Stereoselective Cobalt-Catalyzed Halofluoroalkylation of Alkynes

Guojiao Wu and Axel Jacobi von Wangelin*

Table of contents

1. General experimental methods	S2
2. Method optimization	S2
3. General procedure and characterization data	S4
4. Mechanistic studies	S15
5. Kinetic experiments	S17
6. References	S20
7. ¹ H, ¹³ C, and ¹⁹ F spectra	S21

1. General experimental methods.

Reagents were purchased from commercial suppliers and used without further purification. All solvents were used without distillation. Column chromatograph was performed on 35-70 mesh silica gel (Acros Organics). ¹H, ¹³C, ¹⁹F spectra were recorded on a Bruker Avance 300 or Avance 600 Kryo spectrometer using CDCl₃ as solvent. Chemical shifts are reported in ppm and referenced to residual solvent signal (CDCl3: ¹H NMR: δ 7.26 ppm, ¹³C NMR: δ 77.0 ppm). High Resolution Mass Spectrometry (HRMS) were recorded on Finnigan MAT 900s. GC-yields was obtained using dodecane as internal standard with Gas chromatography with FID (GC-FID, HP6890 GC-System with injector 7683B and Agilent 7820A System, carried gas: H₂).

	Ph H + F	EtO₂CF₂C−Br —	Cat. (x mol%) Ligand (x mol%) Zn (y mol%)	Ph EtO ₂ CF ₂ C
	1a	2a	Solvent, r.t. 3 h	3a
entry	Cat. (x mol%)	Ligand	solvent	3a (%) ^[b]
1	$CoBr_2(5)$	dppe	dioxane	ND
2	$\operatorname{CoBr}_{2}(5)$	dppf	dioxane	ND
3	$\operatorname{CoBr}_{2}(5)$	dppbz	dioxane	22
4	$CoBr_2(5)$	dppb	dioxane	ND
5	$\operatorname{CoBr}_{2}(5)$	dppbz	$Dio/H_2O = 30: 1$	81
6	$CoBr_2(5)$	dppbz	$THF/H_2O = 30: 1$	79
7	$\operatorname{CoBr}_{2}(5)$	dppbz	$MeCN/H_2O = 30: 1$	88
8	$\operatorname{CoBr}_{2}(5)$	dppbz	acetone/ $H_2O = 30$: 1	88
9	$CoBr_2(5)$	dppbz	DMF/H ₂ O = 30: 1	27
10	$\operatorname{CoBr}_{2}(5)$	dppbz	DMSO/H ₂ O = 30: 1	ND
11	$\operatorname{CoBr}_{2}(5)$	dppbz	$PhMe/H_2O = 30: 1$	ND
12	$\operatorname{CoBr}_{2}(5)$	dppbz	$DCE/H_2O = 30: 1$	81
13	$\operatorname{CoBr}_{2}(5)$	dppbz	$EtOAc/H_2O = 30: 1$	ND
14	$CoBr_2(5)$	dppbz	$Et_2O/H_2O = 30: 1$	ND
15	$\operatorname{CoBr}_{2}(5)$	dppbz	$EtOH/H_2O = 30: 1$	20
16		dppbz (5)	acetone/ $H_2O = 30$: 1	ND
17	$\operatorname{CoBr}_{2}(5)$		acetone/ $H_2O = 30$: 1	ND
18	$\operatorname{CoBr}_{2}(5)$	dppbz	acetone/ $H_2O = 30$: 1	ND ^[c]
19	$FeBr_2(5)$	dppbz	acetone/H ₂ O = 30: 1	ND
20	$NiCl_2(5)$	dppbz	acetone/H ₂ O = 30: 1	ND
21	$\operatorname{CrCl}_{3}(5)$	dppbz	acetone/H ₂ O = 30: 1	ND
22	$MnBr_2(5)$	dppbz	acetone/H ₂ O = 30: 1	ND
23	CuSO ₄ ·5H ₂ O (5)	dppbz	acetone/ $H_2O = 30$: 1	ND
24	$Cp_2TiCl_2(5)$	dppbz	acetone/ $H_2O = 30$: 1	ND
25	$CoCl_2(5)$	dppbz	acetone/H ₂ O = 30: 1	83
26	$CoCl_2 \cdot 4H_2O(5)$	dppbz	acetone/ $H_2O = 30$: 1	83

2. Method optimizations^[a]

[a] Reaction conditions: **1a** (0.3 mmol), **2a** (0.45 mmol), catalyst (x mol%), ligand (x mol%) and Zn (20 mol%) in 0.6 mL acetone/H₂O for 3 hours. [b] GC yield using dodecane as internal standard. [c] Without Zn. [d] ligand (10 mol%). [e] Mn (20 mol%) instead of Zn. [f] Zn (5 mol%). [g] Zn (10 mol%)

3. General Procedure and characterization data

CoBr₂ (1.3 mg, 0.006 mmol, 0.02 equiv), dppbz (2.7 mg, 0.006 mmol, 0.02 equiv), Zn (1.0 mg, 0.015 mmol, 0.05 equiv) were dissolved in acetone/H₂O (30:1, 0.6 mL) and stirred for 2 minutes. Alkyne or alkene was added into the system (Note: if it is solid, weigh it with the catalyst and dissolve them together), followed with R_f -X (0.45 mmol, 1.5 equiv). The mixture was stirred at room temperature for 3 hours. The solvent was removed to leave a crude product, which was purified by column chromatography on silica gel to afford the product **3**.

The product **3a**¹ was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.37 (s, 5H), 6.50 (t, *J* = 11.1 Hz, 1H), 3.98 (q, *J* = 7.2 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.5 (t, *J* = 33.4 Hz), 137.1, 133.5 (t, *J* = 10.2 Hz), 130.0, 128.5 (t, *J* = 2.1 Hz), 128.1, 125.0 (t, *J* = 28.7

Hz), 111.0 (t, J = 248.8 Hz), 63.1, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -93.6 (*E*), -97.6 (*Z*)

The product **3b**¹ was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.30 (m, 2H), 6.88-6.83 (m, 2H), 6.44 (t, *J* = 11.0 Hz, 1H), 3.99 (q, *J* = 7.2 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.6 (t, *J* = 33.4 Hz), 160.8, 134.0

(t, J = 10.4 Hz), 130.4 (t, J = 2.0 Hz), 129.3, 124.3 (t, J = 28.7 Hz), 113.4, 111.2 (t, J = 248.3 Hz), 63.1, 55.3, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -93.6 (*E*).

The product **3c** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.26 (d, *J* = 8.1 Hz, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 6.46 (t, *J* = 11.1 Hz, 1H), 3.99 (q, *J* = 7.2 Hz, 2H), 2.36 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.5 (t, *J* = 33.5

Hz), 140.3, 134.3, 133.9 (t, J = 10.2 Hz), 128.7, 128.5 (t, J = 2.0 Hz), 124.7 (t, J = 28.7 Hz), 111.2 (t, J = 248.6 Hz), 63.1, 21.3, 13.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -94.0 (*E*), -97.8 (*Z*); HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₃H₁₃BrF₂O₂: 318.0062, found: 318.0053.

The product **3d** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.30 (m, 4H), 6.54 (td, *J* = 11.4, 0.8 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 1.27 (td, *J* = 7.1, 0.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.4 (t, *J* = 33.4 Hz), 136.0, 135.6, 132.1 (t, *J* = 9.4

Hz), 129.8 (t, J = 2.0 Hz), 128.4, 125.4 (t, J = 28.0 Hz), 110.9 (t, J = 249.9 Hz), 63.3, 13.7; ¹⁹F

NMR (282 MHz, CDCl₃) δ -94.5 (*E*); HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₂H₁₀BrClF₂O₂: 337.9515, found: 337.9504.

The product $3e^1$ was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.42 (m, 2H), 7.19-7.16 (m, 2H), 6.43 (t, J = 11.5 Hz, 1H), 4.02 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.4 (t, J = 33.4 Hz), 136.1, 132.1 (t, J = 9.4

Hz), 131.3, 130.3 (t, J = 2.1 Hz), 125.4 (t, J = 27.9 Hz), 124.3, 110.9 (t, J = 250.1 Hz), 63.3, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -95.1 (*E*); HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₂H₁₀BrClF₂O₂: 337.9515, found: 337.9504.

The product **3f** was purified with silica gel chromatography (Pe/EA = 10 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 6.55 (t, *J* = 12.0 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.3 (t, *J* = 33.3 Hz), 141.6, 131.8,

130.6 (t, J = 8.3 Hz), 129.0 (t, J = 2.2 Hz), 126.0 (t, J = 27.0 Hz), 117.9, 113.5, 110.7 (t, J = 251.4 Hz), 63.5, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -95.1 (*E*); HRMS (ESI) (*m/z*): [M+H]⁺ calcd for C₁₃H₁₁BrF₂NO₂: 329.9936, found: 329.9940.

The product **3g** was purified with silica gel chromatography (Pe/EA = 2 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.45 (m, 3H), 7.32 (d, *J* = 8.4 Hz, 2H), 6.46 (t, *J* = 11.2 Hz, 1H), 4.03 (q, *J* = 7.1 Hz, 2H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 162.6 (t, *J* = 33.5 Hz), 139.6,

133.3 (t, J = 10.0 Hz), 132.5, 129.4, 124.6 (t, J = 28.4 Hz), 118.9, 111.0 (t, J = 248.8 Hz), 63.3, 24.5, 13.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -94.1 (*E*), -97.6 (*Z*); HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd for C₁₄H₁₅BrF₂NO₃: 362.0198, found: 362.0204.

The product **3h** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.24 (m, 1H), 6.97-6.91 (m, 3H), 6.48 (t, *J* = 11.0 Hz, 1H), 3.99 (q, *J* = 7.2 Hz, 2H), 3.82 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.4 (t, *J* = 33.3 Hz),

158.9, 138.1, 133.3 (t, J = 10.4 Hz), 129.2, 125.0 (t, J = 28.9 Hz), 120.8 (t, J = 1.9 Hz), 116.0, 113.7 (t, J = 2.0 Hz), 111.0 (t, J = 248.7 Hz), 63.1, 55.3, 13.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -

94.0 (*E*); HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₄H₁₃BrF₂O₃: 334.0011, found: 334.0003.

The product **3i** was purified with silica gel chromatography (Pe/EA = 10 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 10.02 (s, 1H), 7.91-7.88 (m, 2H), 7.64-7.53 (m, 2H), 6.56 (t, *J* = 11.8 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 191.2, 162.4 (t, *J* = 33.3

Hz), 138.3, 136.1, 134.0, 131.5 (t, J = 8.7 Hz), 130.6, 129.5, 129.0, 125.8 (t, J = 27.4 Hz), 111.8 (t, J = 250.7 Hz), 63.4, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -95.9 (*E*); HRMS (ESI) (*m*/*z*): [M]⁺ calcd for C₁₃H₁₂BrF₂O₃: 332.9932, found: 332.9936.

The product **3j** was purified with silica gel chromatography (Pe/EA = 10 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.20 (m, 1H), 6.95-6.92 (m, 1H), 6.87-6.82 (m, 2H), 6.47 (t, *J* = 10.9 Hz, 1H), 5.70 (s, 1H), 4.00 (q, *J* = 7.2 Hz, 2H), 1.20 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.8 (t,

J = 33.4 Hz), 155.2, 138.2, 131.1 (t, J = 10.7 Hz), 129.6, 125.0 (t, J = 29.2 Hz), 120.9, 117.3, 115.4, 111.0 (t, J = 248.3 Hz), 63.5, 13.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -93.6 (*E*); HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₂H₁₁BrF₂O₃: 319.9854, found: 319.9850.

The product **3k** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.25 (m, 1H), 7.21-7.13 (m, 3H), 6.54 (t, *J* = 11.4 Hz, 1H), 3.98 (q, *J* = 7.2 Hz, 2H), 2.34 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃)

δ 162.4 (t, J = 33.2 Hz), 136.3, 135.8, 132.9 (t, J = 10.1 Hz), 130.2, 129.9, 128.3 (t, J = 1.9 Hz), 126.2 (t, J = 28.4 Hz), 125.1, 110.9 (t, J = 248.6 Hz), 63.1, 19.2, 13.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -95.9 (d, J = 274.2 Hz, 1F, *E*), -98.1 (d, J = 274.2 Hz, 1F, *E*); HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₃H₁₃BrF₂O₂: 318.0062, found: 318.0057.

The product **3I** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.39 (m, 1H), 7.35-7.27 (m, 3H), 6.58 (t, *J* = 11.5 Hz, 1H), 4.15 (qd, *J* = 7.2, 2.7 Hz, 2H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.2

(t, J = 33.5 Hz), 135.8, 132.1 (t, J = 1.7 Hz), 130.9,129.9 (t, J = 2.0 Hz), 129.7, 129.3 (t, J = 9.1 Hz), 127.1 (t, J = 28.3 Hz), 126.6, 110.8 (t, J = 250.3 Hz), 63.3, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -97.9 (d, J = 18.6 Hz, E), -98.9 (Z); HRMS (EI) (m/z): [M]⁺ calcd for C₁₂H₁₀BrClF₂O₂: 337.9515, found: 337.9510.

The product **3m** was purified with silica gel chromatography (Pe/EA = 10 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 10.21 (s, 1H), 7.95-7.93 (m, 1H), 7.62-7.54 (m, 2H), 7.35-7.32 (m, 1H), 6.67 (t, *J* = 11.5 Hz, 1H), 4.12 (qd, *J* = 7.2, 3.1 Hz, 2H), 1.26 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 190.0, 162.3 (t, J = 33.6 Hz), 139.2, 133.7, 132.0, 130.2, 129.4 (t, J = 2.0 Hz), 129.2, 129.0 (t, J = 8.8 Hz), 127.4 (t, J = 27.6 Hz), 110.8 (t, J = 251.6 Hz), 63.5, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -97.3 (d, J = 26.2 Hz, E), -98.7 (Z); HRMS (EI) (m/z): [M]⁺ calcd for C₁₃H₁₁BrF₂O₃: 331.9854, found: 331.9853.

The product **3n** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 8.73-8.65 (m, 2H), 8.06-8.03 (m, 1H), 7.92-7.89 (m, 1H), 7.74-7.60 (m, 5H), 7.72-7.68 (m, 1H), 7.35-7.32 (m, 1H), 6.82 (dd, *J* = 12.1, 8.2 Hz, 1H), 3.59 (qd, *J* = 10.8, 7.1 Hz, 1H), 3.39 (qd, *J* = 10.7, 7.1 Hz, 1H),

0.86 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.2 (dd, J = 34.3, 32.0 Hz), 132.4, 132.0 (dd, J = 11.5, 9.8 Hz), 130.8, 130.4, 130.3, 129.4, 128.5 (d, J = 32.2 Hz), 128.4 (t, J = 1.7 Hz), 128.1 (d, J = 32.3 Hz), 128.1, 127.2, 127.2, 126.9, 126.3, 122.9, 122.6, 111.1 (dd, J = 251.1, 247.2 Hz), 62.9, 13.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -94.1 (d, J = 276 Hz, 1F, *E*), -97.1 (d, J = 276 Hz, 1F, *E*); HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₂₀H₁₅BrF₂O₂: 404.0218, found: 404.0215.

The product **30**¹ was purified with silica gel chromatography (Pe/EA = 5 : 1) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.47-8.45 (m, 1H), 7.77-7.70 (m, 2H), 7.28-7.23 (m, 1H), 6.63 (t, *J* = 12.2 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.5 (t, *J* = 33.8 Hz), 152.4, 147.4, 137.1, 129.8 (d, *J* = 11.0

Hz), 128.4 (t, *J* = 31.3 Hz), 124.2, 124.0, 111.5 (t, *J* = 245.8 Hz), 62.5, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -94.9 (*E*), -98.5 (*Z*).

The product **3p** was purified with silica gel chromatography (Pe/EA = 5 : 1) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.62-8.59 (m, 2H), 7.70-7.67 (m, 1H), 7.33-7.31 (m, 1H), 6.59 (t, *J* = 11.8, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.4 (t, *J* = 33.3 Hz), 150.5, 148.6 (t, *J* = 2.4 Hz), 135.8 (t, *J*

= 2.1 Hz), 133.6, 129.6 (t, J = 8.6 Hz), 126.5 (t, J = 27.2 Hz), 122.8, 110.8 (t, J = 251.1 Hz), 63.5, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -95.6 (*E*); HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₁H₁₀BrF₂NO₂: 304.9858, found: 304.9847.

The product **3q** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.49 (dd, J = 5.1, 1.2 Hz, 1H), 7.30-7.29 (m, 1H), 6.98 (dd, J = 5.1, 3.7 Hz, 1H), 6.46 (t, *J* = 11.1, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.3 (t, *J* = 33.5 Hz), 138.8, 130.7 (t, *J* =

3.1 Hz), 129.9, 127.0, 125.3, 125.1 (t, J = 29.6 Hz), 111.1 (t, J = 247.9 Hz), 63.3, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -92.7 (*E*), -97.4 (*E*); HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₀H₉BrF₂O₂S: 309.9469, found: 309.9473.

The product **3r** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.29 (m, 1H), 3.95 (q, *J* = 7.2 Hz, 2H), 2.24 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.8 (t, *J* = 33.7 Hz), 138.9, 130.4 (t, *J* = 24.4 Hz), 129.9 (t, *J* = 7.8 Hz), 129.2, 129.0 (t, *J* = 1.9 Hz), 127.9,

112.3 (t, J = 252.3 Hz), 62.9, 19.3 (t, J = 4.0 Hz), 13.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -94.8 (*E*); HRMS (ESI) (*m/z*): [M+H]⁺ calcd for C₁₃H₁₄BrF₂O₂: 319.0140, found: 319.0145.

The product **3s** was purified with silica gel chromatography (Pe/EA = 10 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.41 (s, 5H), 4.46 (q, *J* = 7.1 Hz, 0.33H, *Z*), 4.04-3.95 (m, 4.33H, *E*), 3.55 (s, 0.47H, *Z*), 1.44 (t, *J* = 7.1 Hz, 0.52H, *Z*), 1.22 (t, *J* = 7.2 Hz, 2.52H, *E*); ¹³C NMR (75 MHz, CDCl₃) δ 163.8 (t, *J* = 2.6 Hz), 161.4 (t, *J* = 32.9 Hz),

136.7, 133.7 (t, J = 7.5 Hz), 130.2 (Z), 130.2, 130.1 (t, J = 27.5 Hz), 128.4 (Z), 128.2 (t, J = 2.0 Hz), 128.1, 110.5 (t, J = 253.9 Hz), 63.7 (Z), 63.4, 53.1, 52.8 (Z), 13.8 (Z), 13.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -93.2 (E), -99.1 (Z); HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd for C₁₄H₁₄BrF₂O₄: 363.0038, found: 363.0045.

The product **3t**¹ was purified with silica gel chromatography (Pe/EA = 10 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.39 (m, 10H), 3.90 (q, *J* = 7.2 Hz, 2H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.7 (t, *J* = 33.6 Hz), 138.5, 136.6 (t, *J* = 1.6 Hz), 135.7 (t, *J* = 24.8 Hz), 132.7 (t, *J* = 6.3 Hz), 129.5, 128.9 (t, *J* = 1.9

Hz), 128.6, 128.4, 128.1, 111.6 (t, *J* = 253.4 Hz), 63.0, 13.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -91.7 (*E*), -96.6 (*Z*).

The product $3u^2$ was purified with silica gel chromatography (Pe/EA = 10 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.28 (m, 5H), 6.72 (t, *J* = 10.9 Hz, 2H), 3.97 (t, *J* = 7.2 Hz, 2H), 1.20 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ -94.3 (*E*), -98.6 (*Z*).

The product $3v^3$ was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.27 (m, 5H), 6.59 (t, J = 13.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 141.3, 129.3, 128.0, 126.8 (t, J = 21.8 Hz), 126.8, 112.8 (t, J = 6.2 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.5

(t, *J* = 9.4 Hz, 2F), -105.9 (t, *J* = 11.3 Hz, 1.83F, *E*), -109.7 (t, *J* = 11.8 Hz, 0.16F, *Z*), -124.2 to -124.33 (m, 2F), -126.2 to -126.4 (m, 2F).

The product $3w^4$ was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.27 (m, 5H), 6.59 (t, J = 13.5 Hz, 1H); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.3 (brs, 3F), -105.7 (t, J = 13.2 Hz, 1.89F, *E*), -109.4 (t, J = 12.5 Hz, 0.11F, *Z*), -122.2 to -122.3 (m,

2F), -123.4 (brs, 4F), -126.6 to -126.7 (m, 2F).

The product $3\mathbf{x}^5$ was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 6.59 (t, J = 13.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 141.3, 129.3, 128.0, 127.0 (t, J = 22.1 Hz), 126.8 (t, J = 2.2 Hz), 112.7 (t, J = 6.1 Hz); ¹⁹F NMR (282 MHz,

CDCl₃) δ -81.2 to -81.3 (m, 3F), -105.7 (t, *J* = 12.9 Hz, 1.94F, *E*), -109.4 (t, *J* = 12.7 Hz, 0.10F, *Z*), 122.0 (brs, 2H), -122.4 (brs, 4F), -123.3 (brs, 4F), -126.6 (s, 2F).

The product **3y** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.34 (m, 5H), 6.39 (t, *J* = 13.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 137.6, 137.3 (t, *J* = 5.7 Hz), 129.8, 128.1, 127.8 (t, *J* = 2.3 Hz), 119.3 (t, *J* = 22.3 Hz); ¹⁹F NMR (282

MHz, CDCl₃) δ -81.2 (t, J = 9.9 Hz, 3F), -105.7 (t, J = 13.1 Hz, 2F), 122.0 (brs, 2H), -122.4 (brs, 4F), -123.3 (brs, 4F), -126.5 to 126.6 (m, 2F); HRMS (EI) (m/z): [M]⁺ calcd for C₁₆H₁₆BrF₁₇: 599.9376, found: 599.9354.

The product **3z** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.35-7.32 (m, 3H), 6.41 (td, *J* = 14.8, 1.8 Hz, 1H), 4.26-4.15 (m, 4H), 1.34 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 138.0 (d, J = 1.2 Hz), 133.3 (dt, J = 10.4, 7.5 Hz), 129.4, 128.3 (d, J = 1.3 Hz), 127.7, 123.1 (td, J = 21.0, 14.4 Hz), 119.3 (td, J = 262.9, 220.9 Hz), 64.8 (d, J = 6.8 Hz), 16.3 (d, J = 5.4 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -104.4 (d, J = 109.9 Hz, Z), -104.8 (d, J = 110.3 Hz, E); HRMS (ESI) (m/z): [M]⁺ calcd for C₁₃H₁₁BrF₂O₃P: 369.0061, found: 369.0073.

The product **3aa**⁶ was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.51-7.48 (m, 0.34H, *Z*), 7.39-7.31 (m, 4.67H, *E*+*Z*), [6.64 (q, *J* = 7.3 Hz, *E*) and 6.58 (q, *J* = 7.4 Hz, *Z*), 1H], 4.26-4.15 (m, 4H), 1.34 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ

141.9 (*Z*), 140.7, 129.5 (q, J = 33.6 Hz), 129.5, 128.5 (*Z*), 128.2 (*Z*),128.1, 127.2, 126.7 (q, J = 36.0 Hz, *Z*) 121.2 (q, J = 273.9 Hz), 111.1 (q, J = 6.3 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -57.7 (*E*), -60.1 (*E*).

The product **3ab**⁷ was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.377 (m, 5H), 6.65 (td, *J* = 11.4, 0.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 137.2, 131.5 (t, *J* = 5.6 Hz), 129.9, 128.9 (t, *J* = 25.4 Hz), 128.2, 128.0 (t, *J* = 1.9 Hz), 114.4 (q, *J*

= 304.4 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -40.5.

The product **3ac**⁸ was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.39 (t, *J* = 13.2 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 2.59 (t, *J* = 7.3 Hz, 2H), 1.55-1.50 (m, 2H), 1.39-1.25 (m, 9H), 0.91-0.86 (m, 3H); ¹³C NMR (75)

MHz, CDCl₃) δ 163.2 (t, *J* = 34.4 Hz), 131.2 (t, *J* = 27.1 Hz), 128.1 (t, *J* = 29.6 Hz, *Z*), 119.7 (t, *J* = 7.6 Hz), 111.5 (t, *J* = 252.3 Hz), 63.3, 63.2 (*Z*), 46.7 (*Z*), 40.7, 31.5, 31.4 (*Z*), 29.8, 28.9 (*Z*), 28.0, 27.6 (*Z*), 22.5, 14.0, 13.9; ¹⁹F NMR (282 MHz, CDCl₃) δ -97.7 (*E*), -97.8 (*Z*).

The product **3ad**⁸ was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.31 (q, *J* = 7.2 Hz, 2H), 2.68-2.63 (m, 2H), 2.44-2.39 (m, 2H), 1.51-1.31 (m, 12H), 0.92 (q, *J* = 7.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 163.7 (t, *J* =

35.2 Hz), 136.5 (t, J = 22.6 Hz), 119.6 (t, J = 6.1 Hz, Z), 111.9 (t, J = 256.0 Hz), 63.1, 42.5 (t, J = 2.2 Hz), 39.1 (t, J = 3.7 Hz), 32.6, 30.1, 22.6, 21.7, 13.9, 13.8, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -97.1 (*E*), -98.5 (*Z*).

The product 3ae was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.32 (t, J = 15.3 Hz, 1H), 6.78 (t, J = 13.1 Hz, 0.33H, Z), 0.33 (t, J = 1.5 Hz, 9H), 0.25 (s, 3H); ¹³C NMR (75) MHz, CDCl₃) δ 138.9 (t, J = 23.3 Hz), 131.1 (t, J = 23.4 Hz, Z), 128.1 (t, J = 6.7 Hz), 1.14 (t, *J* = 3.7 Hz), -1.9 (*Z*); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.4 (m, 3H), -106.4 (t, *J* = 13.2 Hz, 1.48F, E), -109.9 (t, J = 12.9 Hz, 0.49F, Z), -122.3 (brs, 2F), -123.1 to -123.4 (m, 4F), -126.7 (m, 2F); HRMS (EI) (m/z): [M]⁺ calcd for C₁₁H₁₀F₁₃SiI: 543.9383, found: 543.9350.

The product **3af** was purified with silica gel chromatography (Pe/EA = 5: 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.42 (q, J = 7.7 Hz, 1H), 3.68 (brs, 2H), 2.74 (t, J = 7.5 Hz, 2H), 1.88-1.79 (m, 2H), 1.57 (brs, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 129.5 (q, *J* = 34.4 Hz), 121.8 (q, *J* =

274.2 Hz), 119.7 (q, J = 6.2 Hz), 61.1, 37.4, 32.4; ¹⁹F NMR (282 MHz, CDCl₃) δ -58.4; HRMS (EI) (m/z): $[M-C_2H_4O]^+$ calcd for $C_4H_4F_3I$: 235.9304, found: 543.9287; $[M-I]^+$ calcd for $C_6H_8F_3O$: 153.0522, found: 153.0518.

The product **3af** was purified with silica gel chromatography (Pe/EA = 5: 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.40-6.33 (m, 1H), 3.69 (t, J = 6.1 Hz, 2H), 2.77-2.72 (m, 2H), 1.89-1.80 (m, 2H), 1.31 (brs, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 125.5 (q, *J* = 35.7 Hz), 121.3 (q, *J* =

271.2 Hz), 114.9 (q, J = 6.3 Hz), 60.7, 43.3, 31.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -60.6; HRMS (EI) (m/z): $[M-C_2H_4O]^+$ calcd for $C_4H_4F_3I$: 235.9304, found: 543.9295; $[M-I]^+$ calcd for $C_6H_8F_3O$: 153.0522, found: 153.0526.

The product **3ag** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.14 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H) 4.37-4.29 (m, 3H), 3.25-3.12 (m, 2H), 2.99-2.69 (m, 2H),

2.33 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 163.4 (t, J = 32.3 Hz), 136.8, 135.7, 129.2, 128.8, 115.2 (dd, J = 253.5, 251.5 Hz), 63.2, 46.8, 44.2 (t, J = 23.4 Hz), 22.3 (t, J = 3.8 Hz), 21.1, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -102.2 (d, J = 263.3 Hz, 1F), -107.0 (d, J = 263.2 Hz, 1F); HRMS (EI) (m/z): $[M]^+$ calcd for $C_{14}H_{17}F_2IO_2$: 382.0236, found: 382.0221.

The product **3ah**⁹ was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.38-4.29 (m, 1H), 3.02-2.67 (m, 2H), 1.88-1.72 (m, 2H), 1.52-1.29 (m, 8H), 0.89 (t, J = 6.7 Hz, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.5 to -81.6 (m, 3F), -112.5 (dm, J = 270.7 Hz,

1F), -115.4 (dm, J = 270.9 Hz, 1F), -125.0 to -125.1 (m, 2F), -126.3 to 126.5 (m, 2F).

The product **3ai**¹⁰ was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.42-4.15 (m, 1H), 3.00-2.71 (m, 2H), 1.85-1.68 (m, 2H), 1.58-1.49 (m, 1H), 1.43-1.27 (m, 15H), 0.88 (t, *J* = 6.7 Hz, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ -64.4.

The product **3aj**¹¹ was purified with silica gel chromatography (Pe/EA = 5 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.39-4.30 (m, 1H), 3.68 (brs, 2H), 3.03-2.68 (m, 2H), 1.89-1.80 (m, 2H), 1.65-1.48 (m, 4H), 1.34 (brs, 1H); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.3 (tt, *J* =

10.0, 2.1 Hz, 3F), -112.2 (dm, *J* = 269.8 Hz, 1F), -115.2 (dm, *J* = 269.9 Hz, 1F), -122.3 (brs, 2F), -123.4 (brs, 2F), -124.1 to -124.2 (m, 2F), -126.6 to -126.7 (m, 2F).

The product **3ak**¹² was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.33 (q, *J* = 7.1 Hz, 2H), 4.07 (td, *J* = 10.3, 4.2 Hz, 1H), 2.77-2.65 (m, 1H), 2.38-2.34 (m, 1H), 2.15-2.11 (m, 1H), 1.86-1.75 (m, 4H), 1.37 (t, *J* = 7.2 Hz, 5H); ¹⁹F

NMR (282 MHz, CDCl₃) δ -106.0 (d, J = 266.4 Hz, *trans*), -109.3 (d, J = 263.3 Hz, *cis*), -110.6 (d, J = 263.2 Hz, *cis*).

The product **3al** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.54 (m, 2H), 7.38-7.31 (m, 10.5H), 6.48 (t, *J* = 6.5 Hz, 1H), 6.39 (t, *J* = 7.7 Hz, 1.5H), 3.75 (s, 3H), 3.70 (s, 4.5H), 3.45 (d, J = 6.5 Hz, 2H),

3.06 (d, J = 7.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 170.7, 139.3, 137.9, 128.9, 128.9, 128.5, 128.3, 128.2, 127.6, 125.4, 123.9, 123.2, 52.2, 37.8, 35.9; HRMS (ESI) (m/z): [M+K]+ calcd for C₁₁H₁₁BrO₂: 253.9937, found: 253.9936.

The product **3al** was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.15-7.09 (m, 4H), 4.28-4.19 (m, 1H), 3.67 (s, 3H) 3.16 (qd, *J* = 14.2, 7.1 Hz, 2H), 2.70-2.46

(m, 2H), 2.34 (s, 3H), 2.24-2.21 (m, 1H), 2.07-1.94 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 173.1, 136.5, 134.9, 129.1, 129.0, 56.4, 51.6, 45.3, 33.0, 32.1, 21.0; HRMS (EI) (m/z): [M]+ calcd for C₁₃H₁₇BrKO₂: 323.0044, found: 323.0037.

The product **3an** was purified with silica gel chromatography (Pe/EA = 10 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.14-7.08 (m, 4H), 4.25-4.11 (m, 5H), 3.80 (dd, *J* = 10.5, 4.0 Hz, 1H), 3.17 (dd, *J* = 7.0, 1.9

Hz, 2H), 2.51 (ddd, J = 14.8, 10.5, 2.9 Hz, 1H), 2.33 (s, 3H), 2.23 (ddd, J = 14.9, 11.0, 4.0 Hz, 1H), 1.25 (q, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 168.7, 136.6, 134.7, 129.2, 129.1, 61.7, 61.6, 54.5, 50.7, 45.4, 37.1, 21.1, 14.0; HRMS (EI) (m/z): [M]+ calcd for C₁₃H₂₃BrKO₄: 409.0411, found: 409.0390.

The product was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.17 (t, *J* = 13.3 Hz, 1H) 4.35 (q, *J* = 7.1 Hz, 2H), 2.15-2.07 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H),

0.99-0.81 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 163.4 (t, *J* = 34.8 Hz), 143.8, 122.4 (t, *J* = 27.8 Hz), 111.9 (t, *J* = 250.8 Hz), 63.3, 15.7 (t, *J* = 3.1 Hz), 13.9, 8.5; ¹⁹F NMR (282 MHz, CDCl₃) δ - 97.8; HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₉H₁₁BrF₂O₂: 267.99050, found: 267.99045.

The product was purified with silica gel chromatography (Pe/EA = 20 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 5.73-5.63 (m, 1H) 5.62-5.52 (m, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.42 (t, *J* = 6.9 Hz, 2H), 2.65 (qd, *J* = 6.9, 2.9 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H), 0.99-0.81 (m,

4H); ¹³C NMR (75 MHz, CDCl₃) δ 205.4, 163.4 (t, *J* = 33.9 Hz), 111.8 (t, *J* = 249.4 Hz), 95.3, 89.1 (t, *J* = 30.9 Hz), 63.1, 31.0 (t, *J* = 2.3 Hz), 30.5, 13.9; ¹⁹F NMR (282 MHz, CDCl₃) δ -100.0; HRMS (EI) (*m/z*): [M]⁺ calcd for C₉H₁₁BrF₂O₂: 267.9905, found: 267.9884.

Palladium-catalyzed Suzuki coupling of $3a^2$

To a 10 mL of Schlenk tube were added phenyl boronic acid (2.0 equiv, 0.4 mmol, 48.8 mg), $PdCl_2(PPh_3)_2$ (10 mol%, 0.02 mol, 7.0 mg), K_3PO_4 (2.0 equiv, 0.4 mmol, 84.8 mg). The mixture was evacuated and backfilled with N₂ for 3 times. 1,4-dioxane (2 mL), H₂O (50 *u*L) and **3a** (1.0 equiv, 0.2 mmol, 61.0 mg) were added subsequently. The

mixture was stirred at 80 °C for 16 hours. After cooling to room temperature, the solvent was removed under vacuum and purified by flash column chromatography on silica gel (PE/EA = 20:

1) to give the desired product. as a colorless oil (52.1 mg) with 86% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.31 (m, 6H) 7.29-7.25 (m, 2H), 7.22-7.19 (m, 2H), 6.28 (t, *J* = 11.8 Hz, 1H), 3.91 (q, *J* = 7.2 Hz, 2H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ -91.1.

subsequently. The mixture was stirred at 80 °C for 4 hours. After cooling to room temperature, the solvent was removed under vacuum and purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the desired product as a pale yellow oil (42.1 mg) with 64% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.38 (m, 3H) 7.36-7.27 (m, 5H), 7.22-7.19 (m, 2H), 7.01 (d, *J* = 15.9 Hz, 1H), 6.21 (d, *J* = 15.9 Hz, 1H), 6.04 (t, *J* = 12.1 Hz, 1H), 3.94 (q, *J* = 7.2 Hz, 2H), 1.20 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ -92.6.

Palladium-catalyzed Sonogashira coupling of 3a

To a 10 mL of Schlenk tube were added $PdCl_2(PPh3)_2$ (10 mol%, 0.02 mol, 7.0 mg), CuI (20 mol%, 0.04 mmol, 7.8 mg). The mixture was evacuated and backfilled with N₂ for 3 times. Et₃N (2.0 mL), **3a** (1.0 equiv, 0.2 mmol, 61.0 mg) and 1-heptyne (2.5 equiv, 0.5 mmol, 48.0 mg) were added subsequently. The mixture was stirred at 50 °C for 16 hours. After cooling to room temperature, the solvent was removed under vacuum and purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the desired product. ¹H NMR (300 MHz,

CDCl₃) δ 7.38-7.32 (m, 5H), 6.17 (t, J = 12.3 Hz, 1H), 3.89 (q, J = 7.2 Hz, 2H), 2.34 (t, J = 7.1 Hz, 2H), 1.58-1.53 (m, 2H), 1.38-1.33 (m, 4H), 1.12 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 163.0 (t, J = 33.8 Hz), 136.1, 134.3 (t, J = 10.2 Hz), 128.9, 128.5 (t, J = 2.1 Hz), 128.1, 125.9 (t, J = 28.3 Hz), 112.0 (t, J = 244.9

Hz), 95.8 (t, J = 1.5 Hz), 80.9 (t, J = 2.3 Hz), 62.9, 31.1, 28.1, 22.2, 19.7, 14.0, 13.6; ¹⁹F NMR

4. Mechanistic studies

CoBr₂ (1.3 mg, 0.006 mmol, 0.02 equiv), dppbz (2.7 mg, 0.006 mmol, 0.02 equiv), Zn (1.0 mg, 0.015 mmol, 0.05 equiv) were dissolved in acetone and stirred for 2 minutes. **1a** was added into the system, followed with **2a** (0.45 mmol, 1.5 equiv) and TEMPO (0.3 mmol, 1.0 equiv) [Note: **2a** and TEMPO dissolved in 0.2 mL acetone, then added into the system]. The mixture was stirred at room temperature for 3 hours. No product **3a** was detected by GC-MS analysis, but TEMPO- CF_2CO_2Et .

Zn (6.4 mg, 0.1 mmol, 1.0 equiv) was added into the reaction tube (N_2 protected), and acetone/H₂O (30:1, 0.6 mL) was added, followed by 0.2 mL acetone containing 2a (20.6 mg, 0.1 mmol, 1.0 equiv) and TEMPO (0.1 mmol, 15.4 mg, 1.0 equiv). The mixture stirred for 3 hours at room temperature. No TEMPO-CF2CO2Et was detected by GC-MS analysis.

CoBr₂ (1.3 mg, 0.006 mmol, 0.02 equiv), dppbz (2.7 mg, 0.006 mmol, 0.02 equiv), Zn (1.0 mg, 0.015 mmol, 0.05 equiv) were dissolved in acetone and stirred for 5 minutes. **1a** (**2a**) was added into the system and stirred for another 5 minutes. Then **2a** (**1a**) was added into the system and reacted for 3 hours at room temperature to give the desired product **3a** with 85% (84%) GC yield. While when the solution of CoBr₂ (1.3 mg, 0.006 mmol, 0.02 equiv), dppbz (2.7 mg, 0.006 mmol,

0.02 equiv, Zn (1.0 mg, 0.015 mmol, 0.05 equiv) reacted in acetone for 5 minutes was transferred into a new reaction to remove the zinc, **3a** was obtained less than 5% GC yield after 3 hours reaction.

$$Ph \longrightarrow + EtO_2CCF_2 - Br \xrightarrow{2 \mod \% \text{ cat. 10 mol\% zinc}}_{Nal (1.5 \text{ equiv}), \text{ acetone}} 26\% GC \text{ yield} \qquad Ph \xrightarrow{(Br)}_{CF_2CO_2Et}_{3a : 3u = 1 : 20}$$

$$Ph \longrightarrow + EtO_2CCF_2 - I \xrightarrow{2 \mod \% \text{ cat. 20 mol\% zinc}}_{NaBr (1.5 \text{ equiv}), \text{ acetone}} 9\% GC \text{ yield} \qquad Ph \xrightarrow{(Br)}_{CF_2CO_2Et}_{CF_2CO_2Et}_{3a : 3u = 1 : 6}$$

CoBr₂ (1.3 mg, 0.006 mmol, 0.02 equiv), dppbz (2.7 mg, 0.006 mmol, 0.02 equiv), Zn (2.0 mg, 0.03 mmol, 0.10 equiv), NaI (NaBr) (0.45 mmol, 1.5 equiv) were dissolved in 1 mL acetone and stirred for 2 minutes. Phenyl acetylene (0.3 mmol, 1.0 equiv) was added into the system, followed by EtO_2CF_2Br (EtO_2CF_2I) (0.45 mmol, 1.5 equiv). The mixture was stirred at room temperature for 3 hours. **3a** and **3u** were obtained with 26% (9%) GC yield with the ratio 1 : 20 (1 : 6).

$$Ph = + EtO_2CCF_2 - I \xrightarrow{50 \text{ mol } \% \text{ CoBr}_2 - \text{dppbz}}_{2.0 \text{ equiv zinc}} Ph \xrightarrow{I (Br)}_{Ph} CF_2CO_2Et$$

$$acetone, 5 \text{ min}$$

$$64\% GC \text{ yield}$$

$$3a : 3u = 1 : 7$$

 $CoBr_2$ (0.05 mmol, 0.5 equiv), dppbz (0.05 mmol, 0.5 equiv), Zn (0.2 mmol, 2.0 equiv) were dissolved in 3 mL acetone and stirred for 5 minutes. Phenyl acetylene (0.1 mmol, 1.0 equiv) was added into the system, followed by EtO_2CF_2I (0.15 mmol, 1.5 equiv). The mixture was stirred at room temperature for 3 hours. **3a** and **3u** were obtained with 64% GC yield with the ratio 1 : 7.

³¹P NMR and ¹H NMR monitor:

A: $CoBr_2+dppbz$: $CoBr_2$ (0.02 mmol) and dppbz (0.02 mmol) were dissolve in d⁶acetone (1.0 mL) and stirred for 15 minutes.

B: $CoBr_2+dppbz+Zn$: $CoBr_2$ (0.02 mmol) and dppbz (0.02 mmol) and zinc (0.04 mmol) were dissolve in d⁶-acetone (1.0 mL) and stirred for 15 minutes.

B + PhCCH: CoBr₂ (0.02 mmol) and dppbz (0.02 mmol) and zinc (0.04 mmol) were dissolve in d⁶-acetone (1.0 mL) and stirred for 15 minutes, then added PhCCH (0.02 mmol) B + EtO₂CCF₂Br: CoBr₂ (0.05 mmol) and dppbz (0.05 mmol) and zinc (0.1 mmol) were dissolve in d⁶-acetone (3 mL) and stirred for 15 minutes, then tes.

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 mL added EtO_2CCF_2Br (0.06 mmol) reacted for another 2 minutes.

5. Kinetic experiments

CoBr₂ (0.01 or 0.02 or 0.04 equiv), dppbz (0.01 or 0.02 or 0.04 equiv), Zn (3.8 mg, 0.1 equiv) were dissolved in acetone/H₂O (30:1, 1.2 mL) and stirred for 5 minutes. Dodecane (0.6 mmol, 1.0 equiv) was added as the internal standard. Then phenyl acetylene (0.6 mmol, 1.0 equiv) was added into the system. BrCF₂CO₂Et (0.9 mmol, 1.5 equiv) added quickly and the reaction started. Taken about 2 *u*L reaction solution for GC analysis at the indicated times: for CoBr₂ (0.01 equiv) : 1 min, 2 min, 3 min, 4 min, 5 min, 6 min, 7 min, 8 min, 10 min, 12 min, 14 min, 16 min, 20 min, 25 min, 30 min, 40 min, 50 min, 60 min, 80 min, 100 min, 120 min, 150 min, 180 min; for CoBr₂ (0.02 equiv):, 0.5 min, 1 min, 1.5 min, 2 min, 2.5 min, 3 min, 3.5 min, 4 min, 5 min, 6 min, 7 min, 8 min, 10 min, 50 min, 70 min, 90 min, 110 min; for CoBr₂ (0.02 equiv): 0.5 min, 1 min, 1.5 min, 2 min, 2.5 min, 3 min, 3.5 min, 4 min, 4.5 min, 5 min, 5.5 min, 6 min, 7 min, 8 min, 9 min, 10 min, 11 min, 12 min, 14 min, 14 min, 5 min, 5 min, 5 min, 5 min, 6 min, 7 min, 8 min, 10 min, 50 min, 4 min, 4.5 min, 5 min, 5.5 min, 6 min, 6.5 min, 7 min, 7.5 min, 8 min, 9 min, 10 min, 11 min, 12 min, 14 min. Repeat two times for every concentrations.

Figure 1. GC-determined relative amount of phenyl acetylene **1a** and product **3a** vs time with different cobaltcatalyst different concentrations.

Figure 2. Initial kinetic rate calculated with different cobalt-catalyst concentrations.

Figure 3. LIFDI mass-spectra of species: $[Co^{II}Br(dppbz)_2]^+$ (top): calcd. 1032.1196, found 1032.1240; $[Co^{III}(dppbz)_2Br(O_2)]^+$ (centre): calcd. 1064.1095, found 1064.1204; and $[EtO_2CCF_2Co^{III}Br(dppbz)_2]^+$ (bottom): calcd. 1155.1454, found 1155.1359.

6. References

- 1. Belhomme, M.-C.; Dru, D.; Xiong, H.-Y.; Chard, D.; Besset, T.; Poisson, T.; Pannecoucke, X. Synthesis 2014, 1859.
- 2. Li, G.; Cao, Y.-X.; Luo, C.-G.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Org. Lett. 2016, 18, 4806.
- Konno, T.; Chae, J.; Kanda, M.; Nagai, G.; Tamura, K.; Ishihara, T.; Yamanaka, H. *Tetrahedron* 2003, 59, 7571.
- 4. Saito, S.; Kawasaki, T.; Tsuboya, N.; Yamamoto, Y. J. Org. Chem. 2001, 66, 796.
- Beniazza, R.; Atkinson, R.; Absalon, C.; Castet, F.; Denisov, S. A.; McClenaghan, N. D.; Lastécouères, D.; Vincent, J.-M. Adv. Synth. Catal. 2016, 358, 2949.
- 6. Hang, Z.; Li, Z.; Liu, Z.-Q. Org. Lett. 2014, 16, 3648.
- 7. Hu, C.-M.; Chen, J. J. Fluorine Chem., 1994, 66, 79.
- 8. Xu, T.; Cheung, C.; Hu, X. Angew. Chem. Int. Ed. 2014, 53, 4910.
- 9. Zeng, R.; Fu, C.; Ma, S. Angew. Chem. Int. Ed. 2012, 51, 3888.
- 10. Iqbal, N.; Choi, S.; Kim, E.; Cho, E. J. J. Org. Chem. 2012, 77, 11383.
- 11. Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.
- 12. Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.

7. ¹H, ¹³C, and ¹⁹F Spectra

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fi (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -211 fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

