Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Supporting Information:

Structure and formation of highly luminescent protein-stabilized

gold clusters

Daniel M. Chevrier¹, Viraj Dhanushka Thanthirige^{2,†}, Zhentao Luo^{3,†}, Steve Driscoll^{1,†}, Peter

Cho¹, Mark A. MacDonald¹, Qiaofeng Yao³, Ramakrishna Guda², Jiangping Xie³, Erin Johnson¹, Amares Chatt¹, Nanfeng Zheng⁴, Peng Zhang^{1*}

¹Department of Chemistry, Dalhousie University, Halifax, NS, Canada

²Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA

³Department of Chemical and Biomolecular Engineering, National University of Singapore,

Singapore 119260

⁴State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry,

Xiamen University, Xiamen 361005, China

[†]Authors have made equal contributions

Supplementary Figures:

Figure S1. UV-Vis absorption of AuBSA (12 h sample) and photoluminescence (excitation @ 470 nm) of AuBSA (12 h sample) before and after lyophilisation
Figure S5. MALDI-TOF measurement of AuBSA in linear negative mode. The
measured sample was prepared by mixing 10 μ L of AuBSA aqueous solution with 100
μL of 10 mg/L sinapinic acid aqueous solution, followed by casting and drying the
mixture on a testing plate
Figure S6. Au L_3 -edge k^3 -space spectrum of $Au_{10}(SG)_{10}$
Figure S7. DFT-optimized geometries of $Au_5(SMe)_5$ and $Au_{10}(SMe)_{10}$ with relative
energy difference $(Au_{10}(SMe)_{10} - 2 \times (Au_5(SMe)_5))$
Figure S8. DFT-optimized structure of $Au_{10}(SMe)_{10}$ with average inter- and intra-ring
bond distances11
Figure S9. Photoluminescence (yellow and red lines) (excitation @ 365 nm) and
excitation spectra (black line) of (a) Au ₁₀ (SG) ₁₀ and (b) AuBSA12
Figure S10. Au L ₃ -edge EXAFS of AuBSA before (red line) and after trypsin digestion
(maroon line)
Figure S11. UV-Vis absorption of $Au_{10}(SG)_{10}$ and $Au_{10}(SG)_{10}$ after phase-transfer with TOA ⁺ /toluene (TOA ⁺ -Au_{10}(SG)_{10} clusters were ~3X less concentrated than original
Au ₁₀ (SG) ₁₀ and thus, adjusted in this spectrum)14
Figure S12. UV-Vis absorbance spectra at various time points during the synthesis of
AuBSA clusters
Figure S13. Au L ₃ -edge k ³ -space of time-dependent AuBSA samples16
Figure S14. Photoluminescence of AuBSA at 12 and 36 h (excitation @ 470 nm)17
Figure S15. S K-edge XANES of AuBSA throughout protein-directed synthesis (6 h
sample not shown due to oxide contamination) and standard material references18
Figure S16. Au L ₃ -edge EXAFS of Au(OH) ₃ reference material with fitted Au-O scattering shell. Fit parameters: CN = $3.4(3)$, R = $2.005(4)$ Å, σ^2 = $0.0015(6)$ Å ² , E ₀ shift = $6.4(7)$ eV
Figure S17. Au L ₃ -edge EXAFS and two-shell fit (red line) of AuBSA at 36 h20

Supplementary Tables:

Table S1. EXAFS fitting results for red luminescent AuBSA clusters.	.21
Table S2. Multi-shell EXAFS fitting results for AuBSA and Au ₁₀ (SG) ₁₀ clusters	.21
Table S3. Cartesian coordinates for the DFT-optimized structure of Au ₁₀ (SCH ₃) ₁₀	.21

Table S4. Excited-state photoluminescence decay lifetime components and quantum	
yield (Rhodamine B in EtOH as reference) measurements2	3
Table S5. EXAFS refinement results for the time-dependent study of AuBSA cluster	
formation. Values not reported "-" were unobtainable due to fitting constraints or the	
absence of that scattering path2	4
Table S6. Formation energy DFT calculations for the conversion of AuCl ₃ to Au(OH) ₃ .2	5
Table S7. Formation energy DFT calculations for the conversion of $AuCl_4^-$ to $Au(OH)_4^-$.	
2	5
Table S8. Formation energy DFT calculations for the conversion of $AuCl_3$ and $Au(OH)_3$	
to their anionic complex form2	6

Figure S1. UV-Vis absorption of AuBSA (12 h sample) and photoluminescence (excitation @ 470 nm) of AuBSA (12 h sample) before and after lyophilisation.

Figure S2. Two-shell Au L₃-edge EXAFS fit (red line) of AuBSA at 12 h (black line).

Figure S3. Au L₃-edge XANES, white-line region shown, of AuBSA with Au(I)-SR polymer and Au foil (Au(0)) references.

Figure S4. Multi-shell EXAFS fitting (red line) of AuBSA and Au₁₀(SG)₁₀.

Figure S5. MALDI-TOF measurement of AuBSA in linear negative mode. The measured sample was prepared by mixing 10 μ L of AuBSA aqueous solution with 100 μ L of 10 mg/L sinapinic acid aqueous solution, followed by casting and drying the mixture on a testing plate.

Figure S6. Au L₃-edge k^3 -space spectrum of Au₁₀(SG)₁₀.

Figure S7. DFT-optimized geometries of $Au_5(SMe)_5$ and $Au_{10}(SMe)_{10}$ with relative energy difference $(Au_{10}(SMe)_{10} - 2 \times (Au_5(SMe)_5))$.

Figure S8. DFT-optimized structure of $Au_{10}(SMe)_{10}$ with average inter- and intra-ring bond distances.

Figure S9. Photoluminescence (yellow and red lines) (excitation @ 365 nm) and excitation spectra (black line) of (a) Au₁₀(SG)₁₀ and (b) AuBSA.

Figure S10. Au L_3 -edge EXAFS of AuBSA before (red line) and after trypsin digestion (maroon line).

Figure S11. UV-Vis absorption of $Au_{10}(SG)_{10}$ and $Au_{10}(SG)_{10}$ after phase-transfer with TOA⁺/toluene (TOA⁺-Au_{10}(SG)_{10} clusters were ~3X less concentrated than original $Au_{10}(SG)_{10}$ and thus, adjusted in this spectrum).

Figure S12. UV-Vis absorbance spectra at various time points during the synthesis of AuBSA clusters.

Figure S13. Au L₃-edge k^3 -space of time-dependent AuBSA samples.

Figure S14. Photoluminescence of AuBSA at 12 and 36 h (excitation @ 470 nm).

Figure S15. S K-edge XANES of AuBSA throughout protein-directed synthesis (6 h sample not shown due to oxide contamination) and standard material references.

Figure S16. Au L₃-edge EXAFS of Au(OH)₃ reference material with fitted Au-O scattering shell. Fit parameters: CN = 3.4(3), R = 2.005(4) Å, σ^2 = 0.0015(6) Å², E₀ shift = 6.4(7) eV.

Figure S17. Au L_3 -edge EXAFS and two-shell fit (red line) of AuBSA at 36 h.

	Parameters	AuBSA
S	CN	2.2(1)
	R (Å)	2.321(8)
Au-	σ² (Ų)	0.0036(3)
	ΔE ₀ (eV)	1.1(3)
NA-Au	CN	0.8(5)
	R (Å)	3.02(2)
	σ² (Ų)	0.011(4)
	$\Delta E_0 (eV)$	1.1(3)

 Table S1. EXAFS fitting results for red luminescent AuBSA clusters.

Table S2. Multi-shell EXAFS fitting results for AuBSA and $Au_{10}(SG)_{10}$ clusters.

	Parameters	Au-S	Au-Au	Au-C	Au-Au
	CN	2	1.8	2	2
AuBSA	R (Å)	2.31(2)	3.02(3)	3.27(8)	3.67(7)
/ abo/ (σ² (Ų)	0.0035(3)	0.016(3)	0.02(1)	0.019(9)
	$\Delta E_0 (eV)$	2.4(4)	2.4(4)	2.4(4)	2.4(4)
	CN	2	1.8	2	2
Auto(SG)	R (Å)	2.303(1)	3.04(2)	3.26(2)	3.57(1)
/ (0(00)10	σ ² (Å ²)	0.00263(6)	0.016(2)	0.006(2)	0.0122(9)
	$\Delta E_0 (eV)$	2.2(3)	2.2(3)	2.2(3)	2.2(3)

Table S3. Cartesian coordinates for the DFT-optimized structure of $Au_{10}(SCH_3)_{10}$.

A	tom	Х	Y	Z
	Au	0.39138	2.353788	-1.7165
1	Au	4.116035	-1.52182	0.759526
/	Au	0.772002	-2.36357	1.719624
1	Au	-1.54957	-0.06795	0.119839
	S	-1.77571	1.487185	-1.65802
	S	2.508475	3.329841	-1.88283
	S	2.878313	-3.35652	1.523111
	S	-1.28023	-1.32357	2.106828
	С	3.411418	-3.59527	3.240845
	Н	4.453258	-3.92024	3.242516
	Н	2.794657	-4.37401	3.69263
	Н	3.318027	-2.67948	3.824167
	С	2.480443	4.617283	-0.60263
	Н	3.465036	5.086403	-0.55802
	Н	2.23244	4.204499	0.375217
	Н	1.739833	5.369645	-0.88003
	С	-1.98981	0.597982	-3.21902
	Н	-1.14781	-0.06065	-3.43255
	Н	-2.09088	1.331173	-4.02136
	Н	-2.90722	0.007886	-3.15495
	С	-2.49969	-2.65915	2.126016
	Н	-2.39416	-3.32119	1.267139
	Н	-2.36523	-3.23524	3.043477
	Н	-3.50009	-2.2216	2.123231
/	Au	3.929491	1.713482	-0.96456
	S	5.460183	0.227394	-0.00237
	С	6.382842	-0.47731	-1.39599
	Н	6.991382	0.311752	-1.84126
	Н	5.720219	-0.88698	-2.15807
	Н	7.039338	-1.26579	-1.02391
1	Au	-4.11488	-1.52322	-0.76121
1	Au	1.549047	-0.06744	-0.11761
1	Au	-0.39305	2.352682	1.71749
1	Au	-3.9305	1.712232	0.963839
	S	-5.45984	0.225834	-8.1E-05
	S	-2.87586	-3.35715	-1.52416
	S	1.774766	1.487146	1.660256
	S	-2.51035	3.32886	1.883163
	С	1.988512	0.597242	3.220904
	Н	2.905881	0.007122	3.156716
	Н	1.146396	-0.06144	3.433839
	Н	2.089351	1.329921	4.023728
	С	-3.40766	-3.59595	-3.24231

Н	-2.79001	-4.37412	-3.69386
Н	-3.31458	-2.67995	-3.82536
Н	-4.44926	-3.92171	-3.24477
С	-6.38332	-0.4793	1.392797
Н	-5.72109	-0.88898	2.155216
Н	-7.03941	-1.26785	1.020129
Н	-6.99232	0.309553	1.837803
С	-2.48167	4.616571	0.603254
Н	-1.74112	5.368818	0.881123
Н	-2.23328	4.203993	-0.37458
Н	-3.4662	5.085805	0.558285
Au	-0.77037	-2.36233	-1.71983
S	1.280856	-1.32027	-2.10646
С	2.501383	-2.65483	-2.128
Н	2.367036	-3.22974	-3.04621
Н	2.396753	-3.31814	-1.26998
Н	3.501408	-2.21643	-2.12499

Table S4. Excited-state photoluminescence decay lifetime components and quantumyield (Rhodamine B in EtOH as reference) measurements.

	t ₁ (ns)	t₂(ns)	t₃(ns)	t _{avg} (ns)	QY(%)
Au ₁₀ (SG) ₁₀	15 ± 5 (74.3%)	150 ± 30 (16.4%)	890 ± 80 (9.3%)	120 ns	0.48
Au ₁₀ (SG) ₁₀ -rigidified	35 ± 8 (54.6%)	150 ± 40 (28.5%)	880 ± 90 (16.9%)	210 ns	5.0
AuBSA	30 ± 6 (22.4%%)	350 ± 50 (21.7%)	1760 ± 120 (55.8%)	1065 ns	6.8

Table S5. EXAFS refinement results for the time-dependent study of AuBSA clusterformation. Values not reported "-" were unobtainable due to fitting constraints or the
absence of that scattering path.

	Parameters	0 h	1 h	2 h	3 h	6 h	12 h	36 h
	CN	2.8(2)	0.9(2)	0.6(4)	-	-	-	
Ģ	R (Å)	2.02(1)	2.04(2)	2.0(1)	-	-	-	
Au	$\sigma^2(Å^2)$	0.0059(6)	0.002(2)	0.006(5)	-	-	-	
	$\Delta E_0 (eV)$	6(1)	5(4)	2(3)	-	-	-	
	CN	-	1.1(1)	1.4(2)	2.3(1)	2.2(1)	2.2(1)	2.16(8)
പ്	R (Å)	-	2.31(1)	2.31(2)	2.31(1)	2.323(5)	2.321(8)	2.321(2)
Au	σ^2 (Å ²)	-	0.003(1)	0.003(2)	0.0046(5)	0.0039(3)	0.0036(3)	0.0036(3)
	$\Delta E_0 (eV)$	-	4(2)	2(3)	2(1)	1.7(4)	1.1(3)	0.9(4)
_	CN	-	-	-	2(1)	1.3(8)	0.8(5)	0.9(5)
Ψ	R (Å)	-	-	-	3.02(2)	3.03(2)	3.02(2)	3.02(1)
Αu-	$\sigma^2(A^2)$	-	-	-	0.018(6)	0.015(5)	0.011(4)	0.012(4)
	$\Delta E_0 (eV)$	-	-	-	2(1)	1.7(4)	1.1(3)	0.9(4)

$AuCl_3 + 3OH^- \rightarrow Au(OH)_3 + 3Cl^-$				
Individual Reaction Steps	(Products - Reactants) Total energy (SCF+XDM) /eV			
$AuCl_3 + OH^- \rightarrow AuCl_2OH + Cl^-$	-1.96 eV			
$AuCl_2OH + OH^- \rightarrow AuCl(OH)_2 + Cl^-$	-1.86 eV			
$AuCI(OH)_2 + OH^- \rightarrow Au(OH)_3 + CI^-$	-1.82 eV			

Table S6. Formation energy DFT calculations for the conversion of $AuCl_3$ to $Au(OH)_3$.

Table S7. Formation energy DFT calculations for the conversion of $AuCl_4^-$ to $Au(OH)_4^-$.

$AuCl_4^- + 4OH^- \rightarrow Au(OH)_4^- + 4Cl^-$					
Individual Reaction Steps	(Products - Reactants) Total energy (SCF+XDM) /eV				
$AuCl_4^- + OH^- \rightarrow AuCl_3OH^- + Cl^-$	-1.75 eV				
$AuCl_{3}OH^{-} + OH^{-} \rightarrow cis$ - $AuCl_{2}(OH)_{2}^{-} + Cl^{-}$	-1.73 eV				
$AuCl_{3}OH^{-} + OH^{-} \rightarrow trans - AuCl_{2}(OH)_{2}^{-} + Cl^{-}$	-1.69 eV				
<i>cis</i> -AuCl2(OH) ₂ ⁻ + OH- → AuCl(OH) ₃ ⁻ +Cl ⁻	-1.64 eV				
trans-AuCl2(OH) ₂ ⁻ + OH- → AuCl(OH) ₃ ⁻ +Cl ⁻	-1.67 eV				
$AuCl(OH)_{3}^{-} + OH^{-} \rightarrow Au(OH)_{4}^{-} + Cl^{-}$	-1.40 eV				

$$AuCl_4^- + 4OH^- \rightarrow Au(OH)_4^- + 4Cl$$

Table S8. Formation energy DFT calculations for the conversion of $AuCl_3$ and $Au(OH)_3$ to their anionic complex form.

Reaction	(Products - Reactants) Total energy (SCF+XDM) /eV
$Au(OH)_3 + OH - > Au(OH)_4^-$	-4.60 eV
$AuCl_3 + Cl^- \to AuCl_4^-$	-3.73 eV