Hubert, Stepek, Noda and Bode

Supporting Information

Supporting Information

Synthetic Fermentation of β -Peptide Macrocycles by Thiadiazole-Forming Ring-Closing Reactions

Jonathan G. Hubert¹, Iain A. Stepek¹, Hidetoshi Noda² and Jeffrey W. Bode^{1*}

¹Laboratorium für Organishe Chemie, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Switzerland ²Institute of Microbial Chemistry (Bikaken), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.

bode@org.chem.ethz.ch

Table of contents

General Methods	S3
Synthesis of Building Blocks	S4
1.1 Synthesis of Initiator 16	S4
1.1.1 3-lodophenylhydrazide 19	S4
1.1.2 Aldehyde 21	S5
1.1.3 Enol ester 23	S5
1.1.4 Thiohydrazide 24	S6
1.1.5 α-Ketoacid 16	S7
1.2 Synthesis of Monomers	S7
1.2.1 Characterization data for new monomers and related intermediate	∋s…S8
1.3 Synthesis of Thiohydrazides	S13
1.3.1 3-Methoxyphenyl thiohydrazide 10	S13
1.3.2 Pyridine thiohydrazide 12	S14
1.3.3 Alkyl thiohydrazide 15	S14
1.3.4 Phenyl thiohydrazide 2	S15
Synthesis of 1,3,4-Thiadiazoles	S15
2.1 Intermolecular Reaction of Thiohydrazides and $\alpha\mbox{-}Ketoacids\mbox{-}$	S15
2.1.1 Phenyl thiadiazole 5	S16
2.1.2 Propanoic acid thiadiazole 7	S16
2.1.3 Fmoc-amine thiadiazole 9	S17
2.1.4 3-Methoxyphenyl thiadiazole 11	S17
2.1.5 2,3-Dihydrothiadiazole carboxylic acid 4	S18
Synthesis of β -Peptide Macrocycle Mixtures	S19
3.1 One-pot Elongation/Macrocyclization Reaction with One Monomer	S19
3.1.1 HPLC spectra with mass traces of the major peaks	S20
3.2 Cyclization of Purified Tri-β-peptide	S26
3.3 One-Pot Elongation/Macrocyclization Reaction with Two Monomers	S27
3.3.1 HPLC spectra with mass traces of the major peaks	S28
3.4 Isolation and Characterization of Macrocyclic Compounds	S36
References	S39
NMR Spectra	S40

General Methods

Reactions and Purifications

Reactions were carried out under air unless otherwise stated. Thin layer chromatography (TLC) was performed on Merck TLC plates (0.25 mm) pre-coated with silica gel 60 F254 and visualized by UV quenching and/or staining with potassium permanganate stain and warming with a heat gun. Flash column chromatography was performed under a forced-flow of air using Silicycle SiliaFlash F60 (40-63 mm particle size). Macrocycle mixtures were analyzed and purified by reversed phase high performance liquid chromatography (RP-HPLC) on Jasco analytical and preparative instruments with dual pumps, mixer and in-line degasser, a variable wavelength UV detector (simultaneous monitoring of the eluent at 220 nm, 254 nm, 301 nm) and a Rheodyne 7725i injector fitted with a 20 μ L injection loop. The mobile phase for analytical and preparative HPLC were Millipore-H₂O with 0.1% TFA (Buffer A) and HPLC grade CH₃CN with 0.1% TFA (Buffer B). Analytical HPLC was performed on Shiseido C18 (5 μ m, 4.6 mm l.D. x 250 mm) column at a flow rate of 1 mL/min. Preparative HPLC was performed on YMC C18 (5 μ m, 20 mm I.D. x 250 mm) column at a flow rate of 10 mL/min. LCMS analysis was performed on Dionex UltiMate 3000 RSLC connected to a Surveyor MSQ Plus mass spectrometer; a reversed-phase RESTEK Pinnacle DB C18 (4.6 x 50 mm) column was used, running a gradient of 5 to 100% CH₃CN in H₂O over 6.5 min, 100% CH₃CN for 2.5 min.

Characterization

NMR spectra were recorded on Bruker AV-400 or AV-III-600 instruments. Chemical shifts (δ) are given in ppm relative to residual solvent peaks. Data for 1H NMR are reported as follows: chemical shift (multiplicity, coupling constants where applicable, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), dd (doublet of doublet), m (multiplet), br (broad), ABq (AB quartet). IR spectra were recorded on a Jasco FT/IR-4100 spectrometer and major peaks are reported in frequency of absorption (cm⁻¹). Optical rotations were measured on a Jasco P-2000 operating at the sodium D line with a 100 mm path length cell. High-resolution mass spectra were obtained by the mass spectrometry service of the ETH Zürich Laboratorium für Organische Chemie on a Bruker Daltonics maXis ESI-QTOF spectrometer (ESI).

S3

Solvents and Reagents

All organic solvents (CH₃CN, DMF, ¹BuOH, Et₂O, MeOH) were used as supplied (ACS or HPLC grade) unless otherwise stated. THF was purified by distillation over sodium benzophenone ketyl prior to use. CH₂Cl₂ was purified by distillation over calcium hydride. H₂O used for reactions was obtained from a Millipore purification system. All other starting materials were used as supplied by commercial vendors or prepared by the method described in the corresponding reference.

Synthesis of Building Blocks

1.1 Synthesis of Initiator 16

1.1.1 3-lodophenylhydrazide 19

EDCI·HCI (0.95 g, 4.98 mmol, 1.1 equiv) was added to a suspension of 3-iodobenzoic acid (1.20 g, 4.98 mmol, 1.1 equiv) and HOBt (0.67 g, 4.98 mmol, 1.1 equiv) in CH_2CI_2 (23 mL) at rt. The mixture was stirred for 10 min to give a yellow solution. *t*-Butylcarbazate (0.60 g, 4.52 mmol, 1.0 equiv) and EtN^iPr_2 (3.2 mL, 18.1 mmol, 4.0 equiv) were added and the mixture was stirred for 16 h. The resulting suspension was cooled to 0 °C, filtered and washed with cold CH_2CI_2 , to afford the desired product **19** (1.05 g, 64%) as a white solid.

MP 198–199 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 10.29 (s, 1H), 8.96 (s, 1H), 8.19 (s, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H), 1.43 (s, 9H); ¹³**C NMR** (101 MHz, DMSO- d_6) δ 164.6, 155.4, 140.3, 135.8, 134.5, 130.7, 126.7, 94.7, 79.3, 28.1; **IR** (u/cm⁻¹, thin film): 3232 (br), 2980, 1718, 1659, 1425, 1394, 1366, 1250, 1152, 1066, 699; **HRMS** (ESI): calculated for C₁₂H₁₅IN₂NaO₃ [M+Na]⁺: 385.0020, found: 385.0025.

1.1.2 Aldehyde 21

3-lodophenylhydrazide **19** (1.00 g, 2.76 mmol, 1.0 equiv), $Pd(OAc)_2$ (37 mg, 0.17 mmol, 6 mol%), tetrabutylammonium bromide (0.89 g, 2.76 mmol, 1.0 equiv), NaHCO₃ (0.58 g, 6.90 mmol, 2.5 equiv) and MS 4Å were placed under a N₂ atmosphere in a flame dried flask. DMF (8.3 mL) was added, followed by allyl alcohol (0.28 mL, 4.14 mmol, 1.5 equiv) and the mixture was heated to 70 °C for 4 h. The resulting mixture was diluted with EtOAc, washed with H₂O and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The crude mixture was purified by flash chromatography (hexanes/EtOAc, 4:1 \rightarrow 1:1) to afford the desired product **21** (0.66 g, 81%) as a white solid.

MP 60–61 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.95 (br. s, 1H), 7.67 (s, 1H), 7.61 (d, *J* = 7.4 Hz, 1H), 7.38 – 7.17 (m, 2H), 6.96 (br. s, 1H), 2.91 (t, *J* = 7.5 Hz, 2H), 2.76 (t, *J* = 7.5 Hz, 2H), 1.48 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 201.3, 166.9, 156.4, 141.1, 132.4, 132.0, 128.9, 127.3, 125.4, 82.2, 45.0, 28.2, 27.9; **IR** (u/cm⁻¹, thin film): 3281 (br), 2978, 2932, 1713, 1661, 1524, 1480, 1393, 1367, 1252, 1156, 730; **HRMS** (ESI): calculated for C₁₅H₂₀N₂NaO₄ [M+Na]⁺: 315.1315, found: 315.1316.

1.1.3 Enol ester 23

Tetramethylguanidine (0.25 mL, 2.05 mmol, 1.2 equiv) was added dropwise to a mixture of phosphonate $22^{1,2}$ (0.55 g, 1.88 mmol, 1.1 equiv) and LiCl (86 mg, 2.05 mmol, 1.2 equiv) in THF (9 mL) at -10 °C under an atmosphere of N₂. After stirring for 30 min a solution of aldehyde 21 (0.50 g, 1.71 mmol, 1.0 equiv) in THF (2 mL) was added. The resulting mixture was stirred for 10 min, diluted with sat. aq. NH₄Cl and extracted with EtOAc (3×). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified

by flash chromatography (hexanes/EtOAc, $4:1 \rightarrow 2:1$) to afford the desired product **23** (0.53 g, 72%, 2:1 mixture of isomers) as a white solid.

MP 46–48 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (br. s, 1H), 7.68 – 7.58 (m, 2H), 7.36 – 7.28 (m, 2H), 6.80 (br. s, 1H), 5.56* (t, *J* = 7.7 Hz, 0.33H), 5.47 (t, *J* = 8.3 Hz, 0.66H), 2.92 – 2.81 (m, 1.33H), 2.79-2.72 (m, 2H), 2.35 – 2.48* (m, 0.66H), 1.79 – 1.61 (m, 8H), 1.49 – 1.39 (m, 11H). (*signals from minor isomer); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.1, 167.0, 163.0, 162.6, 156.0, 141.7, 141.6, 139.0, 138.1, 132.5, 132.4, 132.0, 128.7, 128.7, 127.6, 127.6, 125.2, 125.1, 113.2, 111.9, 111.0, 108.8, 82.0, 82.0, 36.2, 36.1, 35.7, 34.5, 28.2, 27.0, 25.7, 24.3, 24.3, 22.9, 22.8 (mixture of isomers); **IR** (u/cm⁻¹, thin film): 3283 (br), 2939, 2855, 1780, 1721, 1667, 1480, 1452, 1368, 1250, 1158, 940, 909, 730; **HRMS** (ESI): calculated for C₂₃H₃₀N₂NaO₆ [M+Na]⁺: 453.1996, found: 453.1996.

1.1.4 Thiohydrazide 24

A suspension of enol ester **23** (0.28 g, 0.65 mmol, 1.0 equiv) and Lawesson's reagent (0.26 g, 0.65 mmol, 1.0 equiv) in THF (1.2 mL) was stirred at 45 °C for 6 h under an atmosphere of N₂. The mixture was filtered through a silica plug, washing hexanes/EtOAc (4:1), and the filtrate was concentrated *in vacuo*. The crude mixture was purified by flash chromatography (hexanes/EtOAc, 9:1) to afford the desired product **24** (0.29 g, 70%, single isomer) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 9.86 (br. s, 1H), 8.86 (br. s, 1H), 7.62 (s, 1H), 7.58 – 7.56 (m, 1H), 7.32 – 7.30 (m, 2H), 5.56 (t, J = 7.7 Hz, 1H), 2.79 (t, J = 7.7 Hz, 2H), 2.52 (dt, J = 7.7, 7.7 Hz, 2H), 1.79 – 1.63 (m, 8H), 1.51 (s, 9H), 1.49 – 1.38 (m, 2H); 1³**C NMR** (101 MHz, CDCl₃) δ 163.0, 153.6, 141.9, 139.1, 138.2, 131.9, 128.8, 127.3, 124.7, 111.9, 108.6, 83.5, 36.2, 34.5, 28.3, 27.0, 24.3, 22.9. (C=S carbon not observed); **IR** (u/cm⁻¹, thin film): 3263 (br), 2938, 2803, 1784, 1719, 1449, 1367, 1264, 1247, 1154, 936, 734, 697; **HRMS** (ESI): calculated for C₂₃H₃₀N₂NaO₅S [M+Na]⁺: 469.1768, found: 469.1774.

S6

1.1.5 *α-Ketoacid* **16**

Aqueous NaOH (2 M, 0.22 mL, 0.44 mmol, 2.0 equiv) was added to a solution of thiohydrazide **24** (0.10 g, 0.22 mmol, 1.0 equiv) in methanol (1.1 mL) and the reaction was stirred at rt for 15 min. The mixture was diluted with H₂O and washed with Et₂O. The aqueous phase was acidified to pH 1 with 3 M HCl and extracted with EtOAc ($3\times$). The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated *in vacuo* to afford the desired product **16** (80 mg, 99%) as a yellow oil that was used without further purification.

¹**H NMR** (400 MHz, CDCl₃) δ 10.04 (br. s, 1H), 8.85 (br. s, 1H), 7.62 (d, J = 7.3 Hz, 1H), 7.53 (s, 1H), 7.35 – 7.27 (m, 2H), 2.89 (t, J = 7.2 Hz, 2H), 2.70 (t, J = 7.2 Hz, 2H), 2.01 (tt, J = 7.2, 7.2 Hz, 2H), 1.53 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 195.5, 160.3, 154.2, 141.5, 138.4, 132.0, 129.1, 127.1, 125.5, 84.0, 36.7, 34.7, 28.3, 24.8. (C=S carbon not observed); **IR** (u/cm⁻¹, thin film): 3258 (br), 2979, 2934, 1713, 1427, 1368, 1250, 1152, 735, 698; **HRMS** (ESI): calculated for C₁₇H₂₂N₂NaO₅S [M+Na]⁺: 389.1142, found: 389.1144.

1.2 Synthesis of Monomers

Monomers were prepared using a previously described three-step procedure from 2,3:5,6-*O*-diisopropylidene-D-gulose oxime (**46**), 5-chloromethyl-2,2-pentamethylene-1,3-dioxolan-4-one (**47**) and commercially available or known aldehydes **48**.^{2,3}

General procedure:

1) A solution of NEt₃ (2.0 equiv) and dioxolanone **47** (1.0 equiv) in ^{*n*}PrOAc (0.5 M) was heated to reflux for 18 h. Oxime **46** (1.0 equiv) and aldehyde **48** (1.0 equiv) were added and the mixture was heated to reflux for 24 h. The reaction mixture was

diluted with EtOAc, washed with 1 M HCl and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by flash chromatography and/or recrystallization to afford the desired cycloaddition products **49**.

2) $HCIO_4$ (70%, 3.0 equiv) was added dropwise to a solution of cycloaddition product 49 (1.0 equiv) in CH₃CN (0.1 M) at rt. The reaction was stirred for 6 h, sat. aq. NaHCO₃ was added and the mixture was extracted with EtOAc (3×). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by flash chromatography to afford the unprotected isoxazolidine product.

3) HCl in dioxane (4 M, 1.1 equiv) was added dropwise to a solution of unprotected isoxazolidine (1.0 equiv) in Et_2O (0.1 M). After stirring at rt for 30 min a precipitate was formed. The precipitate was collected by filtration, washed with Et_2O and dried under vacuum to afford the desired monomer HCl salt **50**.

For monomers previously reported (**25, 30** and **37**), the syntheses were performed according to the literature procedures.^{2,3}

1.2.1 Characterization Data for New Monomers and Related Intermediates

n-Propyl monomer intermediate 51

[**a**]_D²⁸ (c = 0.53, CHCl₃) = +19.4; **MP** 90-91°C; ¹H NMR (400 MHz, CDCl₃) δ 4.87 (d, J = 6.1 Hz, 1H), 4.69 – 4.64 (m, 2H), 4.36 (dt, J = 8.5, 6.7 Hz, 1H), 4.19 (dd, J = 8.6, 6.8 Hz, 1H), 4.03 (dd, J = 8.5, 3.9 Hz, 1H), 3.85 – 3.78 (m, 1H), 3.71 (dd, J = 8.6, 6.6 Hz, 1H), 2.92 (dd, J = 13.8, 7.7 Hz, 1H), 2.11 (dd, J = 13.8, 1.9 Hz, 1H), 1.92 – 1.58 (m, 9H), 1.50 – 1.33 (m, 14H), 1.28 (s, 3H), 0.94 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.6, 113.0, 111.8, 109.9, 105.8, 96.9, 84.5, 84.4, 80.3, 75.7, 66.2, 60.5, 41.1, 37.7, 36.5, 35.6, 26.8, 26.2, 25.4, 25.1, 24.4, 23.1, 23.0, 20.3, 13.9; **IR** (u/cm⁻¹, thin film): 2988, 2939, 1754, 1380, 1372, 1216, 1093, 1060, 1031, 844; **HRMS** (ESI): calculated for C₂₅H₄₀NO₉ [M+H]⁺: 498.2698, found: 498.2701.

n-Propyl monomer 26

[**a**]_D²⁸ (c = 0.52, MeOH) = +34.9; **MP** 113–114 °C; ¹**H NMR** (400 MHz, MeOD) δ 4.19 (ddt, *J* = 7.6, 7.6, 7.6 Hz, 1H), 3.14 (dd, *J* = 14.3, 7.6 Hz, 1H), 2.56 (dd, *J* = 14.3, 7.6 Hz, 1H), 1.95 – 1.83 (m, 6H), 1.80 – 1.65 (m, 4H), 1.56 – 1.43 (m, 4H), 1.03 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, MeOD) δ 166.4, 114.6, 108.1, 62.9, 41.0, 38.2, 36.6, 32.6, 25.1, 24.0, 23.9, 20.8, 14.0; **IR** (u/cm⁻¹, thin film): 2959, 2859, 1807, 1377, 1292, 1258, 1191, 1139, 915, 718; **HRMS** (ESI): calculated for C₁₃H₂₂NO₄ [M-Cl]⁺ 256.1543, found: 256.1550.

Pyran monomer intermediate 52

[a]_D²⁵ (c = 0.53, CHCl₃) = -15.3; ¹H NMR (400 MHz, CDCl₃) δ 4.85 (d, J = 6.1 Hz, 1H), 4.69 (s, 1H), 4.65 (dd, J = 6.1, 3.9 Hz, 1H), 4.35 (dt, J = 8.5, 6.7 Hz, 1H), 4.20 (dd, J = 8.6, 6.9 Hz, 1H), 4.02 – 3.94 (m, 3H), 3.72 (dd, J = 8.6, 6.5 Hz, 1H), 3.58 – 3.53 (m, 1H), 3.43 – 3.33 (m, 2H), 2.79 (dd, J = 14.1, 8.0 Hz, 1H), 2.31 (dd, J = 14.1, 1.1 Hz, 1H), 1.92 – 1.56 (m, 11H), 1.47 – 1.25 (m, 16H); ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 113.1, 111.8, 109.9, 106.0, 96.7, 84.7, 84.3, 80.3, 75.7, 67.8, 67.6, 66.1, 65.4, 37.7, 36.7, 36.6, 36.5, 31.3, 30.2, 26.9, 26.2, 25.3, 25.0, 24.4, 23.1, 23.1; **IR** (u/cm⁻¹, thin film): 2986, 2939, 2856, 1800, 1450, 1372, 1249, 1237, 1210, 1086, 1032, 847, 732; **HRMS** (ESI): calculated for C₂₇H₄₁NNaO₁₀ [M+Na]⁺: 562.2623, found: 562.2620.

Pyran monomer 27

[**a**]_D²⁸ (c = 0.51, MeOH) = +28.1; **MP** 129–132 °C; ¹**H NMR** (400 MHz, MeOD) δ 4.01 − 3.89 (m, 3H), 3.50 − 3.39 (m, 2H), 3.17 (dd, J = 14.4, 7.5 Hz, 1H), 2.60 (dd, J = 14.4, 9.9 Hz, 1H), 2.12-2.02 (m, 1H), 1.94 − 1.83 (m, 4H), 1.81 − 1.60 (m, 6H), 1.57 − 1.46 (m, 4H); ¹³**C NMR** (101 MHz, MeOD) δ 165.3, 113.2, 106.9, 66.6, 66.2, 38.2, 36.8, 35.8, 35.3, 30.0, 29.0, 23.7, 22.6, 22.5; **IR** (u/cm⁻¹, thin film): 2929, 2863, 2834, 1799, 1279, 1250, 1244, 1199, 1088, 943, 711; **HRMS** (ESI): calculated for C₁₅H₂₄NO₅ [M-Cl]⁺: 298.1649, found: 298.1650

4-Benzyloxybenzyl monomer intermediate 53

[a]_D²⁶ (c = 0.53, CHCl₃) = -24.3; **MP** 123–124 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.30 (m, 5H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 5.03 (s, 2H), 4.85 (d, J = 6.1 Hz, 1H), 4.69 (s, 1H), 4.57 (dd, J = 6.0, 4.1 Hz, 1H), 4.32 – 4.26 (m, 1H), 4.13 (dd, J = 8.4, 6.6 Hz, 1H), 4.10 – 4.04 (m, 1H), 3.64 (dd, J = 8.4, 4.1 Hz, 1H), 3.56 (dd, J = 8.4, 6.9 Hz, 1H), 3.01 (dd, J = 13.7, 7.7 Hz, 1H), 2.82 – 2.73 (m, 2H), 2.20 (dd, J = 14.0, 1.7 Hz, 1H), 1.94 – 1.88 (m, 2H), 1.81 – 1.67 (m, 6H), 1.50 – 1.42 (m, 8H), 1.37 (s, 3H), 1.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 157.6, 137.2, 130.9, 130.6, 128.7, 128.1, 127.6, 114.9, 113.0, 111.8, 109.8, 105.9, 96.4, 84.5, 84.1, 80.2, 75.7, 70.1, 66.1, 61.7, 39.8, 38.5, 37.7, 36.5, 27.1, 26.2, 25.5, 25.0, 24.4, 23.2, 23.1; **IR** (u/cm⁻¹, thin film): 2990, 2940, 1798, 1512, 1376, 1239, 1209, 1156, 1089, 1066, 1037, 847; **HRMS** (ESI): calculated for C₃₆H₄₆NO₁₀ [M+H]⁺: 652.3116, found: 652.3104. 4-Hydroxybenzyl monomer intermediate 54

[**a**]_D²⁸ (c = 0.52, CHCl₃) = -26.2; **MP** 83-85 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (d, J = 8.5 Hz, 2H), 6.75 (d, J = 8.5 Hz, 2H), 5.45 (s, 1H), 4.84 (d, J = 6.0 Hz, 1H), 4.68 (s, 1H), 4.56 (dd, J = 6.1, 4.0 Hz, 1H), 4.32 – 4.27 (m, 1H), 4.13 (dd, J = 8.4, 6.6 Hz, 1H), 4.07 – 4.00 (m, 1H), 3.62 – 3.55 (m, 2H), 2.98 (dd, J = 13.8, 8.0 Hz, 1H), 2.80 – 2.70 (m, 2H), 2.18 (dd, J = 13.9, 1.7 Hz, 1H), 1.93 – 1.87 (m, 2H), 1.82 – 1.65 (m, 6H), 1.48 – 1.40 (m, 8H), 1.37 (s, 3H), 1.27 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 169.4, 154.4, 130.8, 130.6, 115.5, 113.0, 111.9, 109.8, 106.0, 96.4, 84.5, 84.0, 80.2, 75.7, 66.1, 61.7, 39.8, 38.5, 37.7, 36.5, 26.9, 26.1, 25.3, 24.9, 24.4, 23.2, 23.0; **IR** (u/cm⁻¹, thin film): 2987, 2938, 1799, 1516, 1372, 1228, 1210, 1085, 1066, 1038, 844; **HRMS** (ESI): calculated for C₂₉H₄₀NO₁₀ [M+H]⁺: 562.2647, found: 562.2648.

4-Hydroxybenzyl monomer 28

[α]_D²⁸ (c = 0.53, MeOH) = +47.9; **MP** 120–122°C; ¹**H NMR** (400 MHz, MeOD) δ 7.14 (d, *J* = 8.5 Hz, 2H), 6.80 (d, *J* = 8.5 Hz, 2H), 4.43 – 4.35 (m, 1H), 3.12 (d, *J* = 8.5 Hz, 2H), 3.03 (dd, *J* = 14.4, 7.5 Hz, 1H), 2.59 (dd, *J* = 14.4, 6.7 Hz, 1H), 1.95 – 1.87 (m, 4H), 1.82 – 1.65 (m, 4H), 1.57 – 1.48 (m, 2H); ¹³**C NMR** (101 MHz, MeOD) δ 166.4, 158.3, 131.2, 126.9, 117.0, 114.6, 108.0, 64.3, 40.4, 38.3, 36.6, 35.5, 25.1, 24.0, 24.0; **IR** (u/cm⁻¹, thin film): 3318, 2940, 2875, 1807, 1519, 1269, 1213, 1190, 1153, 1116, 920, 872, 839, 720; **HRMS** (ESI): calculated for $C_{17}H_{22}NO_5$ [M-Cl]⁺: 320.1492, found: 320.1493.

Amide monomer intermediate 55

[a]_D²⁸ (c = 0.52, CHCl₃) = +31.6; **MP** 144–145°C; ¹**H NMR** (400 MHz, CDCl₃) δ 6.53 (t, *J* = 5.5 Hz, 1H), 4.87 (d, *J* = 6.0 Hz, 1H), 4.67 – 4.61 (m, 2H), 4.35 (dt, *J* = 8.2, 7.0 Hz, 1H), 4.22 (dd, *J* = 8.6, 6.7 Hz, 1H), 4.09 (dd, *J* = 8.2, 3.7 Hz, 1H), 3.74 – 3.67 (m, 2H), 3.61 – 3.47 (m, 7H), 3.40 – 3.34 (m, 4H), 2.95 (dd, *J* = 13.9, 8.1 Hz, 1H), 2.37 – 2.30 (m, 1H), 2.17 – 2.10 (m, 2H), 2.08 – 1.98 (m, 1H), 1.92 – 1.59 (m, 9H), 1.47 – 1.36 (m, 11H), 1.28 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.6, 169.2, 113.2, 111.9, 110.0, 106.0, 97.5, 84.6, 83.7, 80.3, 75.8, 72.0, 70.3, 69.9, 66.1, 61.1, 59.1, 41.0, 39.5, 37.7, 36.5, 34.5, 30.0, 26.8, 26.2, 25.5, 25.1, 24.4, 23.1, 22.9; **IR** (u/cm⁻¹, thin film): 2988, 2939, 1755, 1379, 1372, 1217, 1060, 1031, 845; **HRMS** (ESI): calculated for C₃₀H₄₉N₂O₁₂ [M+H]⁺: 629.3280, found: 629.3281.

Amide monomer 29

[**a**]_D²⁴ (c = 0.49, MeOH) = −17.5; ¹**H** NMR (400 MHz, MeOD) δ 4.33 − 4.26 (m, 1H), 3.62 − 3.60 (m, 2H), 3.57 − 3.54 (m, 4H), 3.41 − 3.37 (m, 5H), 3.15 (dd, *J* = 14.4, 7.9 Hz, 1H), 2.66 − 2.49 (m, 3H), 2.28 − 2.09 (m, 2H), 1.93 − 1.85 (m, 4H), 1.76-1.66 (m, 4H), 1.54 − 1.47 (m, 2H); ¹³**C** NMR (101 MHz, MeOD) δ 175.0, 166.2, 114.5, 107.8, 73.0, 71.0, 70.3, 62.8, 59.2, 41.3, 40.6, 38.2, 36.6, 32.9, 26.4, 25.0, 24.0, 23.9; IR (u/cm⁻¹, thin film): 2938, 2857, 1798, 1651, 1269, 1238, 1177, 1139, 1090, 929; HRMS (ESI): calculated for $C_{18}H_{31}N_2O_7$ [M-CI]⁺: 387.2122, found: 387.2126.

1.3 Synthesis of Thiohydrazides

General procedure:

1) EDCI·HCI (1.1 equiv) was added to a suspension of carboxylic acid (1.1 equiv) and HOBt (1.1 equiv) in CH₂Cl₂ (0.2 M) at rt. The mixture was stirred for 10 min, *t*-butylcarbazate (1.0 equiv) and DIPEA (4 equiv) were added and the mixture was stirred for 16 h. The reaction mixture was diluted with CH₂Cl₂, washed with sat. aq. NaHCO₃, 1 M HCl and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by flash chromatography (hexanes/EtOAc) to afford the desired hydrazide product.

2) A suspension of hydrazide (1.0 equiv) and Lawesson's reagent (1.0 equiv) in THF (0.5 M) was stirred at 45 °C for 24 h under an atmosphere of N₂. The mixture was filtered through a silica plug, washing with hexanes/EtOAc (2:1), and the filtrate was concentrated *in vacuo*. The crude mixture was purified by flash chromatography (hexanes/EtOAc) to afford the desired Boc-thiohydrazide product.

3) Boc-thiohydrazide (1.0 equiv) was dissolved in HCl in dioxane (4 M, 10 equiv) and the solution was stirred for 1-24 h (depending on the substrate) at rt. The reaction mixture was diluted with Et_2O and the precipitate was collected by filtration, washed with Et_2O and dried under vacuum to afford the desired thiohydrazide-HCl salt.

1.3.1 3-Methoxyphenyl thiohydrazide 10

Prepared according to the general procedure. 1) 2.27 mmol scale, quant. yield. 2) 2.03 mmol scale, 68% yield. 3) 1.27 mmol scale, 2 h, 70% yield, white solid.

MP 141–143 °C; ¹**H NMR** (400 MHz, MeOD) δ 7.40 – 7.37 (m, 3H), 7.17 – 7.13 (m, 1H), 3.86 (s, 3H); ¹³**C NMR** (101 MHz, MeOD) δ 198.0, 159.7, 129.3, 119.3, 117.7, 113.0, 54.6; **IR** (u/cm⁻¹, thin film): 3200-2500 (br), 3129, 3082, 2942, 1607, 1580,

1483, 1459, 1433, 1288, 1147, 1042, 989, 786, 778; **HRMS** (EI): calculated for $C_8H_{10}N_2OS [M-HCI]^+$: 182.0508, found: 182.0509

1.3.2 Pyridine thiohydrazide 12

Prepared according to the general procedure. 1) 4.55 mmol scale, 61% yield. 2) 2.53 mmol scale, 22% yield. 3) 0.55 mmol scale, 24 h, 79% yield, yellow solid. **MP** 133–134 °C; ¹**H NMR** (400 MHz, MeOD) δ 8.64 (ddd, *J* = 5.5, 1.6, 1.0 Hz, 1H), 8.56 (ddd, *J* = 7.9, 1.0. 1.0 Hz, 1H), 8.41 (ddd, *J* = 7.9, 7.9, 1.6 Hz, 1H), 7.90 (ddd, *J* = 7.9, 5.5, 1.0 Hz, 1H)^{; 13}**C NMR** (101 MHz, MeOD) δ 184.4, 150.0, 146.0, 143.7, 128.7, 126.1; **IR** (u/cm⁻¹, thin film): 3382 (br), 3073, 3038, 2993, 2531(br), 1578, 1557, 1513, 1456, 1351, 1250, 1219, 1081, 979, 942, 773; **HRMS** (ESI): calculated for C₆H₈N₃S [M–Cl]⁺: 154.0433, found: 154.0437

1.3.3 Alkyl thiohydrazide 15

Prepared according to the general procedure. 1) 4.66 mmol scale, 60% yield. 2) 2.92 mmol scale, 27% yield. 3) 0.80 mmol scale, 1 h, 67% yield, white solid. **MP** 121-123 °C; ¹**H NMR** (400 MHz, MeOD) δ 7.29 – 7.16 (m, 5H), 3.12 (t, *J* = 7.3

Hz, 2H), 2.99 (t, J = 7.3 Hz, 2H); ¹³**C** NMR (101 MHz, MeOD) δ 205.0, 141.3, 129.6, 127.5, 45.1, 36.2; **IR** (u/cm⁻¹, thin film): 3200-2600 (br), 1581, 1548, 1465, 1372, 1209, 1110, 1065, 752, 695; **HRMS** (ESI): calculated for C₉H₁₃N₂S [M-Cl]⁺: 181.0794, found: 181.0799

1.3.4 Phenyl thiohydrazide 2

Phenyl thiohydrazide **2** was prepared according to a literature procedure.⁴

S-(thiobenzoyl)-thioglycolic acid (1.30 g, 6.12 mmol, 1.0 equiv) was dissolved in 1 M NaOH (6 mL) and H₂O (6 mL) was added. The solution was cooled to 0 °C and hydrazide hydrate (1.1 mL, 12.2 mmol, 2.0 equiv) was added dropwise. After stirring for 10 min the pH of the reaction mixture was adjusted to pH 5-6 using 1 M HCl and the resulting suspension was stirred for a further 1 h. The precipitate was collected by filtration, washing with cold H₂O, and dried under vacuum. The crude material was recrystallized (CH₂Cl₂/hexanes) to provide desired product **2** (0.61 g, 66%) as a pale yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.72 – 7.69 (m, 2H), 7.47 – 7.38 (m, 3H). The spectroscopic data were in agreement with literature values.⁴

Synthesis of 1,3,4-Thiadiazoles

2.1 Intermolecular Reaction of Thiohydrazides and α -Ketoacids

General procedure:

A solution of thiohydrazide (1.5 equiv) in ^tBuOH/1M HCI (5:1, 0.1 M) was added to a solution of α -ketoacid (1.0 equiv) in ^tBuOH/1M HCI (5:1, 0.1 M) and the mixture was heated at 70 °C for 16 h. The reaction mixture was diluted with water and extracted with EtOAc (3×). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by flash chromatography to afford the desired 1,3,4-thiadiazole products.

2.1.1 Phenyl thiadiazole 5

Thiadiazole **5** was prepared following the general procedure with thiohydrazide **2** (50 mg, 0.33 mmol, 1.5 equiv) and α -ketoacid **3** (36 mg, 0.22 mmol, 1.0 equiv). The desired product was isolated by flash chromatography (hexanes/EtOAc, 9:1→4:1) as a white solid (39 mg, 71%).

MP 71–72 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.87 (m, 2H), 7.47 – 7.41 (m, 3H), 7.38 – 7.33 (m, 4H), 7.32 – 7.28 (m, 1H), 4.45 (s, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.8, 169.4, 137.3, 131.1, 130.3, 129.2, 129.1, 129.0, 127.9, 127.6, 36.7; **IR** (u/cm⁻¹, thin film): 3066, 3030, 1494, 1455, 1427, 1225, 1124, 1058, 981, 920, 763, 702, 690; **HRMS** (ESI): calculated for C₁₅H₁₃N₂S [M+H]⁺: 253.0794, found: 253.0793

2.1.2 Propanoic acid thiadiazole 7

Thiadiazole **7** was prepared following the general procedure with thiohydrazide **2** (50 mg, 0.33 mmol, 1.5 equiv) and α -ketoacid **6** (32 mg, 0.22 mmol, 1.0 equiv). The desired product was isolated by flash chromatography (hexanes/EtOAc, 4:1 + 1% formic acid) as a white solid (42 mg, 73%).

MP 168–170 °C; ¹**H NMR** (400 MHz, MeOD) δ 7.95-7.91 (m, 2H), 7.55 – 7.49 (m, 3H), 3.42 (t, *J* = 7.0 Hz, 2H), 2.86 (t, *J* = 7.0 Hz, 2H); ¹³**C NMR** (101 MHz, MeOD) δ 177.1, 171.5, 170.7, 132.5, 131.1, 130.4, 128.8, 34.7, 26.6; **IR** (u/cm⁻¹, thin film): 3376 (br), 3062, 2934, 1693, 1536, 1456, 1419, 1239, 1048, 982, 758, 690; **HRMS** (ESI): calculated for C₁₁H₁₁N₂O₂S [M+H]⁺: 235.0536, found: 235.0535

2.1.3 Fmoc-amine thiadiazole 9

Thiadiazole **9** was prepared following the general procedure with thiohydrazide **2** (58 mg, 0.39 mmol, 1.5 equiv) and α -ketoacid **8**^{5,6} (94 mg, 0.26 mmol, 1.0 equiv). The desired product was isolated by flash chromatography (hexanes/EtOAc, 4:1) followed by recrystallization (hexanes/EtOAc) as a white solid (64 mg, 54%).

[**a**]_D²⁴ (c = 0.25, CHCl₃) = -41.7; **MP** 154-156 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 -7.92 (m, 2H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.64 - 7.58 (m, 2H), 7.52 - 7.46 (m, 3H), 7.42 - 7.36 (m, 2H), 7.34 - 7.27 (m, 2H), 5.67 (d, *J* = 9.1 Hz, 1H), 5.13 - 5.07 (m, 1H), 4.47 (d, *J* = 7.0 Hz, 2H), 4.23 (t, *J* = 7.0 Hz, 1H), 2.48 - 2.37 (m, 1H), 1.03 (d, *J* = 6.8 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.9, 168.9, 156.2, 143.8, 141.5, 131.3, 130.1, 129.3, 128.1, 127.9, 127.2, 125.2, 120.1, 67.2, 56.5, 47.4, 33.6, 19.4, 18.0; **IR** (u/cm⁻¹, thin film): 3306, 2968, 2950, 1690, 1532, 1452, 1425, 1301, 1261, 1236, 1021; **HRMS** (ESI): calculated for $C_{27}H_{25}N_3NaO_2S$ [M+Na]⁺: 478.1560, found: 478.1556

2.1.4 3-Methoxyphenyl thiadiazole 11

Thiadiazole **11** was prepared following the general procedure with thiohydrazide **10** (46 mg, 0.21 mmol, 1.5 equiv) and α -ketoacid **3** (23 mg, 0.14 mmol, 1.0 equiv). The desired product was isolated by flash chromatography (hexanes/EtOAc, 9:1 \rightarrow 4:1) as a yellow oil (32 mg, 80%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (dd, J = 2.6, 1.6 Hz, 1H), 7.41 – 7.28 (m, 7H), 7.00 (ddd, J = 8.2, 2.6, 1.0 Hz, 1H), 4.46 (s, 2H), 3.86 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.0, 169.4, 160.2, 137.3, 131.5, 130.3, 129.2, 129.0, 127.7, 120.7, 117.6, 112.2, 55.3, 36.8; **IR** (u/cm⁻¹, thin film): 3028, 3004, 2935, 1598, 1581, 1455, 1426, 1206, 1043, 1002, 843, 781; **HRMS** (ESI): calculated for C₁₆H₁₅N₂OS [M+H]⁺: 283.0900, found: 283.0899

2.1.5 2,3-Dihydrothiadiazole carboxylic acid 4

A solution of thiohydrazide **2** (50 mg, 0.33 mmol, 1.0 equiv) and α -ketoacid **3** (54 mg, 0.33 mmol, 1.0 equiv) in ^{*t*}BuOH/H₂O (5:1, 6.6 mL) was heated at 45 °C for 14 h. The reaction mixture was diluted with water and extracted with EtOAc (3×). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by preparative HPLC (35-95% CH₃CN with 0.1% TFA over 28 min) to obtain a sample of desired product **4** for characterization. Retention time: 16.9 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.56 (m, 2H), 7.40 – 7.34 (m, 3H), 7.31 – 7.23 (m, 5H), 3.56 (ABq, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 174.8, 147.4, 134.2, 130.6, 130.3, 130.2, 128.8, 128.8, 127.9, 127.2, 84.1, 44.5: **IR** (u/cm⁻¹, thin film): 3299, 2923, 2853, 1724, 1494, 1447, 1267, 1193, 973, 759, 688; **HRMS** (ESI): calculated for $C_{16}H_{15}N_2O_2S$ [M+H]⁺: 299.0849, found: 299.0844

Synthesis of β -Peptide Macrocycle Mixtures

3.1 One-Pot Elongation/Macrocyclization with One Monomer

General procedure:

Reactions were prepared using 0.1 M stock solutions of all reagents in ${}^{t}BuOH/H_{2}O$ (5:1).

Solutions of initiator **16** (10 μ L, 1.0 equiv) and a monomer (20 μ L, 2.0 equiv) were mixed and heated at 45 °C for 14 h. The mixture was diluted with ^{*t*}BuOH/1M HCI (5:1) (90 μ L) and heated to 70 °C for 4 h. The resulting mixture of cyclic compounds was analyzed by HPLC and/or LCMS.

This procedure was performed on a larger scale (e.g. 0.90 mL of **16**, 1.80 mL monomer) for purification by preparative HPLC. For cyclization on larger scale the mixtures were stirred in an oversized flask (e.g. 50 mL flask for 9 mL solvent) to enhance O_2 exchange.

3.1.1 HPLC spectra with mass traces of the major peaks

Monomer 25

HPLC: Gradient 30 to 90% CH_3CN with 0.1% TFA in 17 min

HPLC: Gradient 30 to 90% CH₃CN with 0.1% TFA in 17 min

HPLC: Gradient 20 to 70% CH_3CN with 0.1% TFA in 17 min

HPLC: Gradient 30 to 90% CH₃CN with 0.1% TFA in 17 min

HPLC: Gradient 20 to 70% CH₃CN with 0.1% TFA in 17 min

HPLC: Gradient 30 to 90% CH₃CN with 0.1% TFA in 17 min

3.2 Cyclization of Purified Tri-β-Peptide

A solution of tripeptide **56** (0.26 mg, 0.37 μ mol) was dissolved in ^tBuOH/1M HCI (5:1, 37 μ L) was heated to 70 °C for 4 h. The crude reaction mixture was directly analyzed by HPLC (Gradient 30 to 90% CH₃CN with 0.1% TFA in 17 min).

HRMS (ESI) Tripeptide ketoactid **56**: calculated for $C_{35}H_{56}N_5O_8S$ [M+H]⁺: 706.3844, found: 706.3837. Calculated for $C_{35}H_{54}N_5O_8S$ [M-H]⁻: 704.3699, found: 704.3696. **HRMS** (ESI) Macrocycle **32b**: calculated for $C_{29}H_{44}N_5O_3S$ [M+H]⁺: 542.3159, found: 542.3154.

3.3 One-Pot Elongation/Macrocyclization Reaction with Two Monomers

General procedure:

Reactions were prepared using 0.1 M stock solutions of all reagents in ${}^{t}BuOH/H_{2}O$ (5:1).

Solutions of initiator **16** (10 μ L, 1.0 equiv) and the first monomer (10 μ L, 1.0 equiv) were mixed and heated at 45 °C for 6 h. A solution of the second monomer (10 μ L, 1.0 equiv) was added and the mixture heated at 45 °C for 14 h. The reaction mixture were diluted with ^{*t*}BuOH/1 M HCI (5:1) (90 μ L) and heated to 70 °C for 4 h. The resulting mixture of cyclic compounds was analyzed by HPLC and/or LCMS.

This procedure was performed on a larger scale (e.g. 0.90 mL of **16**, 0.90 mL of each monomer) for purification by preparative HPLC. For large-scale cyclization the mixtures were stirred in an oversized flask (e.g. 50 mL flask for 9 mL solvent) to enhance O_2 exchange.

S27

3.3.1 HPLC spectra with mass traces of the major peaks

Monomers 28 and 27

HPLC: 25 to 70% CH $_3$ CN with 0.1% TFA over 17 min

Monomers 28 and 25

HPLC: 25 to 70% CH_3CN with 0.1% TFA over 17 min

Monomers 25 and 27

HPLC: 25 to 70% CH₃CN with 0.1% TFA over 17 min

Monomers 27 and 25

HPLC: 25 to 70% CH₃CN with 0.1% TFA over 17 min

Monomers 27 and 28

HPLC: 25 to 70% CH₃CN with 0.1% TFA over 17 min

Monomers 28 and 30

HPLC: 30 to 90% CH₃CN with 0.1% TFA over 17 min

Monomers 28 and ent-27

HPLC: 25 to 70% CH_3CN with 0.1% TFA over 17 min

Monomers 37 and 27

HPLC: 30 to 90% CH₃CN with 0.1% TFA over 17 min

3.4 Isolation and Characterization of Macrocyclic Compounds

Macrocycle 34a

Synthetic Fermentation/Macrocyclization reaction performed according to the general procedure using initiator **16** (0.09 mmol, 1.0 equiv) and monomer **28** (0.18 mmol, 2.0 equiv). The crude reaction mixture was diluted with $CH_3CN:H_2O$ (1:1) and purified directly by preparative HPLC (20 to 95% CH_3CN with 0.1% TFA over 28 min). Macrocycle **34a** was isolated as a white powder after lyophilization. Retention time: 15.8 minutes.

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 9.22 (s, 1H), 9.17 (s, 1H), 8.02 (d, *J* = 9.5 Hz, 1H), 7.83 – 7.72 (m, 1H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.37 – 7.29 (m, 1H), 7.15 (s, 1H), 7.00 (d, *J* = 8.5 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 2H), 6.69 – 6.66 (m, 4H), 4.34 – 4.30 (m, 1H), 4.21-4.15 (m, 1H), 3.25 (dd, *J* = 15.8, 2.6 Hz, 1H), 2.95 (dd, *J* = 15.8, 11.9 Hz, 1H), 2.81 – 2.75 (m, 1H), 2.74 – 2.61 (m, 3H), 2.48 – 2.43 (m, 1H), 2.26 (dd, *J* = 16.5, 10.1 Hz, 1H), 2.15 (dd, *J* = 16.5, 2.2 Hz, 1H), 2.09 – 1.95 (m, 3H), 1.72 – 1.65 (m, 1H); ¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 171.1, 169.9, 168.5, 167.4, 155.7, 155.6, 141.5, 131.2, 130.3, 130.2, 130.0, 129.5, 129.3, 128.6, 128.0, 122.3, 115.0, 114.9, 49.9, 47.0, 40.7, 39.3, 37.7, 33.7, 31.4, 31.4, 22.6; **HRMS** (ESI): calculated for C₃₁H₃₂N₄NaO₄S [M+Na]⁺: 579.2036, found: 579.2039.
Macrocycle 31b

Synthetic Fermentation/Macrocyclization reaction performed according to the general procedure using initiator **16** (0.10 mmol, 1.0 equiv) and monomer **25** (0.20 mmol, 2.0 equiv). The crude reaction mixture was diluted with CH₃CN:H₂O (1:1) and purified directly by preparative HPLC (30 to 65% CH₃CN with 0.1% TFA over 28 min). Macrocycle **31b** was isolated as a white powder after lyophilization. Retention time: 17.0 minutes.

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.05 (d, *J* = 9.3 Hz, 1H), 7.90 (d, *J* = 8.2 Hz, 1H), 7.63 (s, 1H), 7.48 – 7.45 (m, 3H), 7.39 (d, *J* = 7.7 Hz, 1H), 4.16 – 4.11 (m, 1H), 3.91 – 3.82 (m, 2H), 3.37 (dd, *J* = 14.8, 3.0 Hz, 1H), 3.03 (dd, *J* = 14.8, 11.4 Hz, 1H), 2.76 – 2.71 (m, 1H), 2.67 – 2.63 (m, 1H), 2.30 (dd, *J* = 14.1, 9.7 Hz, 1H), 2.22 (dd, *J* = 14.0, 4.0 Hz, 1H), 2.13 – 1.98 (m, 4H), 1.85 – 1.75 (m, 3H), 1.73 – 1.65 (m, 2H), 0.94 (d, *J* = 6.8 Hz, 3H), 0.91 (d, *J* = 6.8 Hz, 3H), 0.82 – 0.80 (m, 6H), 0.77 (d, *J* = 6.8 Hz, 3H), 0.69 (d, *J* = 6.9 Hz, 3H); ¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 171.0, 170.2, 169.9, 168.3, 167.2, 143.1, 131.2, 129.5, 129.4, 129.2, 123.4, 53.4, 51.3, 49.7, 39.9, 39.8, 39.7, 39.5, 39.4, 39.2, 39.1, 37.3, 34.8, 34.0, 32.3, 32.3, 31.8, 30.0, 27.1, 19.5, 19.2, 18.8, 18.3, 18.2, 16.4; **HRMS** (ESI): calculated for C₂₉H₄₄N₅O₃S [M+H]⁺: 542.3159, found: 542.3154.

Macrocycle 36a

Synthetic Fermentation/Macrocyclization reaction performed according to the general procedure using initiator **16** (0.08 mmol, 1.0 equiv) and monomer **30** (0.12 mmol, 1.5 equiv). The crude reaction mixture was diluted with $CH_3CN:H_2O$ (1:1) and purified

directly by preparative HPLC (25 to 55% CH_3CN with 0.1% TFA over 38 min). Macrocycle **36a** was isolated as a white powder after lyophilization. Retention time: 22.5 minutes.

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.95 (d, *J* = 9.4 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.22 (s, 1H), 4.22 – 4.14 (m, 2H), 3.46 – 3.39 (m, 1H), 2.81 – 2.75 (m, 1H), 2.74 – 2.68 (m, 1H), 2.53 – 2.51 (m, 1H), 2.29 – 2.24 (m, 2H), 2.20 – 2.16 (m, 1H), 2.12 – 2.02 (m, 3H), 1.95 – 1.64 (m, 8H), 1.62 – 1.53 (m, 2H); ¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 172.1, 171.0, 170.1, 168.2, 141.6, 131.3, 131.2, 129.9, 129.2, 122.4, 56.7, 53.0, 47.0, 45.7, 31.8, 31.7, 31.2, 30.7, 27.3, 24.3, 24.2, 21.2, 20.7; **HRMS** (ESI): calculated for $C_{23}H_{28}N_4NaO_2S$ [M+Na]⁺: 477.1825, found: 447.1831.

Macrocycle 38d

Synthetic Fermentation/Macrocyclization reaction performed according to the general procedure using initiator **16** (0.09 mmol, 1.0 equiv), monomer **28** (0.09 mmol, 1.0 equiv) and monomer **27** (0.09 mmol, 1.0 equiv). The crude reaction mixture was diluted with CH₃CN:H₂O (1:1) and purified directly by preparative HPLC (25 to 60% CH₃CN with 0.1% TFA over 40 min). Macrocycle **38d** was isolated as a white powder after lyophilization. Retention time: 32.5 minutes.

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 9.17 (s, 1H), 7.89 (d, J = 9.7 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.16 (s, 1H), 6.94 (d, J = 8.5 Hz, 2H), 6.66 (d, J = 8.5 Hz, 2H), 4.42 – 4.36 (m, 1H), 3.99 – 3.91 (m, 1H), 3.88 – 3.83 (m, 2H), 3.40 – 3.35 (m, 1H), 3.26 – 3.19 (m, 2H), 2.97 (dd, J = 15.9, 12.2 Hz, 1H), 2.80 – 2.71 (m, 2H), 2.67 (dd, J = 13.3, 4.3 Hz, 1H), 2.47 (dd, J = 12.3, 7.0 Hz, 2H), 2.28 – 2.25 (m, 2H), 2.06 – 1.98 (m, 3H), 1.71 – 1.60 (m, 3H), 1.51 – 1.42 (m, 1H), 1.28 – 1.19 (m, 2H); ¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 171.3, 170.6, 168.6, 168.1, 155.7, 141.6, 131.3, 130.5, 130.3, 129.6, 129.4, 128.7, 122.3, 115.0, 67.0, 66.7, 52.2, 47.0, 40.0, 39.3, 37.6, 31.9, 31.5, 31.5, 29.5,

28.3, 22.7; **HRMS** (ESI): calculated for $C_{29}H_{35}N_4O_4S$ [M+H]⁺: 535.2374, found: 535.2381.

Macrocycle 45b

Synthetic Fermentation/Macrocyclization reaction performed according to the general procedure using initiator **16** (0.08 mmol, 1.0 equiv), monomer **38** (0.07 mmol, 0.9 equiv) and monomer **27** (0.07 mmol, 0.9 equiv). The crude reaction mixture was diluted with $CH_3CN:H_2O$ (1:1) and purified directly by preparative HPLC (30 to 60% CH_3CN with 0.1% TFA over 38 min). Macrocycle **45b** was isolated as a white powder after lyophilization. Retention time: 18.5 minutes.

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.90 (d, *J* = 9.7 Hz, 1H), 7.81 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.34 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.29-7.27 (m, 2H), 7.22 – 7.13 (m, 4H), 4.49 – 4.44 (m, 1H), 3.99 – 3.92 (m, 1H), 3.87-3.83 (m, 2H), 3.40 – 3.36 (m, 1H), 3.28 – 3.19 (m, 2H), 2.97 (dd, *J* = 15.9, 12.3 Hz, 1H), 2.81 – 2.71 (m, 3H), 2.62 (dd, *J* = 13.2, 7.8 Hz, 1H), 2.31 – 2.29 (m, 2H), 2.07 – 1.99 (m, 3H), 1.70 – 1.64 (m, 2H), 1.64 – 1.58 (m, 1H), 1.51 – 1.46 (m, 1H), 1.27 – 1.20 (m, 2H); ¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 171.4, 170.5, 168.6, 168.1, 141.6, 138.6, 131.3, 130.5, 129.6, 129.5, 129.4, 128.2, 126.1, 122.3, 66.9, 66.7, 52.2, 46.7, 40.1, 40.0 37.7, 31.9, 31.5, 31.4, 29.6, 28.3, 22.7; **HRMS** (ESI): calculated for $C_{29}H_{34}N_4NaO_3S$ [M+Na]⁺: 541.2244, found: 541.2237.

References

1N. Kaczybura and R. Brückner, *Synthesis*, 2007, **2007**, 118–130.

- 2T. Gerfaud, Y.-L. Chiang, I. Kreituss, J. A. Russak and J. W. Bode, *Org. Process Res. Dev.*, 2012, **16**, 687–696.
- 3Y.-L. Huang and J. W. Bode, Nat. Chem., 2014, 6, 877-884.
- 4D. S. Kalinowski, P. C. Sharpe, P. V. Bernhardt and D. R. Richardson, *J. Med. Chem.*, 2007, **50**, 6212–6225.
- 5F. Thuaud, F. Rohrbacher, A. Zwicky and J. W. Bode, *Org. Lett.*, 2016, **18**, 3670–3673.
- 6F. Thuaud, F. Rohrbacher, A. Zwicky and J. W. Bode, *Helv. Chim. Acta*, 2016, **99**, 868–894.

NMR spectra Macrocycle 34a

¹H NMR (600 MHz, DMSO-*d*₆)

¹³C NMR (150 MHz, DMSO-*d*₆)

¹H-¹³C HSQC (600 MHz, DMSO-*d*₆)

¹H-¹³C HMBC (600 MHz, DMSO-*d*₆)

Macrocycle 31b

¹H NMR (600 MHz, DMSO-*d*₆)

D.0 -0.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 0.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 5.0 4.5 f1 (ppm) ¹³C NMR (150 MHz, DMSO-*d*₆)

¹H-¹³C HSQC (600 MHz, DMSO-*d*₆)

¹H-¹³C HMBC (600 MHz, DMSO-*d*₆)

Macrocycle 36a

¹H NMR (600 MHz, DMSO-*d*₆)

¹H-¹³C HSQC (600 MHz, DMSO-*d*₆)

¹H-¹³C HMBC (600 MHz, DMSO-*d*₆)

Ó

Macrocycle 38d

¹H NMR (600 MHz, DMSO-*d*₆)

¹³C NMR (150 MHz, DMSO-*d*₆)

171.30 110.58 7.168.64	 130.27 130.26 130.30 129.61 128.63 128.63	— 114.98	66.93	
0 -				
	ОН			

¹H-¹H DQF-COSY (600 MHz, DMSO-*d*₆)

¹H-¹³C HSQC (600 MHz, DMSO-*d*₆)

¹H-¹³C HMBC (600 MHz, DMSO-*d*₆)

Macrocycle 45b

¹H NMR (600 MHz, DMSO-*d*₆)

¹H-¹H DQF-COSY (600 MHz, DMSO-*d*₆)

¹H-¹³C HSQC (600 MHz, DMSO-*d*₆)

¹H-¹³C HMBC (600 MHz, DMSO-*d*₆)

3-lodophenylhydrazide 19

Aldehyde 21

Enol ester 23

Thiohydrazide 24

¹H NMR (400 MHz, CDCl₃)

Ketoacid 16

¹H NMR (400 MHz, CDCl₃)

3-Methoxyphenyl thiohydrazide 10

¹H NMR (400 MHz, MeOD)

Pyridine thiohydrazide 12

¹H NMR (400 MHz, MeOD)

Alkyl thiohydrazide 15

¹H NMR (400 MHz, MeOD)

Phenyl thiadiazole 5

¹H NMR (400 MHz, CDCI₃)

Propanoic acid thiadiazole 7

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

Fmoc-aminothiadiazole 9

¹H NMR (400 MHz, CDCl₃)

3-Methoxyphenyl thiadiazole 11

¹H NMR (400 MHz, CDCI₃)

2,3-Dihydrothiadiazole carboxylic acid 4

¹H NMR (400 MHz, CDCI₃)

n-Propyl monomer intermediate 51

¹H NMR (400 MHz, CDCl₃)

n-Propyl monomer 26

¹H NMR (400 MHz, MeOD)

Pyran monomer intermediate 52

¹H NMR (400 MHz, CDCl₃)

Pyran monomer 27

¹H NMR (400 MHz, MeOD)

¹³C NMR (101 MHz, MeOD)

4-Benzyloxybenzyl intermediate 53

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

4-Hydroxybenzyl monomer intermediate 54

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

4-Hydroxybenzyl monomer 28

¹H NMR (400 MHz, MeOD)

Amide monomer intermediate 55

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

Amide monomer 29

¹H NMR (400 MHz, MeOD)

¹³C NMR (101 MHz, MeOD)

