Supporting Information

For

Metal Alkyls Programmed to Generate Metal Alkylidenes by α-H Abstraction: Prognosis from NMR Chemical Shift

Christopher P. Gordon,^{a,†} Keishi Yamamoto,^{a,†} Keith Searles,^a Satoru Shirase,^{a,b} Richard A. Andersen,^{c,*} Odile Eisenstein,^{d,e,*} Christophe Copéret^{a,*}

^a ETH Zürich, Department of Chemistry and Applied Sciences, Vladimir Prelog Weg 1-5, 10, 8093
Zürich, Switzerland
^b Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka,

^o Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

^c Department of Chemistry, University of California, Berkeley, California 94720, United States ^d Institut Charles Gerhardt, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, 34095 Montpellier, France

^e Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway

Contents

1. Experimental section	2
2. Computational Details	2
4. NMR Calculations	13
5. Graphical Representation of the Results of the NCS Analysis	16
6. Graphical Representations of the Calculated Shielding Tensors	19
7. MO Diagrams of Representative Metal Alkyl Compounds	21
8. Optimized Structures of all Calculated Species	21
9. References	22

1. Experimental section

General

All experiments involving air- and moisture-sensitive compounds were performed under argon by using standard Schlenk techniques or argon-filled gloveboxes. Pentane, toluene, and diethyl ether were purified using a double MBraun SPS alumina column, and were degassed using three freeze-pump-thaw cycles before use. THF, C₆H₆, C₆D₆, and toluene-d₈ were distilled from Na/Benzophenone. Solution ¹H, and ¹³C NMR spectra were recorded on Bruker DRX 200, DRX 300, and Avance 400 spectrometers. The magnetic fields were referenced by the deuterium signal of the d-solvent used. The ¹H and ¹³C spectra were additionally referenced setting the chemical shifts of the residual C₆H₆ signal in C₆D₆ at 7.16 and 128.1 ppm, respectively. ¹*J*_{C-H} coupling constants were determined at room temperature on a Bruker Avance 400 spectrometer by non-decoupled HSQC measurements (solvent: CD₂Cl₂ for [(nacnac)Ti(CH₂tBu)₂][BArF₂₄] and C₆D₆ for all other compounds).

The solid-state ¹H and ¹³C NMR spectra were obtained on Bruker Avance III 400, 600, and 700 MHz spectrometers, using a 2.5, 3.2, or 4 mm probe, and the magnetic fields were externally referenced by setting the downfield ¹³C signal of adamantane to 38.4 ppm. The samples were loaded in a 2.5 or 4 mm zirconia rotor closed with a VESPEL drive cap, or in a 3.2 mm sapphire rotor closed with a zirconia cap with a Teflon insert placed between the sample and the cap to prevent sample spill. Cross polarization magic angle spinning (CPMAS) and spin echo type experiments were used to measure ¹³C and ¹H spectra, respectively. The ¹H excitation and decoupling radiofrequency (rf) fields were set to 71 kHz and 100 kHz for 4 mm and 2.5/3.2 mm probe, respectively. For CPMAS measurements, the CP condition was optimized to match the Hartmann-Hahn condition under MAS with minor adjustments to reach the best CP efficiency experimentally.

All compounds were synthesized according to literature procedures: Cp₂Ti(CH₃)₂,^[1] Cp*₂Ti(CH₃)₂ ^[2] Cp₂Ti(CH₂tBu)₂ (10% ¹³C labeled on the α -carbon), ^[3] nacnacTi(CHtBu)(OTf), ^[4] Ti(CH₂tBu)₄ (200/ ¹³C labeled on the α -carbon), ^[5] Tr Cl(CH tPr), ^[6] Tr Cl (CH tPr), ^[7] α -carbon).^[5] TaCl(CH₂tBu)₄,^[6] ^{13}C on the TaCl₂(CH₂tBu)₃.^[7] (20%)labeled $TaCl(CH_2tBu)_2(CHtBu),^{[7]}Cp_2Ta(CH_3)_3,^{[8]}[Cp_2Ta(CH_3)_2][BF_4]^{[8]}$ $[(nacnac)Ti(CH_2tBu)_2][BArF_{24}]$ (BArF_{24} = tetrakis[(3,5-trifluoromethyl)phenyl]borate) was prepared by a slight modification of the literature procedure.^[4] To a 50 mL Schleck flask containing a 10 mL toluene solution of [(nacnac)Ti(CH₂tBu)₂] (402 mg, 0.661 mmol) cooled to -30 °C was added dropwise a 10 mL toluene solution of H(OEt₂)₂BArF₂₄ (671 mg, 0.663 mmol) via a glass pipette. Orange microcrystalline material slowly began to precipitate from the green solution. After stirring for 1 hour, the orange product was isolated on a medium porosity glass frit and washed with 10 ml pentane. Drying material under reduced of of the pressure vielded $[(nacnac)Ti(CH_2tBu)_2][BArF_{24}]$ in 26% isolated yield (251 mg, 0.171 mmol).

2. Computational Details

All geometry optimizations were performed with the Gaussian09 package^[9] with the PBE0 functional.^[10] Ti and Ta were represented by the quasi-relativistic effective core potential (RECP) from the Stuttgart group and the associated basis sets^{[11]-[13]}. The remaining atoms (H, C, N, O, F, P and S) were represented by a triple- ζ pcSseg-2 basis set.^[14] NMR calculations were performed within the GIAO framework using ADF 2014^[15] with the PBE0 functional and Slater-type basis sets of triple- ζ quality (TZ2P). Relativistic effects were treated by the 2 component zeroth order regular approximation (ZORA).^{[16]-[20]} Analysis of scalar-relativistic natural localized molecular orbitals were done with the NBO 6.0 program.^[21] Calculated NMR shielding tensors were analyzed using these scalar-relativistic NLMO^{[22]-[25]}, with the exception of [nacnacTi(CHtBu)]OTf, for which no orbital analysis was carried out. The 3D representation of the calculated shielding tensors is obtained as polar plots^{[26],[27]} of functions $\sum_{ij} r_i \sigma_{ij}r_j$, with scaling factors of 0.3 for

The geometry optimization and the calculation of the NMR shielding tensors were carried out on molecular models that are identical to the experimental systems, with the exception of $[nacnacTi(CH_2tBu)_2][BArF_{24}]$ and $[Cp_2Ta(CH_3)_2][BF_4]$, where the counter anions are not introduced in the modelling.

Energies were calculated as single point calculations from the optimized structures, using GD3 dispersion corrections^[28] and the SMD model^[29] to account for the solvent (toluene).

3. Solid-State NMR Spectra

Cp₂Ti(CH₃)₂

Figure S1. (a) The CP magic-angle turning^[30] (CP-MAT, 14.1 T at 100 K) spectrum of $Cp_2Ti(CH_3)_2$ at a spinning rate of 4 kHz. The contact time for CP was 0.5 ms, and the recycle delay was 1 s. 256 scans per *t1* increment and 91 *t1* increments were acquired. (b) Blue: the spectrum of the spinning side bands for the methyl carbon, which were obtained by slicing horizontally the CP-MAT spectrum at 52 ppm. Red: best-fit simulated spinning side bands of the corresponding carbon.

Cp*2Ti(CH3)2

Figure S2. (a) The CP magic-angle turning^[30] (CP-MAT, 14.1 T at 100 K) spectrum of $Cp*_2Ti(CH_3)_2$ at a spinning rate of 4 kHz. The contact time for CP was 0.5 ms, and the recycle delay was 1 s. 32 scans per *t1* increment and 441 *t1* increments were acquired. (b) Blue: the spectrum of the spinning side bands for the CH₃ carbon, which were obtained by slicing horizontally the CP-MAT spectrum at 50 ppm. Red: best-fit simulated spinning side bands of the corresponding carbon.

Cp₂Ti(CH₂tBu)₂

Figure S3. (a) The CP magic-angle turning^[30] (CP-MAT, 14.1 T at 100 K) spectrum of $Cp_2Ti(CH_2tBu)_2$ at a spinning rate of 4 kHz. The contact time for CP was 0.5 ms, and the recycle delay was 1 s. 256 scans per *t1* increment and 486 *t1* increments were acquired. (b) Blue: the spectrum of the spinning side bands for the CH₂tBu carbon, which were obtained by slicing horizontally the CP-MAT spectrum at 98 ppm. Red: best-fit simulated spinning side bands of the corresponding carbon.

Ti(CH₂tBu)₄

Figure S4. (a) Blue: The ¹³C{¹H} CPMAS (14.1 T at 220 K) spectrum of $Ti(CH_2tBu)_4$ at a spinning rate of 4 kHz. The contact time for CP was 0.5 ms, and the recycle delay was 0.5 s. (b) Red: best-fit simulated spinning side bands of the CH_2tBu carbons.

Figure S5. (a) The CP magic-angle turning^[30] (CP-MAT, 14.1 T at 100 K) spectrum of $[nacnacTi(CH_2tBu)_2][BArF_{24}]$ at a spinning rate of 5 kHz. The contact time for CP was 0.5 ms, and the recycle delay was 0.7 s. 160 scans per *t1* increment and 489 *t1* increments were acquired. (b) Blue: the spectrum of the spinning side bands for the CH₂tBu carbon, which were obtained by slicing horizontally the CP-MAT spectrum at 143 ppm. Red: best-fit simulated spinning side bands of the corresponding carbon.

The peak of the α -carbon falls close to aromatic signals from the nacnac-ligand and from BArF₂₄. It was assigned by a HETCOR experiment (HETeronuclear CORrelation spectroscopy), in which the ¹³C signal at 143 ppm shows a crosspeak to the proton on the α -carbon at 2.9 ppm. The assignment is further confirmed by a very distinct CSA of that signal, differentiating it from the aromatic signals.

[nacnacTi(CHtBu)]OTf

Figure S6. (a) Blue: The ${}^{13}C{}^{1}H$ CPMAS (9.4 T at room temperature) spectrum of **[nacnacTi(CHtBu)]OTf** at a spinning rate of 4 kHz. The contact time for CP was 2 ms, and the recycle delay was 2 s. (b) Red: best-fit simulated spinning side bands of the alkylidene carbon.

TaCl(CH₂tBu)₄

Figure S7. (a) Blue: The ¹³C{¹H} CPMAS (14.1 T at 100 K) spectrum of $TaCl(CH_2tBu)_4$ at a spinning rate of 4 kHz. The contact time for CP was 0.5 ms, and the recycle delay was 1 s. (b-g) Red: best-fit simulated spinning side bands of the CH_2tBu carbons.

The solid state NMR spectrum of $TaCl(CH_2tBu)_4$ shows 6 distinct sites. This contrasts the situation in solution NMR, where only two signals are observed in a 1:3 ratio (axial and equatorial carbon atoms respectively). Presumably, the presence of multiple conformers complicates the spectrum in the solid state, giving rise to α -carbons in various environments. All measured chemical shift tensors are given in the table below.

site	δ _{iso}	δ ₁₁	δ ₂₂	δ ₃₃
site 1	135	214	149	43
site 2	132	193	154	50
site 3	123	170	161	38
site 4	119	165	146	46
site 5	117	153	147	51
site 6	113	154	146	40

Table S1. Measured chemical shift tensors for TaCl(CH₂tBu)₄.

TaCl₂(CH₂tBu)₃

Figure S8. (a) Blue: The ${}^{13}C{}^{1}H$ CPMAS (9.4 T at room temperature) spectrum of **TaCl₂(CH₂tBu)**₃ at a spinning rate of 3 kHz. The contact time for CP was 2 ms, and the recycle delay was 1 s. (b) Red: best-fit simulated spinning side bands of the CH₂tBu carbons.

Cp₂Ta(CH₃)₃

Figure S9. (a) Blue: The ¹³C{¹H} CPMAS (14.1 T at 100 K) spectrum of $Cp_2Ta(CH_3)_3$ at a spinning rate of 2.8 kHz. The contact time for CP was 0.5 ms, and the recycle delay was 1 s. (b-c) Red: best-fit simulated spinning side bands of the Me carbons.

[Cp₂Ta(CH₃)₂][BF₄]

Figure S10. (a) Blue: The ¹³C{¹H} CPMAS (14.1 T at 100 K) spectrum of $[Cp_2Ta(CH_3)_2][BF_4]$ at a spinning rate of 5.5 kHz. The contact time for CP was 1 ms, and the recycle delay was 1 s. (b) Red: best-fit simulated spinning side bands of the Me carbons.

4. NMR Calculations

Table S2: Calculated shielding tensors (all values in ppm). Equatorial and axial ligands are indicated as eq and axial, respectively.

	σ_{iso}	σ ₁₁	σ22	σ_{33}	δ_{iso}	δ ₁₁	δ22	δ_{33}
Cp ₂ Ti(CH ₃) ₂	139	73	156	189	52	118	35	2
Cp* ₂ Ti(CH ₃) ₂	140	77	165	179	51	114	26	12
Cp ₂ Ti(CH ₂ tBu) ₂	105	33	131	152	86	158	60	39
Cp ₂ Ti(CH ₂)-PMe ₃ ^a	-118	-564	36	174	309	754	155	17
[nacnacTi(CH₂tBu)₂] ⁺	52	-21	16	161	139	212	175	30
nacnacTi(CHtBu)(OTf)	-86	-422	-74	238	277	613	265	-47
Ti(CH₂tBu)₄	73	33	43	142	118	158	148	49
TaCl(CH₂tBu)₄ (axial)	49	-23	44	127	142	214	147	64
TaCl(CH₂tBu)₄ (eq 1)	62	2	42	141	129	189	149	50
TaCl(CH ₂ tBu) ₄ (eq 2)	63	18	41	129	128	173	150	62
TaCl(CH₂tBu)₄ (eq 3)	64	32	29	133	126	159	162	58
TaCI(CH ₂ tBu) ₂ (CHtBu)	-73	-293	-120	193	264	484	310	-2
TaCl ₂ (CH ₂ tBu) ₃ (eq 1)	61	20	39	126	130	171	152	65
TaCl ₂ (CH ₂ tBu) ₃ (eq 2)	61	32	29	122	130	159	162	69
TaCl ₂ (CH ₂ tBu) ₃ (eq 3)	74	30	60	131	117	161	131	60
Cp ₂ Ta(CH ₃) ₃ (external)	169	154	158	195	22	37	33	-4
Cp ₂ Ta(CH ₃) ₃ (internal)	168	142	176	184	23	49	15	7
[Cp₂Ta(CH₃)₂] ⁺	129	27	149	211	62	164	42	-20
a (1 · [31]								

^a reported in ^[31]

		Σ11	, -	522	σ	σ33	
	σ_{dia}	σ _{para}	σ _{dia}	σ _{para}	σ_{dia}	σ _{para}	
Cp ₂ Ti(CH ₃) ₂	217	-144	222	-66	217	-28	
Cp* ₂ Ti(CH ₃) ₂	216	-139	222	-57	218	-39	
Cp ₂ Ti(CH ₂ tBu) ₂	224	-191	226	-95	224	-72	
Cp ₂ Ti(CH ₂)-PMe ₃ ^a	228	-792	250	-215	207	-34	
Ti(CH₂tBu)₄	232	-199	231	-189	142	230	
TaCl(CH₂tBu)₄ (axial)	228	-251	228	-184	230	-103	
TaCl(CH₂tBu)₄ (eq 1)	224	-204	224	-185	230	-104	
TaCl(CH₂tBu)₄ (eq 2)	225	-192	223	-194	230	-108	
TaCl(CH₂tBu)₄ (eq 3)	224	-194	223	-164	229	-98	
TaCl(CH₂tBu)₂(CHtBu)	242	-535	219	-338	257	-64	
TaCl₂(CH₂tBu)₃ (eq 1)	224	-204	224	-185	230	-104	
TaCl ₂ (CH ₂ tBu) ₃ (eq 2)	225	-192	223	-194	230	-108	
TaCl₂(CH₂tBu)₃ (eq 3)	224	-194	223	-164	229	-98	
Cp ₂ Ta(CH ₃) ₃ (external)	212	-58	221	-63	214	-19	
Cp ₂ Ta(CH ₃) ₃ (internal)	207	-65	213	-37	217	-33	
[Cp₂Ta(CH₃)₂] ⁺	216	-190	225	-76	216	-6	
[nacnacTi(CH₂tBu)₂] ⁺	232	-253	230	-214	233	-72	

^a reported in ^[31]

	G	components of σ_{para}				
	Odia	Opara	σ(M-C)	σ(C-H)/π(M-C)	σ(C-C)/σ(C-H)	σ(C-H)
Cp ₂ Ti(CH ₃) ₂	217	-144	-127	-30	4	4
Cp* ₂ Ti(CH ₃) ₂	216	-139	-118	-32	5	5
Cp ₂ Ti(CH ₂ tBu) ₂	224	-191	-102	-20	-60	-7
Cp ₂ Ti(CH ₂)-PMe ₃ ^a	228	-792	-478	-115	-90	-93
Ti(CH₂tBu)₄	232	-199	-103	-34	-49	0
TaCl(CH₂tBu)₄ (axial)	228	-251	-157	-31	-20	-1
TaCl(CH₂tBu)₄ (eq 1)	224	-223	-154	-17	-9	-3
TaCl(CH₂tBu)₄ (eq 2)	228	-210	-119	-19	-37	0
TaCl(CH₂tBu)₄ (eq 3)	227	-195	-123	-28	-21	2
TaCl(CH ₂ tBu) ₂ (CHtBu)	242	-535	-313	-71	-126	-11
TaCl ₂ (CH ₂ tBu) ₃ (eq 1)	224	-204	-118	-15	-36	-4
TaCl ₂ (CH ₂ tBu) ₃ (eq 2)	225	-192	-113	-16	-36	-4
TaCl ₂ (CH ₂ tBu) ₃ (eq 3)	224	-194	-107	-13	-31	0
Cp ₂ Ta(CH ₃) ₃ (ext. carbon)	212	-58	-58	-4	-2	1
Cp ₂ Ta(CH ₃) ₃ (int. carbon)	207	-65	-66	-6	4	5
[Cp₂Ta(CH₃)₂] ⁺	216	-190	-174	-16	16	16
[nacnacTi(CH₂tBu)₂] [⁺]	232	-253	-125	-47	-68	0
a . [31]						

Table S4: NCS analysis of metal alkyl compounds – σ_{11} (most deshielded component; all values in ppm). Equatorial and axial ligands are indicated as eq and axial, respectively.

^a reported in ^[31]

Table S5: NCS analysis of metal alkyl compounds – σ_{22} (all values in ppm). Equatorial and axial ligands are indicated as eq and axial, respectively.

	G	G	components of σ_{para}			
	Odia	Opara	σ(M-C)	σ(C-H)/π(M-C)	σ(C-C)/σ(C-H)	σ(C-H)
Cp ₂ Ti(CH ₃) ₂	222	-66	-22	-14	-14	-13
Cp* ₂ Ti(CH ₃) ₂	222	-57	-20	-15	-11	-7
Cp ₂ Ti(CH ₂ tBu) ₂	226	-95	1	-38	-13	-34
Cp ₂ Ti(CH ₂)-PMe ₃ ^a	250	-215	-2	-10	-105	-101
Ti(CH₂tBu)₄	231	-189	-123	-5	-22	-32
TaCl(CH₂tBu)₄ (axial)	228	-184	-106	-14	-26	-5
TaCl(CH₂tBu)₄ (eq 1)	228	-184	-106	-14	-26	-5
TaCl(CH₂tBu)₄ (eq 2)	228	-184	-106	-14	-26	-5
TaCl(CH₂tBu)₄ (eq 3)	228	-184	-106	-14	-26	-5
TaCl(CH ₂ tBu) ₂ (CHtBu)	219	-338	-172	-15	-71	-22
TaCl ₂ (CH ₂ tBu) ₃ (eq 1)	224	-185	-131	-6	-8	0
TaCl ₂ (CH ₂ tBu) ₃ (eq 2)	223	-194	-135	-8	-10	0
TaCl₂(CH₂tBu)₃ (eq 3)	223	-164	-117	-18	-1	-6
Cp ₂ Ta(CH ₃) ₃ (ext. carbon)	221	-63	-9	-18	-16	-17
Cp ₂ Ta(CH ₃) ₃ (int. carbon)	213	-37	-58	18	2	5
[Cp₂Ta(CH₃)₂] ⁺	225	-76	-20	-20	-20	-11
[nacnacTi(CH₂tBu)₂] ⁺	230	-214	-130	-46	-27	-8

^a reported in ^[31]

	.	components of σ_{para}				
	Odia	Opara	σ(M-C)	σ(C-H)/π(M-C)	σ(C-C)/σ(C-H)	σ(C-H)
Cp ₂ Ti(CH ₃) ₂	217	-28	-34	-1	-1	7
Cp* ₂ Ti(CH ₃) ₂	218	-39	-37	-2	-1	6
Cp ₂ Ti(CH ₂ tBu) ₂	224	-72	-67	-5	-4	-2
Cp ₂ Ti(CH ₂)-PMe ₃ ^a	207	-34	-50	0	4	14
Ti(CH₂tBu)₄	230	-88	-1	-22	-15	-24
TaCl(CH₂tBu)₄ (axial)	230	-103	-12	-34	-16	-20
TaCl(CH₂tBu)₄ (eq 1)	230	-89	-7	-22	-15	-21
TaCl(CH₂tBu)₄ (eq 2)	230	-101	-9	-28	-15	-23
TaCl(CH₂tBu)₄ (eq 3)	230	-97	-8	-26	-14	-24
TaCl(CH ₂ tBu) ₂ (CHtBu)	257	-64	38	-53	-17	0
TaCl ₂ (CH ₂ tBu) ₃ (eq 1)	230	-104	-18	-26	-12	-26
TaCl ₂ (CH ₂ tBu) ₃ (eq 2)	230	-108	-16	-28	-13	-26
TaCl ₂ (CH ₂ tBu) ₃ (eq 3)	229	-98	-9	-24	-18	-22
Cp ₂ Ta(CH ₃) ₃ (ext. carbon)	214	-19	-61	21	19	3
Cp ₂ Ta(CH ₃) ₃ (int. carbon)	217	-33	-30	-13	4	11
[Cp₂Ta(CH₃)₂] ⁺	216	-6	-44	14	14	8
[nacnacTi(CH₂tBu)₂] ⁺	233	-72	7	-22	-14	-22
a reported in [31]						

Table S6: NCS analysis of metal alkyl compounds – σ_{33} (all values in ppm). Equatorial and axial ligands are indicated as eq and axial, respectively.

reported in

Table S7: Comparison of diamagnetic, paramagnetic and spin-orbit contributions to shielding (all values in ppm).

compound	$\sigma_{\text{dia},\text{iso}}(\sigma_{\text{dia},11},\sigma_{\text{dia},22},\sigma_{\text{dia},33})$	$\sigma_{\text{para,iso}}(\sigma_{\text{para,11}}, \sigma_{\text{para,22}}, \sigma_{\text{para,33}})$	$\sigma_{\rm SO,iso}(\sigma_{\rm SO,11}, \sigma_{\rm SO,22}, \sigma_{\rm SO,33})$
Cp ₂ Ti(CH ₃) ₂	224 (219, 222, 231)	-84 (-147, -70, -34)	-1 (-4, 0, 1)
Cp ₂ Ti(CH ₂ tBu) ₂	238 (233, 238, 245)	-134 (-214, -103, -85)	-1 (-4, -1, 1)
[nacnacTi(CH₂tBu)₂] ⁺	241 (235, 240, 248)	-197 (-269, -232, -89)	-2 (-4, -3, 1)
nacnacTi(CHtBu)(OTf)	255 (238, 257, 272)	-339 (-681, -305, -32)	-2 (-7, -1, 1)
TaCl(CH₂tBu)₄ (axial)	241 (236, 240, 249)	-150 (-208, -141, -102)	-27 (-49, -31, -1)
[Cp₂Ta(CH₃)₂] ⁺	222 (212, 215, 240)	-79 (-149, -78, -11)	-9 (-32, 1, 5)

5. Graphical Representation of the Results of the NCS Analysis

Figure S11. α -carbons of selected metal alkyl compounds – σ_{11} components (the axial carbon for TaCl(CH₂tBu)₄ and the external carbon for Cp₂TaMe₃ are shown).

Figure S12. α -carbons of selected metal alkyl compounds – σ_{22} components (the axial carbon for TaCl(CH₂tBu)₄ and the external carbon for Cp₂TaMe₃ are shown).

Figure S13. α -carbons of selected metal alkyl compounds – σ_{33} components (the axial carbon for TaCl(CH₂tBu)₄ and the external carbon for Cp₂TaMe₃ are shown).

6. Graphical Representations of the Calculated Shielding Tensors

Representation as polar plots of functions $\Sigma_{ij}r_ir_j\sigma_{ij}.~^{[26],[27]}$

Figure S14. Representation of all calculated shielding tensors.

7. MO Diagrams of Representative Metal Alkyl Compounds

Figure S15. Frontier orbitals for Cp₂Ti(CH₃)₂, Cp₂Ta(CH₃)₃ and d orbital splitting in TaCl(CH₂tBu)₄.

8. Optimized Structures of all Calculated Species

Optimized Structures of all species are provided as .xyz files as supplementary material.

9. References

- [1] Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392-6394.
- [2] Mach, K.; Varga, V.; Hanuš, V. J. Organomet. Chem. 1991, 415, 87-95
- [3] Meinhart, J. D.; Anslyn, E. V.; Grubbs, R. H. Organometallics. 1989, 8, 583-589.
- [4] Basuli, F.; Bailey, B. C.; Watson, L. A.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. Organometallics. 2005, 24, 1886-1906.
- [5] Cheon, J.; Rogers, D. M.; Girolami, G. S. J. Am. Chem. Soc. 1997, 119, 6804-6813
- [6] Mowat, W.; Wilkinson, G. J. Organomet. Chem. 1972, 38, C35-C36.
- [7] Schrock, R. R.; Fellmann, J. D. J. Am. Chem. Soc. 1978, 100, 3359-3370.
- [8] Schrock, R. R.; Sharp, P. R. J. Am. Chem. Soc. **1978**, 100, 2389-2399.
- [9] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H; Vreven, T.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09* (Gaussian, Inc., Wallingford CT, 2009) VERSION D.01.
- [10] Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.
- [11] Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866.
- [12] Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123.
- [13] Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408.
- [14] Jensen, J. J. Chem. Theory Comput., 2014, 10, 1074.
- [15] te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler T. J. Comp. Chem. 2001, 22, 931. Amsterdam Density Functional (ADF) Theoretical Chemistry Vrieje Universitet see <u>http://www.scm.com/</u> VERSION 2014.
- [16] van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597.
- [17] van Lenthe, E.; Baerends E. J.; Snijders, J. G. J. Chem. Phys. 1994, 101, 9783.
- [18] van Lenthe, E.; Baerends E. J.; Snijders, J. G. J. Chem. Phys. 1999, 110, 8943.
- [19] van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1996, 105, 6505.
- [20] van Lenthe, E.; van Leeuwen, R.; Baerends, E. J.; Snijders, J. G. Int. J. Quant. Chem. 1996, 57, 281.
- [21] Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F.; Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, USA 2013, <u>http://nbo6.chem.wisc.edu/</u>
- [22] Bohmann, J. A.; Weinhold, F.; Farrar, T. C. J. J. Chem. Phys. 1997, 107, 1173.
- [23] Autschbach, J.; Zheng, T. Magn. Reson. Chem. 2008, 46, S45.
- [24] Autschbach, J. J. Chem. Phys. 2008, 128, 164112.
- [25] Aquino, F.; Pritchard, B.; Autschbach, J. J. Chem. Theory Comput. 2012, 8, 598.
- [26] Autschbach, J.; Zheng, S.; Shurko, R.W. Concepts Magn Reson Part A. 2010, 36A, 84.
- [27] Zurek, E.; Pickard, C. J.; Autschbach, J. J. Phys. Chem. C. 2008, 112, 11744.
- [28] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., J. Chem. Phys. 2010, 132 (15), 154104.
- [29] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., J. Phys. Chem. B 2009, 113 (18), 6378-6396.
- [30] Bax, A.; Szeverenyi, N. M.; Maciel, G. E. J. Magn. Reson. 1983, 52, 147.
- [31] Gordon, C. P.; Yamamoto, K.; Liao, W.-C.; Allouche, F.; Andersen, R. A.; Copéret, C.; Raynaud, C.; Eisenstein, O., *ACS Cent. Sci.* 2017, *3*, 759-768