	90	90	90
$V, (Å^3)$	2228.6(8)	4893.6(14)	3422.9(8)	3259.7(11)	2592.7(14)
Z	2	4	4	4	4
D_{calc} , (g / cm ³)	1.156	1.104	1.140	1.197	1.169
$\mu (\mathrm{mm}^{-1})$	0.072	0.065	0.069	0.073	0.071
F(000)	832	1760	1264	1264	984
cryst size (mm)	0.20×0.10×0.02	0.21×0.20×0.16	0.24×0.12×0.08	0.15×0.08×0.02	0.15×0.07×0.03
2θ range, (deg)	3.005-27.477	3.031-24.999	3.023-27.460	3.123-27.457	3.022-24.999
reflns collected	18527	32992	27777	26271	17541
indep reflns/R _{int}	9851/0.0401	8602/0.0629	7810/0.0441	7333/0.0671	4511/0.0537
Params	538	605	409	409	317
GOF on F^2	0.986	1.115	1.032	1.065	1.105
$R_1, wR_2 [I > 2\sigma(I)]$	0.0590, 0.1245	0.0985, 0.2623	0.0603, 0.1402	0.0762, 0.1771	0.0632, 0.1424
R_1 , wR_2 (all data)	0.1020, 0.1501	0.1416, 0.3028	0.0847, 0.1588	0.1068, 0.1986	0.0829, 0.1560

Figure S49. Molecular structure of 4b

Figure S50. Molecular structure of 5a

Figure S51. Molecular structure of 5b

Figure S52. Molecular structure of 5c

Figure S53. Molecular structure of 5d

Figure S54. Molecular structure of 5e

Figure S55. Molecular structure of 9a

Figure S56. Molecular structure of 9b

Figure S57. Molecular structure of 9c

Figure S58. Molecular structure of 9d

Computational details

Gaussian 16 (rev. A.03) software package was employed to perform all of the calculations.⁶ The full model of **4**, **7**, and **8** were calculated by geometry optimization at the B3LYP⁷/6-31+g(d)⁸ level of theory in the presence of solvent *n*-hexane using the SCIPCM solvation method.⁹ The optimized geometries of **4**, **7**, and **8** are available as Supporting Information in .xyz format. At the optimized structure, TD-DFT¹⁰ calculations were performed to estimate UV-vis spectrum of **4** with CAM-B3LYP¹¹/6-31+g(d)⁸ level of theory.

Figure S59. Simulated UV-vis spectrum of 4

Table S2. Results of TD-DFT calculations of 4				
Excitation energies and oscillator strengths:				
Excited State 1:	Singlet-A			
2.3641 eV 524.44 nm	f=0.1059 <s**2>=0.000</s**2>			
158 ->159	0.69868			
Excited State 2:	Singlet-A			
3.2969 eV 376.07 nm	f=0.0032 <s**2>=0.000</s**2>			
158 ->160	0.69883			
Excited State 3:	Singlet-A			
3.9800 eV 311.52 nm	f=0.0096 <s**2>=0.000</s**2>			
154 ->159	0.14784			
155 ->159	-0.45839			
156 ->159	0.49231			

Figure S60. Frontier orbitals and related orbitals of 7 and 8.

References

- S1. H. Asakawa, K.-H. Lee, Z. Lin and M. Yamashita, Nat. Commun., 2014, 5, 4245.
- Z. Huang, K. Song, F. Liu, J. Long, H. Hu, H. Gao and Q. Wu, J. Polym. Sci. A, Polym. Chem., 2008, 46, 1618-1628.
- (a) C. Kabuto, S. Akine, T. Nemoto and E. Kwon, *J. Cryst. Soc. Jpn.*, 2009, **51**, 218-224; (b) C. Kabuto,
 S. Akine and E. Kwon, *J. Cryst. Soc. Jpn.*, 2009, **51**, 218-224.
- M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone and G. Polidori, *J. Appl. Crystallogr.*, 2015, 48, 306-309.
- 5. G. Sheldrick, Act. Cryst. Sec. C, 2015, 71, 3-8.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Journal*, 2016.
- 7. (a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, 37, 785-789; (b) A. D. Becke, *Phys. Rev. A*, 1988, 38, 3098-3100; (c) B. Miehlich, A. Savin, H. Stoll and H. Preuss, *Chem. Phys. Lett.*, 1989, 157, 200-206.
- 8. S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai and H. Tatewaki, *Gaussian basis sets for molecular calculations*, Elsevier, 1984.
- (a) J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian and M. J. Frisch, *J. Phys. Chem.*, 1996, 100, 16098-16104; (b) J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, 105, 2999-3094.
- (a) C. Adamo and D. Jacquemin, *Chem. Soc. Rev.*, 2013, 42, 845-856; (b) A. D. Laurent, C. Adamo and D. Jacquemin, *Phys. Chem. Chem. Phys.*, 2014, 16, 14334-14356.
- 11. T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51-57.