Lipid Bilayer Environments Control Exchange Kinetics of Deep Cavitand Hosts and Enhance Disfavored Guest Conformations

Lizeth Perez, Bethany G. Caulkins, Magi Mettry, Leonard J. Mueller and Richard J. Hooley*

Department of Chemistry, University of California-Riverside, Riverside, CA 92521, United States richard.hooley@ucr.edu

Electronic Supplementary Information

Table of Contents

1. NMR Spectra of New Compounds	S-2
 NMR Spectra of Host:Guest Complexes in Free Aqueous Solution NMR Spectra of Host:Guest Complexes in DMPC/DHPC Lipid Micelles 	S-6 S-9
5. 2D Exchange NMR Spectra in Water and in DMPC/DHPC Lipid Micelles	S-16
6. 2D Exchange NMR Spectra in Magnetically Ordered DMPC/DHPC Bicelles	S-25

1. NMR Spectra of New Compounds

Figure S-1. ¹H NMR spectrum of 4,4-difluorocyclohexanemethanol guest 3 (400.13 MHz, D₂O, 298 K).

-86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 **Figure S-2.** ¹⁹F NMR spectrum of 4,4-difluorocyclohexanemethanol guest **3** (376.50 MHz, D₂O, 298 K).

Figure S-4. ¹⁹F NMR spectrum of 4,4-difluorocyclohexanone guest 4 (376.50 MHz, D₂O, 298 K).

(100.61 MHz, D₂O, 298 K).

Figure S-9. ¹H NMR spectrum of N,N,N,N',N'-pentamethyl-1,2-ethanediaminium iodide- 13 C guest 7 (400.13 MHz, D₂O, 298 K).

Figure S-10. ¹³C NMR spectrum of N, N, N, N', N'-pentamethyl-1,2-ethanediaminium iodide-¹³C guest **7** (100.61 MHz, D₂O, 298 K).

Figure S-11. ¹H NMR spectrum of N,N,N',N',N'-hexamethyl-1,2-ethanediaminium diiodide-¹³C guest **8** (400.13 MHz, D₂O, 298 K).

75 70 65 60 55 50 45 40 35 30 25 20 **Figure S-12.** ¹³C NMR spectrum of N,N,N,N',N',N'-hexamethyl-1,2-ethanediaminium diiodide-¹³C guest **8** (100.61 MHz, D₂O, 298 K).

2. NMR Spectra of Host:Guest Complexes in Free Aqueous Solution

Figure S-13. ¹H NMR spectrum of the 1•2 cavitand-cyclooctane complex (400.13 MHz, D₂O, 298 K, [1] = [2] = 1.8 mM).

8 7 6 5 4 3 2 1 0 -1 -2 -3 **Figure S-14.** ¹H NMR spectrum of the **1-3** cavitand-guest **3** complex (400.13 MHz, D₂O, 298 K, [**1**] = 5.8 mM, [**3**] = 39.5 mM).

Figure S-15. ¹⁹F NMR spectrum of the 1•3 cavitand-guest 3 complex (376.50 MHz, D₂O, 298 K, [1] = 5.8 mM, [3] = 39.5 mM).

Figure S-16. ¹H NMR spectrum of the 1•4 cavitand-guest 4 complex (400.13 MHz, D_2O , 298 K, [1] = 5.8 = 39.5 mM).

= 39.5 mM).

= 2.2 mM).

Figure S-22. ⁷⁵ ⁷⁰ ⁶⁵ ⁶⁰ ⁵⁵ ⁵⁰ ⁴⁵ ⁴⁰ ³⁵ ³⁰ ²⁵ ²⁵ **Figure S-22.** ¹³C NMR spectrum of the **1-8** cavitand-guest **8** complex (100.61 MHz, D₂O, 298 K, [**1**] = 1.8 mM, [**8**] = 2.2 mM).

Figure S-23. ¹H NMR spectrum of the 1•8 cavitand-guest 8 complex in the presence of excess 8 (400.13 MHz, D_2O , 298 K, [1] = 1.8 mM, [8] = 5.5 mM).

Figure S-24. ¹³C NMR spectrum of the **1-8** cavitand-guest **8** complex in the presence of excess **8** (100.61 MHz, D₂O, 298 K, [**1**] = 1.8 mM, [**8**] = 5.5 mM).

3. NMR Spectra of Host:Guest Complexes in DMPC/DHPC Lipid Micelles.

Figure S-25. ¹H NMR spectrum of the **1-2** cavitand-cyclooctane complex in DMPC:DHPC lipid micelles (599.88 MHz, 1 mM HEPES/D₂O, 298 K, [1] = [2] = 1.8 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration).

Figure S-26. T2-filtered ¹H NMR spectrum of the **1**•2 cavitand-cyclooctane complex in DMPC:DHPC lipid micelles (599.88 MHz, 1 mM HEPES/D₂O, 298 K, [1] = [2] = 1.8 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration).

Figure S-28.¹⁹F NMR spectrum of the cavitand 1•guest 3 complex in PC_m micelles (1 mM HEPES/D₂O, 376.50 MHz, 298 K, [1] = 5.8 mM, [3] = 39.5 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration).

Figure S-29. ¹H NMR spectrum of the cavitand 1•guest 4 complex in PC_m micelles (599.88 MHz, 1 mM HEPES/D₂O, 283 K, [1] = 5.8 mM, [4] = 39.5 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration).

Figure S-30. ¹⁹F NMR spectrum of the cavitand 1•guest 4 complex in PC_m micelles (1 mM HEPES/D₂O, 376.50 MHz, 298 K, [1] = 5.8 mM, [4] = 39.5 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration);

Figure S-31. ¹H NMR spectrum of the **1**•6 cavitand-choline 6 complex in DMPC:DHPC lipid micelles (599.88 MHz, 1 mM HEPES/D₂O, 283 K, [1] = 5.8 mM, [6] = 16.0 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration).

Figure S-32. ¹³C NMR spectrum of the **1**•6 cavitand-choline 6 complex in DMPC:DHPC lipid micelles (100.61 MHz, 1 mM HEPES/D₂O, 283 K, [1] = 5.8 mM, [6] = 16.0 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration).

Figure S-33. ¹H NMR spectrum of the 1•7 cavitand-guest 7 complex in DMPC:DHPC lipid micelles (599.88 MHz, 1 mM HEPES/D₂O, 283 K, [1] = 5.8 mM, [7] = 16 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration).

Figure S-34. ¹³C NMR spectrum of the 1•7 cavitand-guest 7 complex in DMPC:DHPC lipid micelles (100.61 MHz, 1 mM HEPES/D₂O, 283 K, [1] = 5.8 mM, [7] = 16 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration).

Figure S-35. ¹H NMR spectra of the sequential addition of lipids and guest **7** to a solution of cavitand **1** (400.13 MHz, 1 mM HEPES/D₂O, 298 K). a) 1.8 mM of cavitand **1**; b) 1.8 mM of cavitand **1** + DMPC/DHPC lipids, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration; c) 1.8 mM of cavitand **1** + DMPC/DHPC lipids = 2.2 mM guest **7**.

5 8 7 6 4 3 2 1 0 -3 -1 -2 -4 Figure S-36. ¹H NMR spectrum of the 1-8 cavitand-guest 8 complex in DMPC:DHPC lipid micelles (400.13 MHz, 1 mM HEPES/D₂O, 298 K, [1] = 1.8 mM, [8] = 5.4 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration).

Figure S-37. ¹³C NMR spectrum of the **1**•8 cavitand-guest 8 complex in DMPC:DHPC lipid micelles (100.61 MHz, 1 mM HEPES/D₂O, 298 K, [1] = 1.8 mM, [8] = 5.4 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration).

4. Fitting model for EXSY Experiments

A standard two-site exchange model is used to analyze the EXSY data. In this model, the guest can exchange between a free and bound state, A and B, respectively:

$$A \stackrel{K_{f}}{\longleftrightarrow} B$$
$$k_{b}$$

 k_b is the exchange constant from B to A, while k_f is the exchange constant for A to B. At equilibrium, the forward and reverse exchange rates are equal. Therefore $k_b[B] = k_f[A]$, or in terms of the equilibrium constant:

$$\frac{[B]}{[A]} = \frac{k_f}{k_b} = K_{eq} ,$$

During the mixing time of the EXSY experiment, the concentration of A can change in three ways: first, A can become bound, decreasing its contribution to the signal intensity over the mixing time; second, A can relax due to T_1 , also decreasing its intensity; third, a bound ligand B can be released, becoming A and adding to its signal intensity. This can be described by the following first-order differential equation:

$$\frac{d[A]}{dt} = -k_f[A] - \frac{[A]}{T_{1A}} + k_b[B]$$

The signal from B varies in a similar way, giving

$$\frac{d[B]}{dt} = -k_b[B] - \frac{[B]}{T_{1B}} + k_f[A]$$

Each exchange spectrum contains two diagonal peaks, AA and BB, and two crosspeaks, AB and BA; the first letter refers to the frequency in f_1 of the EXSY spectrum, while the second gives the frequency in f_2 (hence AB would be the cross peak at { v_A , v_B }). The above set of coupled, first-order, linear differential equations can be solved using standard methods subject to the following initial conditions at the start of the EXSY mixing time:

AA and AB:
$$[A(t=0)] = A_0, [B(t=0)] = 0$$

BB and BA: $[A(t=0)] = 0, [B(t=0)] = B_0$

giving the following expressions for the diagonal and cross peak intensities in terms of the EXSY mixing time (t):

$$AA(t) = A_0 e^{-t/T_1} \frac{k_b + e^{-(k_b + k_f)t} k_f}{k_b + k_f} \stackrel{\text{short time}}{\approx} A_0 \left(1 - \frac{t}{T_1} - k_f t \right)$$

$$AB(t) = A_0 e^{-t/T_1} \frac{\left(1 - e^{-(k_b + k_f)t} \right) k_f}{k_b + k_f} \stackrel{\text{short time}}{\approx} A_0 k_f t$$

$$BB(t) = B_0 e^{-t/T_1} \frac{e^{-(k_b + k_f)t} k_b + k_f}{k_b + k_f} \stackrel{\text{short time}}{\approx} B_0 \left(1 - \frac{t}{T_1} - k_b t \right)$$

$$BA(t) = B_0 e^{-t/T_1} \frac{\left(1 - e^{-(k_b + k_f)t} \right) k_b}{k_b + k_f} \stackrel{\text{short time}}{\approx} B_0 k_b t$$

where it has been assumed that $T_{1A} = T_{1B}$. The initial rate (short time) solutions are shown to the right. By extracting one-dimensional slices showing the greatest peak intensity from 2D spectra recorded with different mixing times, it is possible to fit the above set of equations and determine both k_b and k_f .

5. 2D Exchange NMR Spectra in Water and in Lipid Micelles

Figure S-38. Full ¹⁹F EXSY spectrum of the cavitand 1•guest 3 complex in pure D₂O with peak assignments (D₂O, 150.84 MHz, 298 K, mixing time = 150 ms, [1] = 5.8 mM, [3] = 39.5 mM)

Figure S-39. Representative ¹⁹F EXSY spectra of the cavitand **1**-guest **3** complex in pure D_2O with varying mixing times (D_2O , 376.50 MHz, 298 K, [**1**] = 5.8 mM, [**3**] = 39.5 mM); fitted plots of peak intensity correlated with mixing time for each diagonal and crosspeak used to calculate the exchange rate.

Figure S-40. Representative ¹⁹F EXSY spectra of the cavitand **1**-guest **3** complex in the PC_m micelles with varying mixing times (1 mM HEPES/D₂O, 376.50 MHz, 298 K, [**1**] = 5.8 mM, [**3**] = 39.5 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration); fitted plots of peak intensity correlated with mixing time for each diagonal and crosspeak used to calculate the exchange rate.

Figure S-41. Full ¹⁹F EXSY spectrum of the cavitand 1•guest 4 complex in pure D_2O with peak assignments (D_2O , 150.84 MHz, 298 K, mixing time = 150 ms, [1] = 5.8 mM, [4] = 39.5 mM).

Figure S-42. Representative ¹⁹F EXSY spectra of the cavitand **1**•guest **4** complex in pure D_2O with varying mixing times (D_2O , 376.50 MHz, 298 K, [**1**] = 5.8 mM, [**4**] = 39.5 mM); fitted plots of peak intensity correlated with mixing time for each diagonal and crosspeak used to calculate the exchange rate.

Figure S-43. Representative ¹⁹F EXSY spectra of the cavitand 1•guest 4 complex in pure D₂O with varying mixing times (D₂O, 376.50 MHz, 298 K, [1] = 5.8 mM, [4] = 39.5 mM) illustrating the exchange peaks of the hydrate; fitted plots of peak intensity correlated with mixing time for each diagonal and crosspeak used to calculate the exchange rate.

Figure S-44. Representative ¹⁹F EXSY spectra of the cavitand **1**-guest **4** complex in the PC_m micelles with varying mixing times (1 mM HEPES/D₂O, 376.50 MHz, 298 K, [**1**] = 5.8 mM, [**4**] = 39.5 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration); fitted plots of peak intensity correlated with mixing time for each diagonal and crosspeak used to calculate the exchange rate.

Figure S-45. Representative ¹³C EXSY spectra of the cavitand **1**-guest **6** complex in the PC_m micelles with varying mixing times (1 mM HEPES/D₂O, 150.84 MHz, 298 K, [**1**] = 5.8 mM, [**6**] = 16 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration); fitted plots of peak intensity correlated with mixing time for each diagonal and crosspeak used to calculate the exchange rate.

Figure S-46. Representative ¹³C EXSY spectra of the cavitand **1**-guest **7** complex in the PC_m micelles with varying mixing times (1 mM HEPES/D₂O, 150.84 MHz, 298 K, [**1**] = 5.8 mM, [**7**] = 16 mM, ratio DMPC/DHPC = 3.2:1, 60 mg/mL total lipid concentration); fitted plots of peak intensity correlated with mixing time for each diagonal and crosspeak used to calculate the exchange rate.

6. NMR Spectra in Magnetically Ordered DMPC/DHPC Bicelles

Figure S-47. Temperature dependence of the lipid aggregate. ³¹P NMR spectra of the DMPC/DHPC aggregates a) alone, 283 K; b) + 5 mM **1**, 283 K; c) + 5 mM **1** + 7 mM guest **5**, 283 K; d) alone, 303 K; e) + 5 mM **1**, 303 K; f) + 5 mM **1** + 7 mM guest **5**, 303 K. Ratio DMPC/DHPC = 3.2:1, 150 mg/mL total lipid concentration, 162.07 MHz, 2.5 mM HEPES/D₂O.

³¹P Chemical Shift / ppm

Figure S-48. Temperature-dependent ³¹P spectra of DMPC/DHPC bicelles. The two peaks indicative of bicelle formation display maximum splitting at 35 °C, the temperature at which all future experiments were performed, unless otherwise indicated. Low temperatures display a single peak at 0 ppm, indicative of micelle formation. Ratio DMPC/DHPC = 3.2:1, 150 mg/mL total lipid concentration, 162.07 MHz, 2.5 mM HEPES/D₂O.

²H Chemical Shift / ppm

Figure S-49. Temperature-dependent ²H spectra of DMPC/DHPC bicelles. The two peaks indicative of bicelle formation display maximum splitting at 35 °C, the temperature at which all future experiments were performed, unless otherwise indicated. Low temperatures display a single resonance, indicative of micelle formation. Ratio DMPC/DHPC = 3.2:1, 150 mg/mL total lipid concentration, 92.09 MHz, 2.5 mM HEPES/D₂O.

Figure S-50. ³¹P and ²H spectra of bicelles with and without cavitand added. Ratio DMPC/DHPC = 3.2:1, 150 mg/mL total lipid concentration, 162.07/92.09 MHz, 2.5 mM HEPES/D₂O.

Figure S-51. In/out exchange of guest 7 in the magnetically ordered bicelle system PC_b. Extracted 1D slices of the 2D ¹³C-¹³C EXSY NMR spectra at mixing time $\tau = 0$ ms - $\tau = 40$ ms of 1•7•PC_b; (2.5 mM HEPES/D₂O, 100.69 MHz, 298 K, [1] = 20 mM, [7] = 36 mM, ratio DMPC/DHPC = 3.2:1, 150 mg/mL total lipid concentration). Change in diagonal and crosspeak intensity shown. Slices extracted from F2, $\delta = 55$ ppm.