Supporting Information for:

Addition of Dihydrogen to a Borylborenium Center

Junhao Zheng, Zhen Hua Li*, Huadong Wang*

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200433, China. E-mail: huadongwang@fudan.edu.cn

Supporting Information Contents:

Experimental methods	S2-S6
Mechanism studies	S7-S11
NMR spectra	S12-S30
Computation details	S31-S48
References	S49

I. Experimental methods

General

Solvents were dried by reflux under N₂ over sodium or CaH₂ and freshly distilled prior to use. Air-sensitive compounds were handled under a N2 atmosphere using standard Schlenk and glovebox techniques. NMR spectra were recorded on Bruker SPECT NMR (400 MHz for ¹H, 376 MHz for ¹⁹F, 100 MHz for ¹³C) and Bruker DMX500 NMR (500 MHz for ¹H, 160 MHz for ¹¹B) spectrometers. Most assignments were based on a series of 2D NMR experiments. HRMS analyses were performed at Bruker micrOTOF II. GC-MS were obtained on a Focus GC-ISQ MS instrument. Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Center: CCDC 1543216 (complex 4) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_request/cif. 1,3,4,5-tetramethylimidazol-2-ylidene),¹ **IPrCuBpin** IMe₄BH₃ (IMe₄ = (IPr 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, Bpin = pinacolboryl),² 2,4,6-trimethylphenyl lithium (MesLi),³ Pinacol- d_{12} ,⁴ B₂pin₂- d_{24} ,⁴ Mesitylene- d_{9} ,⁵ (Mes- d_{9})Br⁶ and MesBpin⁷ were prepared as reported.

Synthesis of 2:

A solution of I_2 (1.23 g, 4.84 mmol) in toluene (15 mL) was added to the suspension of IMe₄BH₃ (1.34 g, 9.67 mmol) in toluene (15 mL). A vigorous evolution of gas was observed. The reaction mixture was stirred at room temperature for 30 min, which was then transferred to a suspension of MesLi (1.27g, 10.0 mmol) in toluene (30 mL). The mixture was stirred at room temperature for 8 h. The resulting suspension was filtered. The filtrate was concentrated in vacuum, affording **2** as a white solid (2.35 g, 95%).

¹H NMR (400 MHz, CDCl₃, 25 °C): δ [ppm] = 6.77 (s, 2H, C₆H₂), 3.49 (s, 6H, NCH₃), 2.37 (q, ${}^{1}J_{\text{B-H}} = 82$ Hz, 2H, BH₂), 2.25 (s, 3H, para-CH₃), 2.20 (s, 6H, ortho-CH₃), 2.12 (s, 6H, =CCH₃). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ [ppm] = 170.41 (br m, (IMe⁴)CB), 146.32 (br m, *ipso*-C₆H₂), 141.91 (ortho-C₆H₂), 132.79 (para-C₆H₂), 127.49 (meta-C₆H₂), 123.08 (=CCH₃(N)), 32.07 (NCH₃), 23.90 (ortho-CH₃), 20.94 (para-CH₃), 8.79 (=C(N)CH₃). ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ [ppm] = -28.1 (t, ¹J_{B-H} = 83 Hz).

HRMS (m/z): $[M-H]^+$ calcd. for C₁₆H₂₅BN₂, 255.2030; found 255.2051.

Synthesis of 2-*d*₉:

A solution of I₂ (673 mg, 2.65 mmol) in toluene (5 mL) was added to the suspension of IMe₄BH₃ (731 mg, 5.30 mmol) in toluene (10 mL). A vigorous evolution of gas was observed. The reaction mixture was stirred at room temperature for 30 min, then transferred to a suspension of (Mes- d_9)Li (715 mg, 5.30 mmol) in toluene (10 mL) which was prepared from (Mes- d_9)Br⁶ with *n*-BuLi. The mixture was stirred at room temperature for 6 h. The suspension was filtered before the removal of solvents under vacuum. The residue was purified by column chromatography (PE : EA = 10 : 1). Complex 2- d_9 was obtained as a white solid (1.10 g, 79%).

¹H NMR (400 MHz, CDCl₃, 25 °C): δ [ppm] = 6.74 (s, 2H, C₆H₂), 3.47 (s, 6H, NCH₃), 2.33 (q, ¹J_{B-H} = 83 Hz, 2H, BH₂), 2.10 (s, 6H, =CCH₃).

²H NMR (500 MHz, CHCl₃, 25 °C): δ [ppm] = 2.23 (br s, 9D, *para-CD₃* & *ortho-CD₃*). HRMS (m/z): [M-H]⁺ calcd. for C₁₆H₁₆D₉BN₂, 264.2595; found 264.2570.

Synthesis of 3:

A solution of I_2 (130 mg, 0.51 mmol) in toluene (5.0 mL) was added to the solution of **2** (260 mg, 1.02 mmol) in toluene (5.0 mL). A vigorous evolution of gas was observed. The reaction mixture was stirred at room temperature for 30 min. Then a solution of IPrCuBpin (636 mg, 1.10 mmol) in toluene (10 mL) was slowly added to the solution of IMe₄B(H)(I)(Mes) at -40 °C over 10 min. The resulting mixture was slowly warmed to room temperature and stirred for 2 h.

The suspension was filtered before removal of solvents under vacuum. The residue was purified by column chromatography (PE : EA = 10 : 1). Complex **3** was obtained as a white solid (198 mg, 52%).

¹H NMR (400 MHz, CDCl₃, 25 °C): δ [ppm] = 6.69 (s, 2H, C₆H₂), 3.38 (s, 6H, NCH₃), 2.19 (s, 3H, *para-CH₃*), 2.12 (s, 6H, *ortho-CH₃*), 2.06 (s, 6H, =CCH₃), 1.17 (s, 6H, CH₃(pin)), 1.15 (s, 6H, CH₃(pin)).

¹³C NMR (100 MHz, CDCl₃, 25 °C): δ [ppm] = 142.16 (*ortho*-C₆H₂), 132.13 (*para*-C₆H₂), 127.44 (*meta*-C₆H₂), 122.91 (=CCH₃(N)), 80.91 (OCMe₂), 32.49 (NCH₃), 25.26 (CH₃(pin)), 25.12 (CH₃(pin)), 24.65 (*ortho*-CH₃), 21.02 (*para*-CH₃), 9.09 (=C(N)CH₃).

¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ [ppm] = 40.9 (br s, *B*pin), -29.5 (d, *B*H, ${}^{1}J_{B-H} = 56$ Hz). HRMS (*m*/*z*): [M-H]⁺ calcd. for C₂₂H₃₅B₂N₂O₂, 381.2887; found 381.2880.

Synthesis of 3-*d*₂₁:

A solution of I₂ (254 mg, 1.00 mmol) in toluene (5.0 mL) was added to the solution of **2**- d_9 (530 mg, 2.00 mmol) in toluene (5.0 mL). A vigorous evolution of gas was observed. The reaction mixture was stirred at room temperature for 30 min. Then a solution of IPrCu(Bpin- d_{12}) (1156 mg, 2.00 mmol) in toluene (10 mL) which was generated from IPrCuO^tBu with B₂(Pin- d_{24})⁴ was slowly added to the solution of IMe₄B(H)(I)(Mes- d_9) at -40 °C over 10 min. The resulting mixture was slowly warmed to room temperature and stirred for 2 h. The suspension was filtered before the removal of solvents under vacuum. The residue was purified by column chromatography (PE : EA = 10 : 1). Complex **3**- d_{21} was obtained as a white solid (448 mg, 56%).

¹H NMR (400 MHz, CDCl₃, 25 °C): δ [ppm] = 6.68 (s, 2H, C₆H₂), 3.38 (s, 6H, NCH₃), 2.06 (s, 6H, =CCH₃).

²H NMR (500 MHz, CHCl₃, 25 °C): δ [ppm] = 2.18 (br s, 9D, *para*-CD₃ & *ortho*-CD₃), 1.22 (br s, 12D, CD₃(pin)).

HRMS (m/z): $[M-H]^+$ calcd. for $C_{22}H_{15}D_{21}B_2N_2O_2$, 402.4205; found 402.4203.

Synthesis of 1:

A suspension of $[Ph_3C][B(C_6F_5)_4]$ (145 mg, 0.157 mmol) in toluene (1.5 mL) was added to the solution of **3** (60 mg, 0.16 mmol) in toluene (1.0 mL). The reaction mixture was stirred at room temperature for 10 min. Addition of hexane (6.0 mL) to the reaction mixture resulted in formation of a brown oil. The supernatant was discarded. To the brown oil hexane (3.0 mL) was added, and a yellow solid appeared after standing in an ultrasonic bath for 20 min. Then the supernatant was removed by filtration. The resulting yellow solid was washed with hexane $(2 \times 1.0 \text{ mL})$ and pumped to dryness to give complex **1** (159 mg, 96%).

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 6.90 (s, 2H, C₆H₂), 3.67 (s, 6H, NCH₃), 2.35 (s, 6H, =CCH₃), 2.31 (s, 3H, *para*-CH₃), 2.07 (s, 6H, *ortho*-CH₃), 1.26 (s, 12H, CH₃(pin)).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 148.57 (dm, ¹*J*_{C-F} = 240 Hz, *o*-*C*₆F₅), 142.49 (*para*-C₆H₂), 138.65 (dm, ¹*J*_{C-F} = 245 Hz, *p*-*C*₆F₅), 137.76 (*ortho*-C₆H₂), 136.69 (dm, ¹*J*_{C-F} = 250 Hz, *m*-*C*₆F₅), 134.69 (=*C*CH₃(N)),129.40 (*meta*-C₆H₂), 124.98-123.82 (br m, ipso-C₆F₅), 85.20 (OCMe₂), 34.75 (NCH₃), 24.91 (CH₃(pin)), 22.49 (*ortho*-CH₃), 21.40 (*para*-CH₃), 9.68 (=C(N)CH₃).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 78.0 (br s, *B*Mes), 32.8 (br s, *B*pin), -16.6 (s, *B*(C₆F₅)₄).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -133.15 (br s, 6F, *ortho*-C₆F₅), -163.68 (t, 3F, ${}^{3}J_{F-F} = 20$ Hz, *para*-C₆F₅), -167.57 (t, 6F, ${}^{3}J_{F-F} = 17$ Hz, *meta*-C₆F₅).

HRMS (*m/z*): [M]⁺ calcd. for C₂₂H₃₅B₂N₂O₂, 381.2887; found 381.2888.

Analysis (calcd., found for C₄₆H₃₅B₃F₂₀N₂O₂): C (52.11, 52.00), H (3.33, 3.36), N (2.64, 2.78).

Synthesis of 4:

A solution of $[Ph_3C][B(C_6F_5)_4]$ (145 mg, 0.16 mmol) in CH₂Cl₂ (1 mL) was added to the solution of **3** (60 mg, 0.16 mmol) in CH₂Cl₂ (0.5 mL). The reaction mixture was stirred at room temperature for 1 min. To the resulting solution 4-dimethylaminopyridine (DMAP) (20 mg, 0.16 mmol) in CH₂Cl₂ (0.5 mL) was added, and the mixture was concentrated (about 0.5 mL solution).

Addition of hexane (4.0 mL) to the reaction mixture resulted in formation of a brown oil. The supernatant was discarded. To the brown oil hexane (2.0 mL) was added, and a yellow solid appeared after standing in an ultrasonic bath for 20 min. Then the supernatant was removed by filtration. The resulting yellow solid was washed with hexane (2 x 1.0 mL) and pumped to dryness to give complex **4** (161 mg, 87%). X-ray quality crystals were obtained by evaporation of saturated solution in toluene/CH₂Cl₂.

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 9.50 - 7.30 (br, 2H, *H*2(py)), 6.80 (s, 2H, C₆*H*₂), 6.60 (br s, 2H, *H*3(py)), 3.14 (s, 6H, NC*H*₃), 3.10 (s, 6H, N(*CH*₃)₂), 2.23 (s, 3H, *para*-*CH*₃), 2.11 (s, 6H, =CC*H*₃), 1.86 (s, 6H, *ortho*-*CH*₃), 1.13 (s, 6H, *CH*₃(pin)), 1.12 (s, 6H, *CH*₃(pin)).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 155.87 (C4(py)), 148.59 (dm, ${}^{1}J_{C-F} = 240$ Hz, *o*-C₆F₅), 147.74 (br, C2(py)), 142.21 (*ortho*-C₆H₂), 138.68 (dm, ${}^{1}J_{C-F} = 245$ Hz, *p*-C₆F₅), 136.59 (*para*-C₆H₂), 136.76 (dm, ${}^{1}J_{C-F} = 250$ Hz, *m*-C₆F₅), 130.02 (*meta*-C₆H₂), 126.75 (=CCH₃(N)), 125.32 - 123.06 (br m, ipso-C₆F₅), 107.79 (C3(py)), 83.26 (OCMe₂), 39.80 (N(CH₃)₂), 33.65 (NCH₃), 25.07 (CH₃(pin)), 24.94 (CH₃(pin)), 23.68 (*ortho*-CH₃), 20.86 (*para*-CH₃), 9.17 (=C(N)CH₃).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 36.8 (br s, *B*pin), -7.8 (br s, *B*Mes), -16.7 (s, *B*(C₆F₅)₄).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -133.10 (br s, 6F, ortho-C₆F₅), -163.78 (t, 3F,

 ${}^{3}J_{\text{F-F}} = 20 \text{ Hz}, para-C_{6}F_{5}$), -167.62 (t, 6F, ${}^{3}J_{\text{F-F}} = 17 \text{ Hz}, meta-C_{6}F_{5}$). HRMS (*m*/*z*): [M]⁺ calcd. for C₂₉H₄₅B₂N₄O₂, 503.3733; found 503.3730.

Synthesis of 5:

A solution of **1** (160 mg, 0.151 mmol) in toluene (2.0 mL) was degassed twice and backfilled with 1.5 bar H_2 . After stirring at room temperature for one minute, the reaction mixture was dried under vacuum. The residue was washed with hexane (1.0 mL) and again dried under vacuum to give complex **5** (134 mg, 84%).

¹H NMR (400 MHz, C₆D₅Br, 25 °C): δ [ppm] = 6.45 (s, 2H, C₆H₂), 2.60 - 3.05 (br s, 2H, BH₂), 2.78 (s, 6H, NCH₃), 2.09

(s, 3H, *para*-C*H*₃), 1.85 (br s, 6H, *ortho*-C*H*₃), 1.53 (s, 6H, =CC*H*₃), 1.26 (br s, 12H, C*H*₃(pin)). ¹H{¹¹B} NMR (500 MHz, C₆D₅Br, 25 °C): δ [ppm] = 6.45 (s, 2H, C₆*H*₂), 2.87 (s, 2H, B*H*₂), 2.78 (s, 6H, NC*H*₃), 2.09 (s, 3H, *para*-C*H*₃), 1.85 (br s, 6H, *ortho*-C*H*₃), 1.53 (s, 6H, =CC*H*₃), 1.26 (br s, 12H, C*H*₃(pin)).

¹³C NMR (100 MHz, C₆D₅Br, 25 °C): δ [ppm] = 148.56 (dm, ¹*J*_{C-F} = 241 Hz, *o*-C₆F₅), 140.40 (*para*-C₆H₂), 140.18 (*ortho*-C₆H₂), 138.39 (dm, ¹*J*_{C-F} = 245 Hz, *p*-C₆F₅), 136.51 (dm, ¹*J*_{C-F} = 250 Hz, *m*-C₆F₅), 127.40 (*meta*-C₆H₂), 126.30 (=*C*CH₃(N)), 124.92-123.87 (br m, ipso-C₆F₅), 31.95 (NCH₃), 23.22 (CH₃(pin)), 21.54 (*ortho*-CH₃), 21.03 (*para*-CH₃), 7.66 (=C(N)CH₃), ¹³C for (OCMe₂) was not observed.

¹¹B NMR (160 MHz, C₆D₅Br, 25 °C): δ [ppm] = 33.3 (br s, *B*pin), -7.6 (br m, *B*H₂), -15.9 (s, *B*(C₆F₅)₄).

¹⁹F NMR (376 MHz, C₆D₅Br, 25 °C): δ [ppm] = -131.58 (br d, 6F, $J_{F-F} = 9$ Hz, *ortho*-C₆ F_5), -161.77 (t, 3F, ${}^{3}J_{F-F} = 21$ Hz, *para*-C₆ F_5), -165.76 (br t, 6F, ${}^{3}J_{F-F} = 18$ Hz, *meta*-C₆ F_5). HRMS (*m*/*z*): [IMe⁴BH₂]⁺ calcd. for C₇H₁₄BN₂, 137.1246; found 137.1248. HRMS (*m*/*z*): [MesBpin+Li]⁺ calcd. for C₁₅H₂₃BO₂Li, 253.1949; found 253.1934.

Preparation of $[IMe_4B(D)_2(DMAP)][B(C_6F_5)_4])$

$[IMe_4B(H)_2(DMAP)][B(C_6F_5)_4] \qquad and \qquad$

A solution of complex **1** (440 mg, 0.415 mmol) in toluene (5.0 mL) was degassed twice and backfilled with 1.6 atm H₂ (or D₂). After stirring at room temperature for 3 min, the reaction mixture was treated with DMAP (51 mg, 0.42mmol). Addition of

hexane (10 mL) to the reaction mixture resulted in formation of a brown oil. The supernatant was discarded. To the brown oil hexane (2.0 mL) was added, and a white solid appeared after standing in an ultrasonic bath for 15 min. Then the supernatant was removed by filtration. The resulting white solid was washed with hexane (2 x 1.0 mL) and pumped to dryness to give $[IMe_4B(H)_2(DMAP)][B(C_6F_5)_4]^8$ (314 mg, 81 %). $[IMe_4B(D)_2(DMAP)][B(C_6F_5)_4]$ was prepared in a similar way with the yield of 80 %.

Additionally, MesBpin was isolated by column chromatography (PE : EA = 100 : 1) with the yield of 91% (93 mg).

 $[IMe_4B(H)_2(DMAP)][B(C_6F_5)_4]:$ ¹H NMR (400 MHz, CDCl₃, 25 °C): δ [ppm] = 7.66 (d, ³J_{H-H} = 7.66)

7.6 Hz, 2H, *H*2(py)), 6.49 (d, ${}^{3}J_{\text{H-H}} = 6.8$ Hz, 2H, *H*3(py)), 3.59 (s, 6H, NC*H*₃), 3.20-2.70 (br m, 2H, B*H*₂), 3.06 (s, 6H, N(C*H*₃)₂), 2.13 (s, 6H, =CC*H*₃).

¹³C NMR (100 MHz, CDCl₃, 25 °C): δ [ppm] = 155.55 (C4(py)), 148.27 (dm, ¹*J*_{C-F} = 241 Hz, *o*-*C*₆F₅), 145.36 (C2(py)), 138.27 (dm, ¹*J*_{C-F} = 246 Hz, *p*-*C*₆F₅), 136.34 (dm, ¹*J*_{C-F} = 246 Hz, *m*-*C*₆F₅), 126.16(=CCH₃(N)), 125.40-122.99 (br m, ipso-C₆F₅), 107.43 (C3(py)), 39.41 (N(CH₃)₂), 32.62 (NCH₃), 8.53 (=C(N)CH₃).

¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ [ppm] = -14.7 (br s, *B*H₂), -16.7 (s, *B*(C₆F₅)₄).

¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ [ppm] = -131.21 (br s, 6F, *ortho*-C₆*F*₅), -161.77 (t, 3F, ³*J*_{F-F} = 20 Hz, *para*-C₆*F*₅), -165.64 (t, 6F, ³*J*_{F-F} = 18 Hz, *meta*-C₆*F*₅).

MesBpin: ¹H NMR (400 MHz, CDCl₃, 25 °C): δ [ppm] = 6.79 (s, 2H, C₆H₂), 2.39 (s, 6H, ortho-CH₃), 2.26 (s, 3H, para-CH₃), 1.39 (s, 12H, B*pin*).

¹³C NMR (100 MHz, CDCl₃, 25 °C): δ [ppm] = 142.26 (*ortho*-C₆H₂), 139.04 (*para*-C₆H₂), 127.58 (*meta*-C₆H₂), 83.57 (C(CH₃)₂), 25.08 (C(CH₃)₂), 22.32 (*ortho*-CH₃), 21.35 (*para*-CH₃).

¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ [ppm] = 32.3 (s).

 $[IMe_4B(D)_2(DMAP)][B(C_6F_5)_4]$: ²H NMR (500 MHz, CHCl₃, 25 °C): δ [ppm] = 3.04 (br s, 2D, BD₂).

HRMS (m/z): [M]⁺ calcd. for C₁₄H₂₂D₂BN₄, 261.2217; found 261.2228.

Synthesis of 7:

A solution of $[Ph_3C][B(C_6F_5)_4]$ (308 mg, 0.332 mmol) in CH₂Cl₂ (1.5 mL) was added to the solution of **2** (85 mg, 0.33 mmol) in CH₂Cl₂ (0.5 mL). The reaction mixture was stirred at room temperature for 5 min. Addition of hexane (6.0 mL) to the reaction mixture resulted in formation of a brown oil. The supernatant was discarded. To the brown oil hexane (2.0 mL) was added, and a

white solid appeared after standing in an ultrasonic bath for 15 min. Then the supernatant was removed by filtration. The resulting white solid was washed with hexane (2 x 1.5 mL) and pumped to dryness to give complex 7 (276 mg, 90%).

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 6.95 (s, 2H, C₆H₂), 3.73 (s, 6H, NCH₃), 2.34 (s, 6H, =CCH₃), 2.34 (s, 3H, *para*-CH₃), 2.20 (s, 6H, *ortho*-CH₃).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 148.56 (dm, ${}^{1}J_{C-F}$ = 238 Hz, $o-C_{6}F_{5}$), 145.16 (m, (IMe₄)*C*B), 143.17 (*ortho*-C₆H₂), 138.94 (*para*-C₆H₂), 138.62 (dm, ${}^{1}J_{C-F}$ = 244 Hz, $p-C_{6}F_{5}$), 136.68 (dm, ${}^{1}J_{C-F}$ = 243 Hz, $m-C_{6}F_{5}$), 129.71 (=*C*CH₃(N)), 129.54 (*meta*-C₆H₂), 125.53-123.29 (br m, ipso-C₆F₅), 34.22 (NCH₃), 22.56 (*ortho*-CH₃), 21.64 (*para*-CH₃), 9.36 (=C(N)CH₃).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 60.2 (br s, *B*Mes), -16.7 (s, *B*(C₆F₅)₄).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -133.11 (br s, 6F, *ortho*-C₆F₅), -163.58 (t, 3F, ${}^{3}J_{F-F} = 20$ Hz, *para*-C₆F₅), -167.53 (t, 6F, ${}^{3}J_{F-F} = 18$ Hz, *meta*-C₆F₅).

HRMS (m/z): [M]⁺ calcd. for C₁₆H₂₄BN₂, 255.2030; found 255.2034.

II. Mechanism studies

Kinetic experiment for the reaction between 1 and H₂

A solution of $[Ph_3C][B(C_6F_5)_4]$ (36 mg, 0.039 mmol) in CD_2Cl_2 (0.2 mL) was added to the solution of **3** (15 mg, 0.039 mmol) in CD_2Cl_2 (0.2 mL). The resulting solution was transferred to a J. Young NMR tube. After two freeze-pump-thaw cycles, the mixture was subjected to 1.5 atm H₂ at 77 K. ¹H NMR analysis was carried out to monitor the disappearance of **1** at 253 K, 258 K, 263 K or 268 K, while Ph₃CH signal was used as the internal standard.

Figure S1. Plots of the reaction between 1 and H₂ (excess) at various temperatures

Figure S2. Eyring plot of the reaction between 1 and H_2 (excess)

Enthalpy and entropy values extracted from the plot are $\Delta H^{\neq} = 6.2(2)$ kcal mol⁻¹ and $\Delta S^{\neq} = -33.8(6)$ cal mol⁻¹ K⁻¹ respectively. According to enthalpy and entropy values, Gibbs free energy at 298 K is $\Delta G(298 \text{K})^{\neq} = 16.3(4)$ kcal mol⁻¹.

A solution of $[Ph_3C][B(C_6F_5)_4]$ (36 mg, 0.039 mmol) in CD_2Cl_2 (0.2 mL) was added to the solution of **3** (15 mg, 0.039 mmol) in CD_2Cl_2 (0.2 mL). The resulting solution was transferred to a J. Young NMR tube. After two freeze-pump-thaw cycles, the mixture was subjected to 1.4 atm, 2.0 atm or 5.0 atm H₂ at 258 K. ¹H NMR analysis was carried out to monitor the disappearance of **1** at 258K, while Ph₃CH signal was used as the internal standard.

Figure S3. Plots of ln[1] against time at various H₂ pressure at 258 K

Figure S4. Plot of kobs against H₂ pressure at 258 K

Kinetic experiment for the reaction between 7 and HBpin

A solution of $[Ph_3C][B(C_6F_5)_4]$ (46 mg, 0.050 mmol) in CH_2Cl_2 (0.3 mL) was added to the solution of **2** (13 mg, 0.050 mmol) in CH_2Cl_2 (0.2 mL). The resulting solution was frozen by liquid nitrogen and HBpin (64 mg, 0.50 mmol) in CH_2Cl_2 (0.5 mL) was added. The resulting mixture was stirred at 198 K, 203 K, 208 K or 213 K for varying time, which was then quenched by the solution of DMAP (8.0 mg, 0.066 mmol) in CH_2Cl_2 (0.4 mL). GC-MS analysis was carried out to monitor the yield of MesBpin, while Ph₃CH signal was used as the internal standard.

Figure S5. Plots of the reaction between 7 and HBpin at various temperatures

Figure S6. Eyring plot for the reaction between 7 and HBpin

Enthalpy and entropy values extracted from the plot are $\Delta H^{\neq} = 2.5(1)$ kcal mol⁻¹ and $\Delta S^{\neq} = -44.9(3)$ cal mol⁻¹ K⁻¹ respectively. According to enthalpy and entropy values, Gibbs free energy at 298 K is $\Delta G(298K)^{\neq} = 15.9(2)$ kcal mol⁻¹.

Isotopic labelling experiment

A solution of $[Ph_3C][B(C_6F_5)_4]$ (36 mg, 0.039 mmol) in CD_2Cl_2 (0.2 mL) was added to the solution of **3** (15 mg, 0.039 mmol) in CD_2Cl_2 (0.2 mL). The resulting solution was transferred to a J. Young NMR tube. After two freeze-pump-thaw cycles, the mixture was subjected to 1.5 atm D_2 at 77 K. ¹H NMR analysis was carried out to monitor the disappearance of **1** at 258 K , while Ph₃CH signal was used as the internal standard. A KIE $k_H/k_D = 0.80$ can be calculated for this reaction.

Figure S7. Plots of the reaction between 1 and H_2 or D_2 at 258 K

Crossover experiment

A solution of $[Ph_3C][B(C_6F_5)_4]$ (36 mg, 0.039 mmol) in toluene (0.3 mL) was added to the solution of **3** (7.5 mg, 0.020 mmol) and **3**- d_{21} (8.0 mg, 0.020 mmol) in CH₂Cl₂ (0.3 mL). After two freeze-pump-thaw cycles, the mixture was subjected to 1.8 bar H₂ at 283 K, 273 K, 253K, 233 K, 213 K or 195 K, which was stirred for 1.0, 2.0, 5.0, 15, 50 or 90 min, respectively. Then the reaction solution was quenched with DMAP. GC-MS analysis was carried out to determine the ratio of non-crossover products (MesBpin and (Mes- d_9)(Bpin- d_{12})) to crossover products (Mes(Bpin- d_{12})) and ((Mes- d_9)Bpin).

The ratio of rate constants for path **II** and path **III** (k_{II}/k_{III}) was calculated using the following formula:

$$k_{II}/k_{III} = \frac{\text{(the ratio of crossover products)} \times 2}{\text{(the ratio of non - crossover products)} - \text{(the ratio of crossover products)}}$$

For example, k_{II}/k_{III} (195 K) = (9.7 x 2) / (90.3-9.7) = 0.24.

According to the Eyring-Polanyi equation, the linear dependence of k_{II}/k_{III} on 1/T is showed below:

Figure S8. Eyring plot of the ratio of rate constants for path II and path III

Differences in enthalpy and entropy extracted from the plot are $\Delta \Delta H^{\neq} = 1.9(1)$ kcal mol⁻¹, $\Delta \Delta S^{\neq} = 6.9(4)$ cal mol⁻¹ K⁻¹.

III. NMR spectra

Figure S10. ¹³C NMR spectrum of **2** in CDCl₃

Figure S14. ¹H NMR spectrum of **3** in CDCl₃

Figure S16. ¹¹B NMR spectrum of **3** in CDCl₃

an an an an an an an in the land at the second s

100 90 f1 (ppm)

Figure S20. 13 C NMR spectrum of **1** in CD₂Cl₂

-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -2(f1 (ppm))

Figure S22. ¹⁹F NMR spectrum of **1** in CD₂Cl₂

Figure S24. 13 C NMR spectrum of 4 in CD₂Cl₂

Figure S26. 19 F NMR spectrum of 4 in CD₂Cl₂

Figure S30. 13 C NMR spectrum of **5** in C₆D₅Br


```
-135 -140
f1 (ppm)
                                   -115
                                            -120
                                                     -125
                                                                                                 -150
                                                                                                          -155
                                                                                                                   -160
-95
        -100
                 -105
                          -110
                                                              -130
                                                                                        -145
                                                                                                                            -165
                                                                                                                                     -170
                                                                                                                                              -175
```


Figure S32. ¹¹B NMR spectrum of 5 in C₆D₅Br

Figure S33. ¹H NMR spectrum of [IMe₄B(H)₂(DMAP)][B(C₆F₅)₄] in CDCl₃

Figure S34. ²H NMR spectrum of [IMe₄B(D)₂(DMAP)][B(C₆F₅)₄] in CHCl₃

Figure S37. ¹⁹F NMR spectrum of [IMe₄B(H)₂(DMAP)][B(C₆F₅)₄] in CDCl₃

Figure S38. ¹H NMR spectrum of MesBpin in CDCl₃

40 30 20 10 0 -10 -20 -30 -40 -50 -60 f1 (ppm)

-70 -80 -90

90 80

70

60 50

Figure S42. 13 C NMR spectrum of 7 in CD₂Cl₂

Figure S44. ¹¹B NMR spectrum of **7** in CD₂Cl₂

Figure S45. ¹¹B NMR spectrum of an equimolar mixture of HBpin and **7** in CD₂Cl₂ at -78 °C (*: hydrolysis product from **7**)

IV. Computation details

Quantum chemical calculations were all performed at the density functional theory (DFT) level using the hybrid meta-GGA M06-2x functional,⁹ which has been proven to give reliable results to the structural and energetic properties of non-covalent systems and reaction energy barriers.¹⁰ The M06-2x functional has a mean absolute error in energy barriers of about 1.3 kcal/mol. The 6-31+G(d,p) basis set¹⁰ was employed in all the calculations. All the DFT calculations were performed with a pruned (99,590) integration grid.

Full geometry optimization were carried out in the dichloromethane solution which was modelled by the polarizable continuum solvation model (IEFPCM)¹² with radii and non-electrostatic terms for Truhlar and coworkers' SMD solvation model.¹³ This solvation model is by far the most reliable one in predicting solvation free energies. The convergence criteria used for the geometry optimization are 4.50×10^{-4} au. for gradients, and 1.80×10^{-3} au. for displacements. Harmonic vibrational analyses were carried out to confirm if the optimized structure is a local minima or a first order transition state and to provide zero-point vibrational energy corrections and thermal corrections to various thermodynamic properties. Transition states were further confirmed by IRC calculations.¹⁴ All the calculations were performed by using the Gaussian 09 program.¹⁵ Geometries and Cartesian coordinates of the important intermediates and transition states involved in the reaction

Complex 1

Charge = 1 Multiplicity = 1B,0,1.4644451404,0.3227924893,-0.0277283725 O,0,2.1183422177,0.1040834872,1.159081144 O,0,2.3263787786,0.451579806,-1.0885257203 C,0,3.5434738535,0.2888411738,0.9182781407 C,0,3.6470154507,0.0475730977,-0.6218853167 C,0,4.3140266995,-0.7062340783,1.7688000017 C,0,3.891411918,1.7152124786,1.3304321544 C,0,4.6960625581,0.8850628688,-1.3303122392 C,0,3.8021143474,-1.4269236033,-0.9827701436 H,0,5.3814767501,-0.6622373238,1.528480896 H,0,4.1923578833,-0.4531571538,2.8260524943 H,0,3.960793383,-1.7280877374,1.6146531074 H,0,3.5928957381,1.8644335462,2.3723514582 H,0,4.9681992391,1.8917764086,1.2513751257 H,0,3.3735668043,2.4536185766,0.7118068254 H,0,5.6902331337,0.6651067753,-0.9277280482 H,0,4.6979346774,0.6428623576,-2.3971475782 H,0,4.4988076335,1.9534286645,-1.2190995126 H,0,3.6562986454,-1.5461882007,-2.0604930974 H,0,4.8004220997,-1.7926883801,-0.7258862762 H,0,3.0610237883,-2.0422733474,-0.4612507723 B,0,-0.2383268189,0.2569429989,-0.1533583174 C,0,-1.2759345177,-3.3850379687,-0.2149035889 C,0,-1.9666062335,-2.9439809595,0.8822472312 C,0,-2.2281135578,-0.742967461,2.0613307692 H,0,-1.6693239106,0.1909483725,2.1034520603 H,0,-3.2772357896,-0.5343709331,1.8366655423 H,0,-2.1503452044,-1.2507623319,3.0234121402

C,0,0.2470812857,-2.322012775,-1.9051014284 H,0,0.8023562947,-1.3862073886,-1.9871444379 H,0,0.9486954194,-3.1563611322,-1.861412531 H,0,-0.4052746547,-2.4348421111,-2.7743895753 N,0,-1.6626810667,-1.6003133573,1.0225684889 N,0,-0.5575901819,-2.3003759985,-0.6868754359 C,0,-0.8142461444,-1.2108382567,0.0570196745 C,0,-1.2349717281,1.4240567211,-0.3458458356 C,0,-0.8802742037,2.7300603371,0.1029528165 C,0,-2.5231239269,1.2421266589,-0.9254058291 C,0,-1.8044109831,3.7691708876,0.0366461741 C,0,-3.4097510119,2.3176418145,-0.9983887328 C,0,-3.0802366587,3.5808155647,-0.5049382895 H,0,-1.5239968164,4.7541731794,0.4046693526 H,0,-4.3842834303,2.1680622559,-1.4579963029 C,0,-1.2164404163,-4.7180527977,-0.8751974539 H,0,-1.9005835613,-5.4079337388,-0.3794473959 H,0,-1.5062406607,-4.6451479731,-1.9281219189 H,0,-0.20811399,-5.1408564379,-0.8278180484 C,0,-2.8727389476,-3.6533335452,1.8273618864 H,0,-2.4591066672,-3.6597781862,2.8409236856 H,0,-3.8568006507,-3.1759711097,1.8646213222 H,0,-3.0061219707,-4.6875540831,1.506967794 C,0,-4.0599625967,4.7206270265,-0.5640713703 H,0,-4.3073211599,5.0667547265,0.4450069295 H,0,-3.6336405138,5.57262434,-1.1035092615 H,0,-4.9852462498,4.4231932267,-1.0628006624 C,0,0.4864832575,3.0324356569,0.6684816387 H,0,0.7239901402,2.41562907,1.540583126 H,0,1.2608708568,2.8587586584,-0.0875968547 H,0,0.5519696644,4.0803585659,0.9702665818 C,0,-2.9851582064,-0.0677573087,-1.529082176 H,0,-2.194965532,-0.5571198551,-2.1047799024 H,0,-3.3347160441,-0.7727925978,-0.7652131675 H,0,-3.8241131333,0.1134892277,-2.20540502

TS1

Charge = 1 Multiplicity = 1C,0,-3.6448755723,0.613626809,0.6367448808 C,0,-3.3323263853,0.9823518934,-0.8484057 C.0.-4.586779333.1.5696427213.1.3451089129 C,0,-4.1152619654,-0.8281422904,0.80642004 C,0,-4.1885752301,0.2594913392,-1.8729373219 C,0,-3.3453230728,2.4857283955,-1.1060863621 H,0,-5.5516587197,1.5972537176,0.8281330033 H,0,-4.7575000019,1.2253151914,2.3693765831 H,0,-4.1801814361,2.5824777612,1.3832006926 H,0,-4.1314567474,-1.0721917002,1.8725246006 H,0,-5.1244226122,-0.9634203244,0.4065353303 H,0,-3.4412299964,-1.528571223,0.3012170421 H,0,-5.2458973929,0.4987017959,-1.7182545488 H,0,-3.9082441232,0.5834033709,-2.8795924148 H,0,-4.0594473132,-0.823034101,-1.8098513624 H,0,-2.917844238,2.6799906241,-2.0944281321 H,0,-4.3674966354,2.8749921444,-1.0894736648 H,0,-2.7576454621,3.0261881628,-0.357453043 C,0,2.6900075635,2.8337808322,-0.13255503 C,0,3.5338482373,1.8768644925,0.372982457 C,0,3.2923010484,-0.4450139347,1.2552940478 H,0,2.5321285866,-0.9652260732,1.8341078858 H,0,3.6385777154,-1.0908207368,0.4438400775 H.0.4.127453697.-0.1940367496.1.9085978844 C,0,0.2080500278,2.9891668818,-0.5163651781 H,0,-0.2345294765,2.4732594671,-1.3700861659 H,0,-0.5015170205,3.0286089212,0.3123511373 H,0,0.4688065643,4.0063095351,-0.8014318028 N,0,2.7463744346,0.7944575003,0.7052286721 N,0,1.4205244999,2.2962213981,-0.0838437708 C,0,0.0576714807,-2.5868218612,0.9511255445

C,0,1.1969179387,-1.7787897015,-1.0369918989 C,0,0.3490527444,-3.8957757398,0.5590107065 C,0,1.4522233633,-3.1038314582,-1.4047210683 C,0,1.0568231755,-4.1789068657,-0.6101571316 H,0,-0.0028641155,-4.719229058,1.1787850355 H,0,1.9666883066,-3.2977396595,-2.3443231035 C,0,1.3431744727,-5.6023592909,-1.0121984224 H,0,1.8874596011,-6.1312537591,-0.2232493132 H,0.0.4126966693,-6.1520440051,-1.1898655305 H,0,1.9405647241,-5.6418333816,-1.9265913568 C,0,-0.7398642746,-2.398568752,2.2207652017 H,0,-1.4846948415,-1.6024240969,2.1286113802 H,0,-1.2653502232,-3.3227866579,2.4739277463 H,0,-0.0957174606,-2.1474310451,3.0729267817 C,0,1.6426434899,-0.6920695242,-1.9951001795 H,0,2.5863195565,-0.22789418,-1.6817928967 H,0,1.8068188123,-1.1173358398,-2.9884078728 H,0,0.8958974182,0.1027887425,-2.1009089443 C,0,2.9760519828,4.2054240338,-0.6389074522 H,0,2.4734149251,4.9658697049,-0.0333925313 H,0,4.0492065225,4.3952577051,-0.5954133159 H,0,2.6512346296,4.322327277,-1.6769416749 C,0,5.0091964148,1.8847082528,0.5802255156 H,0,5.2601496032,1.8500634535,1.6454536252 H,0,5.4788274623,1.0259517949,0.0911059843 H,0,5.4392993073,2.7938330675,0.1584060298 B,0,-1.4005326612,0.4859494974,0.2642808777 O,0,-2.3277051048,0.6945696358,1.2562866401 O,0,-1.9540499496,0.533577307,-0.9899847406 B,0,0.2293831228,0.0312943886,0.5112259701 C,0,1.4533657974,1.0440128405,0.4131881251 H,0,-0.1154714418,0.3462181161,2.2827547324 C,0,0.5202046612,-1.497713969,0.1738607114 H,0,0.4285679742,-0.1722133195,2.3566308378

$1 \ {\rm H}_2$

Charge = 1 Multiplicity = 1B,0,-1.1775021638,-0.7879299106,-0.4681635936 O,0,-2.2787694903,-0.7366394746,-1.2893927801 O.0.-1.4776095488,-1.2514691721,0.7863854852 C,0,-3.4492643518,-0.9159118758,-0.4398282904 C,0,-2.8556951512,-1.7235205571,0.7562630808 C,0,-4.5275513431,-1.6386608009,-1.2260684644 C,0,-3.9142417635,0.4819229981,-0.0413423806 C,0,-3.5018575203,-1.4352277222,2.099096252 C,0,-2.8018048517,-3.2256854735,0.494697574 H,0,-5.3770590655,-1.8716503164,-0.575816474 H,0,-4.8845694567,-0.9946245409,-2.0350338409 H,0,-4.1540377894,-2.5672572838,-1.6625065162 H,0,-4.1193787896,1.0581015317,-0.94827283 H,0,-4.8299745299,0.4375868618,0.55512713 H,0,-3.1450651548,1.0084496534,0.5344658085 H,0,-4.5680617903,-1.6822943443,2.0661126416 H,0,-3.0325542876,-2.0511155433,2.8719326548 H,0,-3.3913595255,-0.3855153051,2.3785333904 H,0,-2.1904968207,-3.6990903811,1.2685708393 H,0,-3.8020687007,-3.6670367611,0.5287012982 H,0,-2.3582755022,-3.4440822445,-0.4823272244 B,0,0.3277034154,-0.0847691826,-0.9062455424 C,0,3.3202724773,-2.1834682682,0.1405078071 C,0,3.9334612406,-1.007825599,-0.1976135086 C,0,3.1940679516,1.1896591505,-1.1380247147 H,0,2.4191119624,1.4956592762,-1.838105587 H,0,3.2064091376,1.8733040773,-0.2848072937 H,0,4.1585851939,1.2136610265,-1.6452678142 C,0,0.9764925431,-3.0657520027,0.0537387572 H,0,0.5456251235,-2.9799989633,1.0529678067 H,0,0.1953641896,-2.9689744986,-0.6982500494

H,0,1.456267399,-4.0366745188,-0.0651254154 N.0.2.9419128467.-0.1760291019.-0.6848440899 N,0,1.9782366271,-2.0239719395,-0.1560994218 C,0,1.7425697567,-0.7895554055,-0.6380765033 H,0,-0.086932873,-0.3551567131,-2.1806436816 C,0,0.1487214559,1.4278416015,-0.3632986267 C,0,-0.3976417859,2.4761150634,-1.1397823548 C,0,0.4756039074,1.6904710549,0.9856033273 C.0.-0.575363664.3.7427508081.-0.5772888817 C,0,0.2839744831,2.9728897238,1.5136637453 C,0,-0.2350323791,4.0165308314,0.7491364459 H,0,-1.0003930035,4.5349276022,-1.1913109177 H,0,0.5382345445,3.1525994047,2.5568427646 H,0,0.4917067857,0.2167460761,-2.2575017922 C,0,-0.4169912409,5.3975939113,1.3239462154 H.0.0.3778890096,6.0699030317,0.9823002028 H,0,-1.3698653547,5.8336625984,1.0095608008 H,0,-0.3909669601,5.3778036097,2.4165314364 C,0,-0.8046531264,2.2717111989,-2.5802646412 H,0,-1.5256739449,1.4535608983,-2.6872826545 H,0,-1.2655684993,3.1779175647,-2.979159867 H,0,0.0590850707,2.0388225299,-3.2175967444 C,0,1.0382894674,0.6263563905,1.9032865986 H,0,2.1091733652,0.4618506498,1.7257981777 H,0,0.9272873995,0.9325666795,2.9467059992 H,0,0.5246363668,-0.3325468531,1.7824851239 C,0,3.8736906412,-3.444178102,0.7095720899 H,0,3.796152575,-4.272496305,-0.0016722501 H,0,4.9281712775,-3.3047556023,0.9526322444 H,0,3.3466337459,-3.7271601812,1.6255585467 C,0,5.3606191536,-0.5898013256,-0.1204953506 H,0,5.7765042504,-0.4109196685,-1.1171616482 H,0,5.4729398076,0.3275251144,0.465168499 H,0,5.9503560603,-1.3737068392,0.356153825

TS2

Charge = 1 Multiplicity = 1C,0,2.8997985491,-1.7269493977,0.4175669954 C,0,1.9844439112,-2.4627347932,-0.6131238022 C,0,3.8646687535,-2.6248550089,1.1676269643 C,0,3.6242914567,-0.5240502758,-0.1787039713 C,0,2.4965247209,-2.4473865507,-2.0413341561 C,0,1.6118985221,-3.8763033631,-0.1809709729 H.0,4.5520945069,-3.1059361156,0.4641713 H,0,4.4561681157,-2.0246747523,1.8651200831 H,0,3.3406678389,-3.39898998,1.732308182 H,0,4.0792495475,0.0506211591,0.6333998144 H,0,4.4148741357,-0.8421965053,-0.8643446131 H,0,2.9311954972,0.1314482154,-0.7187441829 H,0,3.4729872749,-2.939547897,-2.0985732703 H.0.1.800985267.-2.9925386386.-2.6862457137 H,0,2.5930216628,-1.4270643755,-2.4191827976 H,0,0.8183405053,-4.2502106864,-0.8346514221 H,0,2.4695175558,-4.5504590954,-0.2610620527 H,0,1.2499507923,-3.8938362734,0.852260565 C,0,-3.9218173812,-0.9918320138,-0.1776757982 C,0,-4.1089166385,0.3524161125,-0.0171037783 C,0,-2.6947954878,2.2643821634,0.7854385545 H,0,-1.9144778502,2.3544966751,1.5399085871 H,0,-2.3915348375,2.7965117372,-0.1209805619 H,0,-3.6183653729,2.6934624996,1.1736568552 C,0,-2.0523891289,-2.6050814374,0.233149246 H,0,-1.6280562966,-2.8339018331,-0.7460889635 H,0,-1.2779170028,-2.6689113883,0.9955526333 H,0,-2.8418576904,-3.3165417505,0.4756100206 N,0,-2.9210585184,0.8528919275,0.4883363763 N,0,-2.6256613796,-1.2616916706,0.2333648269 C,0,1.2665723911,2.1062734949,1.17030555 C,0,0.2521807226,1.6105453885,-0.9847197287 C,0,2.0196631856,3.1129022108,0.5654557699 C,0,1.0226274633,2.6340692017,-1.5520967165 C,0,1.9149252668,3.3942184186,-0.7995697724 H,0,2.7093069799,3.6934623499,1.1761110948 H,0,0.9233691293,2.8329351594,-2.6176755607 C,0,2.7531301239,4.4775494063,-1.4270429902 H,0,3.8187951571,4.2321884513,-1.3648093497 H,0,2.4989172762,4.6147879848,-2.4811197469 H,0,2.6096697619,5.4335126865,-0.9131334475 C,0,1.4410765891,1.8668971004,2.6488579835

H,0,1.7841623966,0.8465306183,2.8527328816 H.0.2.1748300732.2.5597075112.3.0669856739 H,0,0.4965347965,2.0116873122,3.1891076661 C,0,-0.6896292051,0.8589763874,-1.8996059195 H,0,-1.7175694832,1.2325210299,-1.8058244111 H,0,-0.390344653,0.9975678611,-2.9418493737 H,0,-0.7005994574,-0.2145448636,-1.6954226088 C,0,-4.8441728727,-2.0553521797,-0.6637181931 H,0,-5.1050483233,-2.7549291655,0.1370544255 H,0,-5.7651135275,-1.6000612142,-1.0310368619 H,0,-4.3947435805,-2.6253587497,-1.4823531373 C,0,-5.2940524235,1.2149207035,-0.2794646304 H,0,-5.6920610185,1.6380754628,0.648451903 H,0,-5.040583039,2.0415256602,-0.950316625 H,0,-6.0828279759,0.6233891214,-0.7471002588 B,0.0.7636309252,-1.0236657968,0.6488395293 O,0,1.9206161816,-1.1918393454,1.3594712209 0,0,0.7593887257,-1.6683847512,-0.5527816174 B,0,-0.5009316711,0.1357303861,1.0469352741 C,0,-2.0106483494,-0.1301825136,0.6200084103 H,0,-0.1093824516,-0.5020646619,2.0400036292 C,0,0.3641413781,1.3356878371,0.396370066 H,0,-0.5738953811,0.4013344707,2.2840093586

IM1

Charge = 1 Multiplicity = 1

C,0,3.406219557,-1.1227457032,0.4283081614 C,0,2.6419819055,-1.9518621585,-0.6494647421 C,0,4.3265496624,-1.9349727293,1.3208399394 C,0,4.1452837115,0.0749962722,-0.1637086464 C,0,3.349682238,-2.0598883142,-1.9879635223 C,0,2.2256091005,-3.3312954469,-0.1464492667 H,0,5.1023459052,-2.4212759079,0.7203304123 H,0,4.8167143832,-1.2739041053,2.0417857668 H,0,3.7763701189,-2.7001503512,1.8729531805 H.0.4.4686344215.0.7270509549.0.6534420497 H,0,5.0284085015,-0.2410770135,-0.726882299 H,0,3.4951818999,0.653417181,-0.829671004 H,0,4.3204487113,-2.5514508515,-1.8648716836 H,0,2.7470265169,-2.6615946887,-2.6749692049 H,0,3.5073789576,-1.0765131024,-2.4363981252 H,0,1.5187384721,-3.7675573496,-0.8587215851 H.0.3.0882331091,-3.9990171691,-0.0638153016 H,0,1.7413320933,-3.2684446421,0.8345238734 C,0,-3.8200835981,-1.4057514782,-0.14847457 C,0,-4.0899658521,-0.10829688,0.1849588315 C,0,-2.7554638061,1.783731676,1.1745972794 H.0,-1.9778102541,1.8209452878,1.937657078 H,0,-2.4770473013,2.4227943935,0.331174534 H.0.-3.6941932728,2.1311726226,1.6058363493 C,0,-1.8018481266,-2.8904817635,-0.0660601576 H,0,-1.5257560373,-2.9474217248,-1.1227261975 H,0,-0.9077342465,-2.9487364824,0.5517205163 H,0,-2.4598618129,-3.7221123898,0.1872559872 N.0.-2.9216736773.0.4056839801.0.7250658752 N,0,-2.4952356261,-1.6342770249,0.1979427692 C,0,0.9188181221,2.0558612947,1.068073931 C,0,-0.1175763905,1.2576106043,-1.0171766098 C,0,1.1160962956,3.2892487904,0.4626450021 C,0,0.1048005035,2.5136212611,-1.5756496 C,0,0.7286822251,3.5358878494,-0.8601121427 H,0,1.5856904184,4.0885055565,1.0317802001 H,0,-0.2141196872,2.6979062667,-2.5989221193 C,0,0.9825764541,4.8788693228,-1.4804619093 H,0,0.5048019163,5.669218232,-0.8924366982 H,0,2.0565786982,5.0918451381,-1.4946811459 H,0,0.6046575978,4.9257797178,-2.5036494939 C,0,1.3074911046,1.9222259098,2.5145567846 H,0,1.7877776778,0.9676661111,2.7273047939 H.0.1.9800386352,2.734716027,2.7979920778 H,0,0,41148205,1.991542883,3.1436838084 C,0,-0.8535668123,0.2608950231,-1.8761667643 H,0,-1.9340801277,0.4453602816,-1.8016143571 H,0,-0.574617768,0.3969456974,-2.9241883024 H,0,-0.6576439777,-0.7739549204,-1.6032737652 C,0,-4.6806360386,-2.4642688519,-0.7463120381 H,0,-4.8405775314,-3.289320742,-0.0448119713 H,0,-5.6549544091,-2.0447157881,-1.0018391895 $\begin{array}{l} \text{H}, 0, -4.2336129423, -2.8720426351, -1.6583336084} \\ \text{C}, 0, -5.3327798976, 0.7030546527, 0.0597817923} \\ \text{H}, 0, -5.743202215, 0.9578936398, 1.0423338307} \\ \text{H}, 0, -5.1418519319, 1.6345105708, -0.4821348241} \\ \text{H}, 0, -6.0884352254, 0.1386801633, -0.4889483433} \\ \text{B}, 0, 1.2175865364, -0.5085163586, 0.3808799532} \\ \text{O}, 0, 2.3155517813, -0.6047250788, 1.2304756137} \\ \text{O}, 0, 1.4355947282, -1.1670762537, -0.8251609733} \\ \text{B}, 0, -0.4641785534, -0.2448866835, 1.2238772173} \\ \text{C}, 0, -1.9487326972, -0.5216459362, 0.717577731} \\ \text{H}, 0, 0.1731390976, -1.3021643352, 1.1099604425} \\ \text{C}, 0, 0.3204697831, 0.9819638725, 0.3190385131} \\ \text{H}, 0, -0.404144707, 0.0356407617, 2.3814669599 \\ \end{array}$

Charge = 1 Multiplicity = 1

 $\begin{array}{l} \text{C}, 0, 3.3736735676, -1.1169023144, 0.4398904637\\ \text{C}, 0, 2.7537739029, -2.0431175752, -0.6650371848\\ \text{C}, 0, 4.6365015727, -1.6574711785, 1.0844930334\\ \text{C}, 0, 3.5762535013, 0.3185559605, -0.0283338716\\ \text{C}, 0, 3.0996962906, -1.650630389, -2.0899119795\\ \text{C}, 0, 3.0257781047, -3.5245667016, -0.430347513\\ \text{H}, 0, 5.4201449625, -1.7834525338, 0.3304222686\\ \text{H}, 0, 4.9962585846, -0.9461119852, 1.8335600755\\ \text{H}, 0, 4.4630955383, -2.6177812088, 1.5744351738\\ \text{H}, 0, 3.8183834555, 0.9407498031, 0.8383131252\\ \text{H}, 0, 4.399825745, 0.385271131, -0.7453735946\\ \text{H}, 0, 2.6679021244, 0.7129197829, -0.4949846633\\ \text{H}, 0, 4.183432834, -1.6866256084, -2.2408507838\\ \text{H}, 0, 2.6345623937, -2.355787959, -2.7849545706\\ \text{H}, 0, 2.7439996283, -0.6447271781, -2.3257631958\\ \end{array}$

H,0,2.4139236551,-4.111193183,-1.1214960827 H.0.4.0775563366.-3.7632387195.-0.612340969 H,0,2.7714130359,-3.8202271655,0.5924408774 C,0,-3.9786216371,-1.4044978115,-0.1760455125 C,0,-4.3497498908,-0.0922103262,-0.0917228909 C,0,-3.2483761428,2.0193119715,0.7207603312 H,0,-2.587160982,2.2359343525,1.5603208716 H,0,-2.8950636615,2.5385260516,-0.1742505924 H.0.-4.2534318534,2.3571774547,0.972069945 C,0,-1.930670538,-2.7290596707,0.4594714064 H,0,-1.1231382989,-2.7262017566,-0.2772289172 H,0,-1.5251077707,-2.8297586609,1.4661985561 H,0,-2.5973042097,-3.5660710129,0.2630391425 N,0,-3.2833315863,0.5779609396,0.4858667133 N,0,-2.7013330511,-1.4901957665,0.3651828654 C,0.0.7919320859,2.1945880098,1.2016223288 C,0,-0.0821238536,1.3488562625,-0.9157288804 C,0,1.4834724229,3.181152219,0.5005127217 C,0,0.6426892215,2.3401136966,-1.5824757394 C,0,1.419586414,3.2724390887,-0.8926326186 H,0,2.1042828313,3.886709751,1.0493734199 H,0,0.6049645436,2.3829640411,-2.6692076519 C,0,2.2115534508,4.3211729099,-1.6252084913 H,0,2.0897213614,5.3030813599,-1.1582972395 H,0,3.2800976391,4.0785336356,-1.5999763465 H,0,1.9054485842,4.3909719863,-2.6717580418 C,0,0.9674201786,2.1308314214,2.7004246091 H,0,1.3472132817,1.150067575,3.0056972761 H,0,1.6803117823,2.8896716707,3.0317023568 H.0.0.0253963158,2.2970069642,3.2321108348 C,0,-0.8724040839,0.3765384723,-1.7631054122 H,0,-1.9458746674,0.6041849749,-1.7536928531 H,0,-0.5387722974,0.4333645706,-2.8024349184 H,0,-0.7392872773,-0.6571583561,-1.43052243 C,0,-4.709665822,-2.5870417974,-0.7119332344 H,0,-4.9060366908,-3.3270019493,0.0702624799 H,0,-5.6683204951,-2.2658957977,-1.1223387613 H,0,-4.143957842,-3.0731043487,-1.5125240579 C,0,-5.6093522216,0.6048838853,-0.4734745547 H,0,-6.1167588986,1.0130433127,0.4067609345 H,0,-5.4111779084,1.4284816253,-1.1661978782 H,0,-6.288593954,-0.0969754677,-0.9589915245 B,0,1.1654015913,-1.3808954681,0.7960796469 O,0,2.3141397889,-1.0752261967,1.4474709734

O,0,1.3175150142,-1.8490490265,-0.4692969472 B,0,-0.8871084616,0.2641514395,1.3285475361 C,0,-2.2768415265,-0.2739923745,0.7426853807 H,0,0.0886711604,-1.3094087561,1.326594049 C,0,-0.0322226915,1.2709385515,0.5010306813 H,0,-0.7746797368,0.1912060732,2.5097169932

TS3

Charge = 1 Multiplicity = 1C,0,-3.5824729092,-0.7421338397,-0.4625950379 C,0,-2.9491307583,-1.6468091987,0.6396276122 C,0,-4.5190207805,-1.4627914271,-1.4151079874 C,0,-4.2483089032,0.5069980493,0.1088246319 C,0,-3.7241559799,-1.7017061047,1.9435935234 C,0,-2.638618123,-3.0547763931,0.1393087323 H,0,-5.3592829264,-1.8962150375,-0.8626946627 H,0,-4.9207441849,-0.752695253,-2.14405308 H,0,-4.0051096676,-2.2602436197,-1.956385363 H,0,-4.4809496893,1.1901204466,-0.7136960623 H,0,-5.1797955531,0.2600936359,0.6269241568 H,0,-3.5840682073,1.0241250395,0.8101242984 H,0,-4.7268014488,-2.1076107655,1.7727863793 H,0,-3.2077060923,-2.3579920471,2.6507871524 H,0,-3.8168852297,-0.7116078328,2.3952307071 H,0,-2.0132940576,-3.5630232469,0.8795117012 H,0,-3.555949259,-3.6359006815,0.0065407768 H,0,-2.1037615953,-3.0323294809,-0.8166068893 C,0,3.6948665582,-1.7572535766,0.080860163 C,0,4.0466463706,-0.4944522188,-0.3056939505 C,0,2.8118614195,1.456373065,-1.3189407333 H,0,2.0546474579,1.4998056175,-2.1029144273

H,0,2.545966913,2.1406791116,-0.5072532075 H.0.3.7764144184.1.7399156164.-1.7391876889 C,0,1.5769962463,-3.0893035556,0.1292285515 H,0,1.4598426716,-3.165982088,1.2136548641 H,0,0.5979865687,-3.0317192796,-0.3422293102 H,0,2.1040096961,-3.9686059124,-0.2443044738 N,0,2.8979921018,0.0897402102,-0.8149645858 N,0,2.342721989,-1.893343619,-0.2007470824 C,0,-0.6286361606,2.1230048354,-0.9742011268 C,0,0.2795119297,1.1195505158,1.0843147917 C,0,-0.568312276,3.3648895974,-0.357693239 C,0,0.3212309905,2.3873163114,1.653188212 C,0,-0.1093527931,3.5180320241,0.9566054368 H,0,-0.8791860763,4.2462593458,-0.9136883441 H,0,0.6997694523,2.4976984026,2.6667244372 C,0,-0.0907285375,4.875246285,1.596458184 H,0,0.3156497876,5.6232782329,0.9096840014 H,0,-1.1129703822,5.1824946708,1.8445761541 H,0,0.4978580656,4.8766657392,2.5162626653 C,0,-1.0562451524,2.0867867195,-2.4150616758 H,0,-1.6809030801,1.2248175802,-2.6454795308 H,0,-1.5950754161,3.0020865868,-2.6696192489 H,0,-0.1657524084,2.0328884621,-3.0539362954 C,0,0.8229406073,-0.0130862735,1.9171094134 H,0,1.9211644857,0.0250892412,1.9051238166 H,0,0.5050459414,0.1059591361,2.9564259138 H,0,0.5042703889,-0.9954238432,1.5755672134 C,0,4.4956796912,-2.8612967252,0.6790046292 H,0,4.5198725799,-3.7358913205,0.0212219534 H.0.5.522917764,-2.5283179351,0.8359493509 H,0,4.0840594557,-3.1731067631,1.6442312584 C,0,5.3496403261,0.2250958988,-0.2476250483 H,0,5.7502324397,0.4101355573,-1.2496117896 H,0,5.2428419515,1.1880000254,0.261227845 H,0,6.0768123103,-0.3721080587,0.3048285547 B,0,-1.3479425667,-0.3407928538,-0.3051369449 O,0,-2.4108712614,-0.3067730129,-1.1983172911 O,0,-1.6856726836,-0.9759728709,0.8820688687 B,0,0.3780372469,-0.3777326233,-1.185507354 C,0,1.8579934376,-0.7594017467,-0.7353545101 H,0,-0.3572441027,-1.3492968635,-1.0172029753 C,0,-0.2336910875,0.9456002356,-0.2451871683 H,0,0.3012045924,-0.0777936837,-2.3380728993

Complex 5

Charge = 1 Multiplicity = 1C,0,-2.6786557749,1.848320085,-0.4585712666 C,0,-1.890379607,2.7699740762,0.172976547 C,0,0.5671498982,3.2904962152,0.1774193712 H,0,1.3128072876,3.2732580301,-0.6163951272 H,0,0.2710254979,4.3225665054,0.3656355899 H,0,0.9863545333,2.8590206381,1.0920241984 C,0,-2.3165745427,-0.0351280206,-2.0473321323 H,0,-3.0332175373,0.3381554447,-2.7819367173 H,0,-1.4769249094,-0.4992591929,-2.5579250498 H,0,-2.7991062844,-0.7663574472,-1.3950678567 N,0,-0.5972899479,2.5311955414,-0.2573578833 N,0,-1.833824197,1.0772216525,-1.2382153558 C,0,-4.1470332756,1.6075663051,-0.4045525329 H,0,-4.3669158938,0.5911505462,-0.0591539347 H,0,-4.6131347934,2.3125379726,0.2855153957 H,0,-4.607696497,1.7369239069,-1.3892909268 C,0,-2.223449285,3.8349850445,1.1588785585 H,0,-1.6399671632,3.7140870118,2.0777379502 H,0,-2.0229165593,4.8334423424,0.7571421565 H,0,-3.2821634967,3.7794058399,1.4178019605 B,0,0.7717665771,0.844725392,-1.7490583345 C,0,-0.5583216469,1.4831714292,-1.1057628046 H,0,0.5334411293,-0.0696753505,-2.4889591511 H,0,1.4639402515,1.6893383907,-2.2469292936 O,0,1.6260753279,0.2527055092,-0.526544595 B,0,1.2071439281,-0.8458865178,0.2851123597 C,0,3.1361897766,0.2156571604,-0.560736423 O,0,2.2522020154,-1.3153622835,0.9943421862 C,0,-0.2334760274,-1.4420722537,0.3480231475

C,0,3.4015921346,-0.441754017,0.824137561 C,0,3.7125281178,1.6085954137,-0.6918632616 C,0,3.5151244483,-0.663095666,-1.7407208336 C,0,-1.1667712414,-0.9485029108,1.2796466539 C,0,-0.5606417875,-2.5536054531,-0.4489981604 C,0,4.6632925601,-1.2839085471,0.8666085303 C,0,3.3658827153,0.5547860287,1.9778391596 H,0,4.7899479525,1.5380575591,-0.5078871905 H.0.3.5696767062,2.0017457871,-1.6995664073 H,0,3.2883588121,2.3023234579,0.0351719154 H,0,3.1136281592,-0.2349105339,-2.6627453574 H,0,4.6036237332,-0.7033617725,-1.8312070979 H,0,3.1336228104,-1.6821483891,-1.6264949706 C,0,-2.4243802821,-1.5458347408,1.3712346639 C,0,-0.79566666681,0.1763038671,2.2161821233 C,0,-1.8211330225,-3.1443039851,-0.3184106567 C,0,0.4466594179,-3.1150111624,-1.4232954091 H,0,5.5366451403,-0.6658853282,0.635845479 H,0,4.7875471988,-1.6950340009,1.8718392006 H,0,4.6155906545,-2.1101702235,0.1545211781 H.0.3.3449770893,-0.0029685972,2.9177659802 H,0,4.2526624436,1.1938484742,1.973270083 H,0,2.4732828742,1.1888146783,1.9311321335 C,0,-2.7671145167,-2.6505019373,0.5825167738 H,0,-3.1468742572,-1.1538033007,2.0857560551 H,0,-0.2274967943,-0.2116768839,3.070263613 H,0,-0.1689889826,0.9300722847,1.7257601318 H,0,-1.6842969569,0.678674932,2.6081750358 H,0,-2.069757469,-4.0055981198,-0.9353371754 H,0,0.8333207765,-2.3353006086,-2.0906387897 H,0,1.3006971844,-3.5533817429,-0.8936625652 H,0,0.0007487833,-3.8965018285,-2.0431741706 C,0,-4.1350741851,-3.2721640639,0.6938339574 H,0,-4.3851307058,-3.4891905049,1.7367565113 H,0,-4.9026093637,-2.5911888211,0.308693854 H,0,-4.1930532634,-4.2030393168,0.1244764159

Complex 7

Charge = 1 Multiplicity = 1B,0,-0.5875509575,0.428721678,-0.0593842441 C,0,-0.6990912037,4.1635013284,0.3376964486 C,0,-1.7513129639,3.9858713991,-0.5278414259 C,0,-2.8057192688,2.048255783,-1.6950564723 H,0,-2.6255258048,0.9788125423,-1.7826041532 H,0,-3.8121132787,2.2208755763,-1.3073807729 H,0,-2.7040536552,2.5169370829,-2.6755687136 C,0,0.9682445473,2.6693444622,1.4502650039 H,0,1.3581237818,1.6686923674,1.2711300466 H,0,1.7488116525,3.4040570482,1.2505806809 H,0,0.6352313568,2.7544036925,2.4868385986 N,0,-1.8250915633,2.6337131201,-0.7827454882 N,0,-0.1545516317,2.9172499627,0.5490537458 C,0,-0.8524219122,1.9768283308,-0.1195149489 C,0,-1.7089325705,-0.621430156,0.0630465366 C,0,-1.5366809437,-1.8798784699,-0.5778588715 C,0,-2.8881653463,-0.3948538409,0.8179982415 C,0,-2.543252154,-2.8382516564,-0.5026519986 C,0,-3.8612973115,-1.3943603272,0.893342074 C,0,-3.7156603843,-2.6122859728,0.2276492671 H,0,-2.4130149699,-3.7896951332,-1.0150425551 H,0,-4.7522887138,-1.2206236068,1.4932954224 C,0,-0.1588828441,5.389231651,0.9872542921 H,0,-0.815072335,6.2359076377,0.7817706591 H,0,-0.0955554285,5.2599511304,2.0720365785 H,0,0.8409851594,5.6301873791,0.6130950063 C,0,-2.6821517865,4.9634380175,-1.1547997358 H,0,-2.5868722442,4.9491449615,-2.2453632095 H,0,-3.7221487922,4.7361791445,-0.901367974 H,0,-2.4543460843,5.9715834261,-0.8063790115 C,0,-4.7804512079,-3.6729248421,0.2975470039 H,0,-5.1684702714,-3.8972346542,-0.7014744158 H,0,-4.3734049712,-4.6044316456,0.7042008562

H,0,-5.6148879983,-3.3579070506,0.9282456729 C,0,-0.2894793274,-2.1947570563,-1.3699282234 H,0,-0.1213453733,-1.4688796221,-2.1713925939 H,0,0.5979022198,-2.1823550737,-0.7278850467 H,0,-0.3659338127,-3.1857695664,-1.8232493142 C,0,-3.1346476462,0.8801482392,1.595120664 H,0,-2.2227144564,1.2789998957,2.0479327019 H,0,-3.5642456652,1.6631646225,0.9597098474 H,0,-3.8508209272,0.6929620157,2.3991648526 H,0,0.5554618684,0.1041193798,-0.1124186118

HBpin Charge = 0 Multiplicity = 1B,0,0.,0.,1.2524073263 O,0,1.0128879047,0.529604958,0.5033478386 O,0,-1.0128879047,-0.529604958,0.5033478386 C,0,0.5531861887,0.5533270812,-0.8765812655 C,0,-0.5531861887,-0.5533270812,-0.8765812655 C,0,1.7308958891,0.2738780105,-1.7930705109 C,0,-0.0003308083,1.9528357609,-1.1307159093 C,0,-1.7308958891,-0.2738780105,-1.7930705109 C,0,0.0003308083,-1.9528357609,-1.1307159093 H,0,1.3930931722,0.1988718365,-2.8320413973 H,0,2.4483081964,1.0971839953,-1.7266266242 H,0,2.24198287,-0.6517768609,-1.5208531497 H,0,0.7863551801,2.6851901694,-0.9276029007 H,0,-0.3209599385,2.067598091,-2.1702507368 H.0.-0.8501702885,2.1701114831,-0.4755308875 H,0,-1.3930931722,-0.1988718365,-2.8320413973 H,0,-2.4483081964,-1.0971839953,-1.7266266242 H,0,-2.24198287,0.6517768609,-1.5208531497 H,0,-0.7863551801,-2.6851901694,-0.9276029007 H,0,0.3209599385,-2.067598091,-2.1702507368 H,0,0.8501702885,-2.1701114831,-0.4755308875 H,0,0.,0.,2.439071761

V. References

- 1. Kuhn, N.; Henkel, G.; Kratz, T.; Kreutzberg, J.; Boese, R.; Maulitz, A. H. *Chern. Ber.* **1993**, 126, 2041.
- 2. Laitar, D. S.; Muller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196.
- Borger, J. E.; Bakker, M. S.; Ehlers, A. W.; Lutz, M., Slootweg, J. C.; Lammertsma, K. Chem. Commun. 2016, 52, 3284.
- 4. Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263.
- 5. Chen, T. S.; Wolinska-Mocydlarz, J.; Leitch, L. C. Journal of Labelled Compounds and Radiopharmaceuticals 1970, 6, 285.
- 6. Andersh, B.; Murphy, D. L.; Olson, R. J. Synthetic Communications 2000, 30, 2091.
- Wong, K. T.; Chien, Y. Y.; Liao, Y. L.; Lin, C. C.; Chou, M. Y.; Leung, M. J. Org. Chem. 2002, 67, 1041.
- Prokofjevs, A.; Kampf, J, W.; Solovyev, A.; Curran, D. P.; Vedejs, E. J. Am. Chem. Soc. 2013, 135, 15686.
- (a) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101; (b) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 5121.
- 10. Zhao, Y.; Truhlar, D. G. Theo. Chem. Acc. 2008, 120, 215.
- (a) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639-5648. (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.
- 12. Scalmani, G.; Frisch, M. J.; Map, V. J. Chem. Phys. 2010, 132, 114110.
- 13. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- Hratchian, H. P.; Schlegel, H. B. J. Chem. Phys. 2004, 120, 9918-24. (b) Hratchian, H. P.; Schlegel, H. B. J. Chem. Theory and Comput. 2005, 1, 61-69.
- Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.