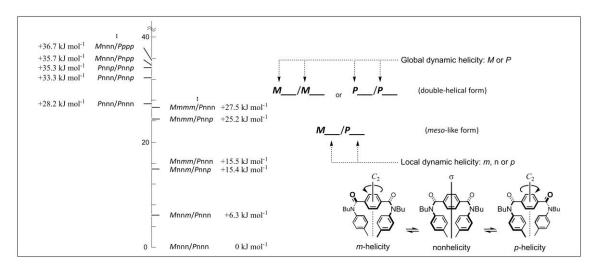

Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Supplementary Information


Enhanced circular dichroism at elevated temperatures through complexation-induced transformation of a three-layer cyclophane with dualistic dynamic helicity

Ryo Katoono,* Yudai Obara, Kenshu Fujiwara and Takanori Suzuki Department of Chemistry, Faculty of Science, Hokkaido University

Supplementary Figures (Fig. S1-Fig. S9)	S2-S7
Experimental (Scheme S1-Scheme S2)	S8-S18
¹ H and ¹³ C NMR spectra of new compounds	S19-S29
References	S30

Supplementary Figures (Fig. S1-Fig. S9)

Fig. S1 Energy diagram for 1' [NMe], obtained by a conformational search with MacroModel software (v9.9 Monte Carlo Multiple Minimum method, OPLS_2005, nonsolvated, 50 000 steps). Uppercase M or P denotes the global conformation of the molecule, and lowercase m, n or p denotes a local conformation of the terephthalamide units.

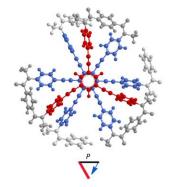


Fig. S2 The most energy-minimized structure for model 2' [NMe], obtained by a conformational search using MacroModel software (v9.9 OPLS_2005, Monte Carlo Multiple Minimum method, nonsolvated, 20 000 steps). View from a plane of 1,3,5-tris(phenylethynyl)benzene (red). Only one enantiomeric form with (P)-helicity is depicted.

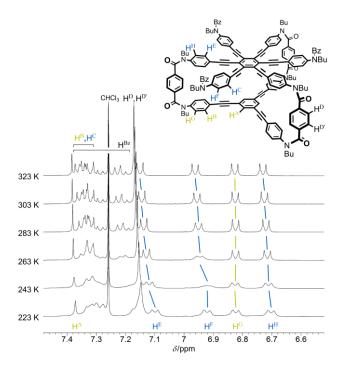
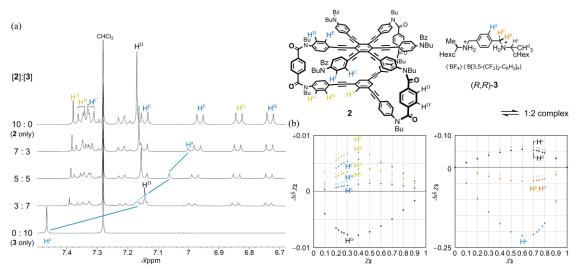
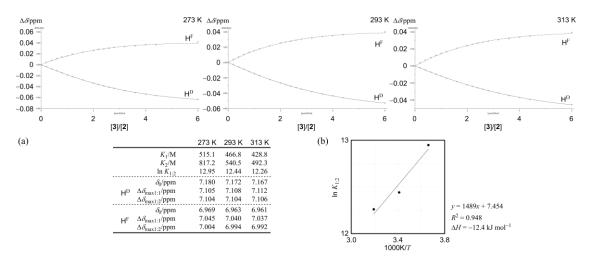




Fig. S3 Partial VT ¹H NMR spectra (400 MHz) of 2, measured in chloroform-*d* at 223-323 K.

Fig. S4A (a) Partial ¹H NMR spectra (400 MHz) of **2** in the presence or absence of a chiral ditopic guest (*R*,*R*)-**3**; (b) Job plots for the complexation of **2** with (*R*,*R*)-**3** ([**2**] + [**3**] = 2 mM), based on continuous changes in the chemical shift induced for **2** (left) and **3** (right). All spectra were measured in chloroform-*d* containing 3vol% acetonitrile- d_3 at 303 K.

Fig. S4B (a) Titration curves for the complexation of **2** ([**2**] = 0.67 mM) with (*R*,*R*)-**3**, based on continuous changes in the chemical shift induced for protons H^D and H^F in **2**, measured at 273, 293 and 313 K; (b) plot of $\ln K_{1:2}$ versus 1/T. All spectra were measured in chloroform-*d* containing 3vol% acetonitrile- d_3 .

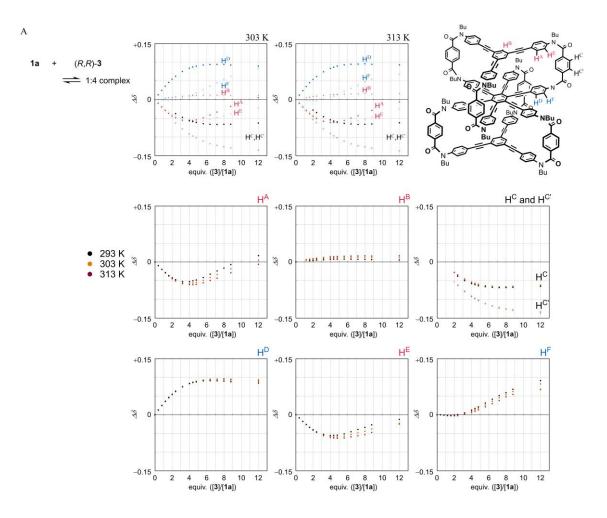


Fig. S5A Titration curves for the complexation of 1a with (R,R)-3 based on changes in the chemical shift $(\Delta \delta)$, measured at 303 K and 313 K. All spectra were measured in chloroform-*d* containing 3vol% acetonitrile-*d*₃. Conditions: [1a] = 3.3×10^{-4} M and [3] = 4.0×10^{-3} M.

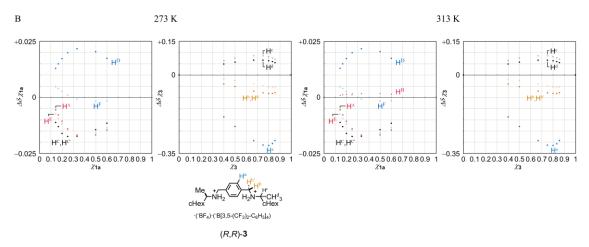
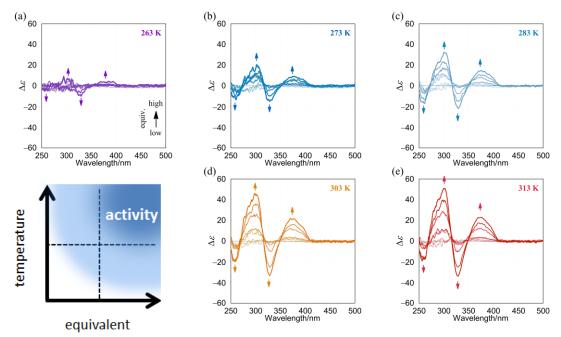
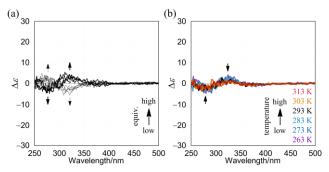




Fig. S5B Job plots for the complexation of 1a with (R,R)-3 based on changes in the chemical shift $(\Delta \delta)$, measured at 273 K and 313 K. All spectra were measured in chloroform-*d* containing 3vol% acetonitrile-*d*₃. Conditions: [1a] + [3] = 2 mM.

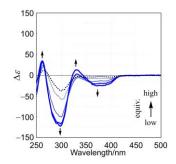

Fig. S6 CD spectra of **1a** $(7.4 \times 10^{-5} \text{ M})$ in the presence of (R,R)-**3** under conditions that differed with respect to equivalents (1, 2, 3, 4, 6, 9 and 12 equiv.) or temperature [(a) 263 K; (b) 273 K; (c) 283 K; (d) 303 K; (e) 313 K]. All spectra were measured in dichloromethane.

Fig. S7 (a) CD spectra of **2** $(1.3 \times 10^{-4} \text{ M})$ in the presence of a chiral guest [1, 2, 4 and 6 equiv. of (*S*,*S*)-**3** (dashed lines) or (*R*,*R*)-**3** (solid lines)], measured at 263 K; (b) VT CD spectra of **2** $(1.3 \times 10^{-4} \text{ M})$ in the presence of (*R*,*R*)-**3** (6 equiv.), measured at 263-313 K. All spectra were measured in dichloromethane.

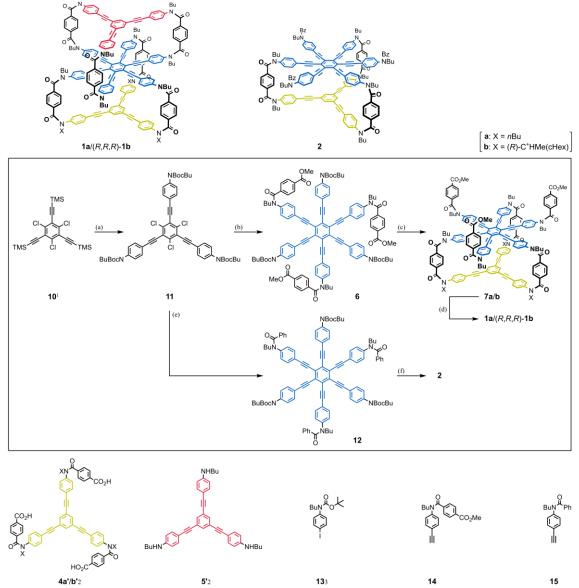


Fig. S8 Chemical structures of (R,R,R)-**8b**² and (R,R,R)-**9b**³, and (a) CD spectra of (R,R,R)-**1b** (bold solid line), (R,R,R)-**8b** (thin dashed line) and (R,R,R)-**9b** (bold dashed line), measured at 293 K; (b) VT CD spectra of (R,R,R)-**1b**, measured at 273, 293 and 313 K. All spectra were measured in dichloromethane.

Fig. S9 CD spectra of (R,R,R)-1b $(6.3 \times 10^{-5} \text{ M})$ in the presence of (R,R)-3 [0 (1b only, black dashed line), 1, 3, 6 and 12 equiv. (blue solid lines)], measured in dichloromethane at 293 K.

Experimental Details of New Compound Synthesis

Scheme S1 Synthesis of 1a, (R,R,R)-1b and 2. Reagents and yields: (a) i) K₂CO₃, MeOH, THF (100%), ii) 13, Pd(PPh₃)₄, CuI, *i*Pr₂NH, THF (86%); (b) 14, PdCl₂(CH₃CN)₂, X-Phos⁴, CuI, *i*Pr₂NH, dioxane (75%); (c) i) TFA, CH₂Cl₂ (93% for 6'), ii) 4a''/4b'', Et₃N, THF, toluene (53% for 7a, 57% for 7b); (d) i) LiOH, THF, MeOH, H₂O, ii) 7a'/7b', SOCl₂, BnNEt₃Cl, CH₂Cl₂, iii) 5', Et₃N, THF, toluene (26% for 1a, 22% for 1b, 3 steps); (e) 15, PdCl₂(CH₃CN)₂, X-Phos, CuI, *i*Pr₂NH, dioxane (61%); (f) i) TFA, CH₂Cl₂ (94% for 12'), ii) 4a'', Et₃N, THF, toluene (65%). Regarding the compounds 13, 14 and 15, see Scheme S2.

Preparation of 11

To a solution of 1,3,5-trichloro-2,4,6-triiodobenzene⁵ (1.41 g, 2.53 mmol) and **16** (2.13 g, 7.81 mmol) in ${}^{i}Pr_{2}NH/THF$ (51 mL/51 mL) were added Pd(PPh₃)₄ (198 mg, 0.171 mmol) and CuI (66 mg, 0.35 mmol) at 60 °C under an argon atmosphere, and the mixture was stirred at the temperature for 5 days. To the reaction mixture was added **16** (109 mg, 0.399 mmol), and the mixture was further stirred

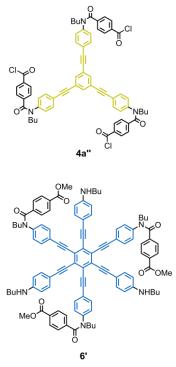
for 4 days. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO_2 (3:7 dichloromethane/hexane-dichloromethane) to give a mixture containing **11**, which was further purified by washing with hexane to give **11** (1.48 g) as a white solid in 59% yield. This was a poorly-reproducible result. Then, we adopted the following two-step procedure.

To a solution of 10^1 (600 mg, 1.28 mmol) in THF/MeOH (6.3 mL/2.2 mL) was added K₂CO₃ (527 mg, 3.82 mmol), and the mixture was stirred at room temperature for 25 min. The reaction mixture was diluted with dichloromethane, and which was acidified with aq. 1M HCl, and then separated. The organic layer was dried over magnesium sulfate and concentrated. The residue was purified by column chromatography on SiO₂ (1:9 dichloromethane/hexane) to 10' (323 mg) as a white solid in 100% yield.

To a solution of 10' (323 mg, 1.27 mmol) and 13³ (4.31 g, 11.5 mmol) in ⁱPr₂NH/THF (26 mL/13 mL) were added Pd(PPh₃)₄ (177 mg, 0.153 mmol) and CuI (82 mg, 0.43 mmol) at room temperature under an argon atmosphere, and the mixture was stirred at 80 °C for 35 min. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO₂ (6:4 dichloromethane/hexane-dichloromethane-2:9 ethyl acetate/dichloromethane) to give 11 (1.09 g) as a brown solid in 86% yield. An analytical sample was obtained as a white solid by further purification through GPC (chloroform), followed by recrystallization from 1:9 dichloromethane/methanol. 11: mp 151-152 °C; elemental analyses Found: C, 68.60; H, 6.53; N, 4.26. Calc. for C₅₇H₆₆Cl₃N₃O₆: C, 68.77; H, 6.68; N 4.22%; IR (KBr) v_{max}/cm⁻¹ 3044, 2963, 2931, 2873, 2218, 1701, 1604, 1537, 1507; ¹H NMR $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si)/ppm 7.59 (6H, d, J = 8.4 Hz), 7.24 (6H, d, J = 8.4 Hz), 3.66 (6H, t, J = 7.6 Hz), 1.57-1.49 (6H, m), 1.45 (27H, s), 1.36-1.27 (6H, m), 0.90 (9H, t, J = 7.6 Hz); ¹³C NMR $\delta_{C}(100$ MHz, CDCl₃)/ppm 154.3, 143.7, 137.8, 132.3, 126.7, 123.0, 119.3, 100.6, 83.2, 80.5, 49.5, 30.6, 28.3, 19.9, 13.8; FD-LRMS m/z 996.39 ([M+3]⁺, 60%), 995.38 $([M+2]^+, 100), 994.39 ([M+1]^+, 57), 993.39 (M^+, 86).$

Preparation of 6

To a solution of **11** (757 mg, 0.760 mmol) and **14** (1.02 g, 3.04 mmol) in ${}^{1}\text{Pr}_2\text{NH/dioxane}$ (5.8 mL/10.1 mL) were added X-Phos⁴ (2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl, 20 mg, 0.042 mmol), PdCl₂(CH₃CN)₂ (8 mg, 0.03 mmol) and CuI (2 mg, 0.01 mmol) at room temperature under an argon atmosphere, and the mixture was stirred at 92 °C for 23 h, and then diluted with ethyl acetate. The diluted solution was washed with water and brine, dried over magnesium sulfate, and then concentrated. The residue was purified by column chromatography on SiO₂ (1:19-3:7 ethyl acetate/dichloromethane) to give **6** (1.08 g) as a yellow solid in 75% yield. An analytical sample was suspended in refluxed methanol, and collected as a yellow solid by filtration. **6**: mp 205-212 °C (dec); elemental analyses Found: C, 76.05; H, 6.66; N, 4.37. Calc. for C₁₂₀H₁₂₆N₆O₁₅: C, 76.17; H, 6.71; N,


4.44%; IR (KBr) v_{max} /cm⁻¹ 3044, 2957, 2930, 2872, 2202, 1726, 1698, 1649, 1599, 1511; ¹H NMR $\delta_{\text{H}}(400 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ /ppm 7.87 (6H, d, J = 8.4 Hz), 7.53 (6H, d, J = 8.4 Hz), 7.42 (6H, d, J = 8.4 Hz), 7.37 (6H, d, J = 8.4 Hz), 7.24 (6H, d, J = 8.4 Hz), 7.00 (6H, d, J = 8.4 Hz), 3.94 (6H, t, J = 7.6 Hz), 3.85 (9H, s), 3.69 (6H, t, J = 7.6 Hz), 1.66-1.53 (12H, m), 1.50 (27H, s), 1.43-1.30 (12H, m), 0.93 (9H, t, J = 7.6 Hz), 131.0, 129.2, 128.5, 127.7, 127.6, 127.0, 126.6, 121.5, 119.8, 99.3, 98.4, 88.2, 87.0, 80.6, 52.2, 50.1, 49.6, 30.8, 29.9, 28.4, 20.1, 19.9, 13.8; FD-LRMS *m*/*z* 1893.82 ([M+3]⁺, 35%), 1892.81 ([M+2]⁺, 72), 1891.81 ([M+1]⁺, 100), 1890.81 (M⁺, 75).

Preparation of 7a [X = nBu]

To a refluxed solution of $4a'^2$ (210 mg, 0.203 mmol) and BnNEt₃Cl (3 mg, 0.01 mmol) in CH₂Cl₂ (14 mL) was added SOCl₂ (0.12 mL, 1.7 mmol), and the mixture was further refluxed for 1 h. After removal of the solvent by evaporation, the resulting solid (4a'') was dried *in vacuo* and dissolved in THF (10 mL) [acid chloride preparation].

To a solution of **6** (625 mg, 0.330 mmol) in CH_2Cl_2 (29 mL) was added TFA (3.3 mL), and the mixture was stirred at room temperature for 45 min, and then diluted with dichloromethane. The diluted reaction mixture was washed with satd. aq. NaHCO₃. The organic layer was separated, dried over magnesium sulfate, and then concentrated. The residue was purified by column chromatography on SiO₂ (ethyl acetate/dichloromethane) to give **6'** (489 mg) as a yellow solid in 93% yield [deprotection of BOC].

To a solution of **6'** (207 mg, 0.130 mmol) and Et_3N (0.56 mL, 4.0 mmol) in toluene (25 mL) were added the freshly prepared THF

solution (10 mL) containing the acid chloride **4a''** and THF (15 mL) at 80 °C, and the mixture was stirred at the temperature for 1 h. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO₂ (1:3-2:1 ethyl acetate/dichloromethane) to give **7a** (179 mg) as a yellow solid in 53% yield. An analytical sample was further purified through GPC (chloroform), and recrystallization from ethanol. **7a**: mp >300 °C (dec); elemental analyses Found: C, 79.25; H, 5.99; N, 4.87. Calc. for C₁₇₁H₁₅₃N₉O₁₅·(EtOH): C, 79.30; H, 6.12; N, 4.81%; IR (KBr) v_{max} /cm⁻¹ 3042, 2956, 2931, 2871, 2201, 1725, 1654, 1650, 1600, 1579, 1510; ¹H NMR $\delta_{\rm H}$ (400 MHz, CDCl₃, Me4Si)/ppm 7.87 (6H, d, *J* = 8.4 Hz), 7.39 (3H, s), 7.38 (6H, d, *J* = 8.4 Hz), 7.34 (6H, d, *J* = 8.4 Hz), 7.33 (6H, d, *J* = 8.4 Hz), 7.17 (12H, s), 7.16 (6H, d, *J* = 8.4 Hz), 6.92 (6H, d, *J* = 8.4 Hz), 6.85 (6H, d, *J* = 8.4 Hz), 6.74 (6H, d, *J* = 8.4 Hz), 3.92-3.84 (18H, m), 3.86 (9H, s), 1.65-1.49 (18H, m), 1.41-1.26 (18H, m), 0.93 (9H, t, *J* = 7.2 Hz), 0.92 (9H, t, *J* = 7.2

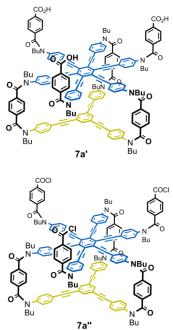
Hz), 0.88 (9H, t, J = 7.2 Hz); ¹³C NMR $\delta_{C}(100$ MHz, CDCl₃)/ppm 169.1, 168.9, 168.8, 166.1, 143.9, 143.5, 143.4, 140.0, 137.2, 137.0, 133.8, 132.7, 132.1, 132.1, 131.2, 129.2, 128.5, 128.4, 128.3, 127.5, 127.4, 127.3, 127.1, 126.9, 123.4, 121.5, 120.9, 120.9, 98.6, 98.3, 89.4, 89.1, 88.3, 88.0, 52.3, 50.5, 50.1, 50.0, 30.0, 29.7, 29.7, 20.1, 20.1, 13.8, 13.8, 13.7; FD-LRMS *m*/*z* 2576.00 ([M+4]⁺, 37%), 2575.00 ([M+3]⁺, 71), 2574.00 ([M+2]⁺, 99), 2573.00 ([M+1]⁺, 100), 2572.00 (M⁺, 57).

Preparation of (R,R,R)**-7b** [X = (R)-CHMe(cHex)]

To a refluxed solution of **4b'**² (408 mg, 0.341 mmol) and BnNEt₃Cl (7 mg, 0.03 mmol) in dichloromethane (11 mL) was added SOCl₂ (0.15 mL, 2.1 mmol), and the mixture was further refluxed for 1 h. After removal of the solvent by evaporation, the resulting solid (**4b''**) was dried *in vacuo* and dissolved in THF (10 mL) [acid chloride preparation].

To a solution of **6'** (489 mg, 0.307 mmol) and Et_3N (1.25 mL, 8.99 mmol) in THF/toluene (20 mL/40 mL) were added the freshly prepared

THF solution (10 mL) containing the acid chloride 4b" and THF (10 mL) at 75-82 °C, and the mixture was stirred at the temperature for 1 h. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO₂ (1:3-2:1 ethyl acetate/dichlorometane) to give (R, R, R)-7b (479 mg) as a yellow solid in 57% yield. An analytical sample was further purified through GPC (chloroform), and recrystallization from ethanol. (R,R,R)-7b: mp >300 °C (dec); elemental analyses Found: C, 79.98; H, 6.26; N, 4.55. Calc. for $C_{183}H_{171}N_9O_{15}$ (EtOH): C, 79.86; H, 6.41; N, 4.53%; $[\alpha]_D^{24} - 123$ (c 0.134 in CHCl₃); IR (KBr) *v*_{max}/cm⁻¹ 3042, 2930, 2854, 2201, 1725, 1654, 1650, 1600, 1579, 1510; ¹H NMR δ_H(400 MHz, CDCl₃, Me4Si)/ppm 7.88 (6H, d, *J* = 8.4 Hz), 7.38 (3H, s), 7.37 (6H, d, *J* = 8.4 Hz), 7.33 (6H, d, *J* = 8.4 Hz), 7.30 (6H, d, J = 8.8 Hz), 7.19 (6H, d, J = 8.4 Hz), 7.15 (12H, s), 6.90 (6H, d, J = 8.4 Hz), 6.82 (6H, d, J = 8.8 Hz), 6.76 (6H, d, J = 8.4 Hz), 4.40-4.30 (3H, br.m), 3.96-3.83 (12H, m), 3.87 (9H, s), 2.03 (3H, br.d), 1.83-1.52 (27H, m), 1.36 (12H, sext, J = 7.6 Hz), 1.26-0.91 (15H, m), 1.09 (9H, d, J = 6.8 Hz), 0.92 (18H, t, J = 7.6 Hz); ¹³C NMR $\delta_{\rm C}(100$ MHz, CDCl₃)/ppm 169.4, 169.3, 168.9, 166.1, 143.8, 143.5, 142.1, 140.0, 138.1, 137.0, 133.8, 132.7, 132.0, 131.8, 131.3, 129.2, 128.8, 128.5, 128.1, 128.1, 127.4, 127.4, 127.3, 127.2, 123.3, 121.5, 121.4, 120.7, 98.6, 98.3, 89.4, 89.4, 88.4, 88.0, 52.3, 50.5, 49.9, 41.5, 30.7, 30.5, 30.0, 29.7, 26.2, 26.0, 20.1, 20.1, 16.7, 13.9, 13.8; FD-LRMS m/z 2738.14 ([M+4]⁺, 48%), 2737.14 ([M+3]⁺, 79), 2736.14 ([M+2]⁺, 100), 2735.13 ([M+1]⁺, 87), 2734.13 (M⁺, 43).


Preparation of 1a [X = nBu]

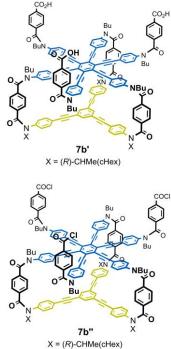
To a solution of **7a** (318 mg, 0.124 mmol) in THF/MeOH (6 mL/2 mL) was added a solution of LiOH·H₂O (44 mg, 1.0 mmol) in H₂O (2 mL), and the mixture was stirred at room temperature for 1h. After removal of the organic solvents by evaporation, the residue was acidified with aq. 1M HCl, and

extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and then concentrated to give **7a'** (298 mg) as an amorphous in 95% yield. The product was subjected to the next reaction without purification [hydrolysis of methyl ester].

To a refluxed solution of as-obtained 7a' (298 mg, 0.118 mmol) and BnNEt₃Cl (5 mg, 0.02 mmol) in CH₂Cl₂ (13 mL) was added SOCl₂ (0.18 mL, 2.5 mmol), and the mixture was further refluxed for 2 h. After removal of the solvent by evaporation, the resulting solid (7a'') was dried *in vacuo* and dissolved in THF (2 mL) [acid chloride preparation].

To a solution of $5^{\prime 2}$ (65 mg, 0.11 mmol) and Et₃N (0.44 mL, 3.2 mmol) in toluene (4.8 mL) were added the freshly prepared THF solution (2 mL) containing the acid chloride 7a'' and THF (4 mL) at 80 °C, and the mixture was stirred at the temperature for 2 h. After

removal of the solvents by evaporation, the residue was dissolved in dichloromethane, and which was washed with satd. aq. NaHCO₃, dried over magnesium sulfate, and then concentrated. The residue was purified by column chromatography on SiO₂ (3:7-4:1 ethyl acetate/chloroform) to give **1a** (98 mg) as a yellow solid in 26% yield (based on **7a**). An analytical sample was suspended in refluxed ethyl acetate, and collected as a yellow solid by filtration. **1a**: mp >300 °C (dec); elemental analyses Found: C, 81.76; H, 6.19; N, 5.42. Calc. for C₂₁₀H₁₈₆N₁₂O₁₂· (EtOH): C, 81.72; H, 6.21; N, 5.39%; IR (KBr) ν_{max} /cm⁻¹ 3041, 2956, 2930, 2871, 2202, 1654, 1650, 1601, 1579, 1510; ¹H NMR δ_{H} (400 MHz, CDCl₃, Me4Si)/ppm [303 K] 7.31 (12H, d, *J* = 8.4 Hz), 7.29 (6H, s), 7.16 (24H, s), 7.06 (12H, d, *J* = 8.4 Hz), 6.78 (12H, d, *J* = 8.4 Hz), 6.68 (12H, d, *J* = 8.4 Hz), 3.89-3.84 (24H, m), 1.65-1.50 (24H, m), 1.43-1.30 (24H, m), 0.94 (18H, t, *J* = 7.2 Hz), 0.91 (18H, t, *J* = 7.2 Hz); ¹³C NMR δ_{C} (100 MHz, CDCl₃)/ppm 169.0, 168.5, 144.0, 143.5, 137.1, 137.0, 133.6, 132.2, 132.0, 128.5, 128.2, 127.2, 126.9, 126.8, 123.2, 121.2, 120.9, 98.2, 89.3, 89.1, 88.4, 50.4, 50.2, 30.1, 29.8, 20.2, 20.1, 13.9, 13.8; MALDI-TOF-MS *m/z* 3094.8 ([M+5+Na]⁺, 67%), 3093.9 ([M+4+Na]⁺, 88), 3092.9 ([M+3+Na]⁺, 100), 3091.9 ([M+2+Na]⁺, 96), 3090.9 ([M+1+Na]⁺, 72), 3090.0 ([M+Na]⁺, 25); UV-vis λ_{max} (CH₂Cl₂)/nm (log ε) 373 (4.94), 301 (5.35).


Preparation of (R,R,R)**-1b** [X = (R)-CHMe(cHex)]

To a solution of **7b** (479 mg, 0.175 mmol) in THF/MeOH (16 mL/5 mL) was added a solution of LiOH·H₂O (64 mg, 1.5 mmol) in H₂O (5 mL), and the mixture was stirred at room temperature for 2 h. After removal of the solvents by evaporation, the residue was acidified with aq. 1M HCl, and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and then concentrated to give **7b'** (489 mg) as a yellow solid. The product was subjected to the next

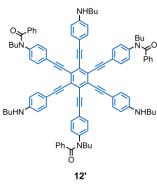
reaction without purification [hydrolysis of methyl ester].

To a refluxed solution of as-obtained **7b'** and BnNEt₃Cl (12 mg, 0.053 mmol) in CH₂Cl₂ (12 mL) was added SOCl₂ (0.16 mL, 2.2 mmol), and the mixture was further refluxed for 1 h. After removal of the solvent by evaporation, the resulting solid (**7b''**) was dried *in vacuo* and dissolved in THF (10 mL) [acid chloride preparation].

To a solution of **5'** (112 mg, 0.189 mmol) and Et₃N (0.73 mL, 5.2 mmol) in THF/toluene (3.6 mL/22 mL) were added the freshly prepared THF solution (10 mL) containing the acid chloride **7b''** and THF (8 mL) at 80 °C, and the mixture was stirred at the temperature for 40 min. After removal of the solvents by evaporation, the residue was purified by column chromatography on SiO₂ (4:6-9:1 ethyl acetate/dichloromethane) to give (R,R,R)-**1b** (125 mg) as a yellow solid in 22% yield (based on **7b**). An analytical sample was suspended in refluxed *n*-butyl alcohol, and collected as a yellow solid by filtration.

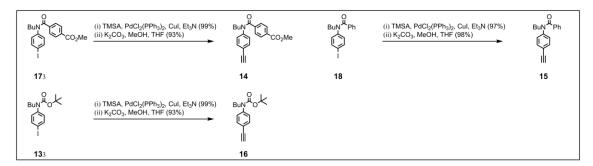
(*R*,*R*,*P*)**-1b**: mp >300 °C (dec); elemental analyses Found: C, 82.14; H, 6.41; N, 5.21. Calc. for C₂₂₂H₂₀₄N₁₂O₁₂·(EtOH): C, 82.07; H, 6.46; N, 5.13%; $[\alpha]_D^{25}$ –64.8 (*c* 0.209 in CHCl₃); IR (KBr) *v*_{max}/cm⁻¹ 3041, 2955, 2929, 2857, 2201, 1655, 1650, 1601, 1579, 1509; ¹H NMR δ_H (400 MHz, CDCl₃, Me₄Si)/ppm [303 K] 7.31 (6H, d, *J* = 8.4 Hz), 7.29 (6H, d, *J* = 8.4 Hz), 7.29 (3H, s), 7.28 (3H, s), 7.17 (12H, s), 7.14 (12H, s), 7.09 (6H, d, *J* = 8.4 Hz), 7.08 (6H, d, *J* = 8.4 Hz), 6.79 (6H, d, *J* = 8.4 Hz), 6.75 (6H, d, *J* = 8.4 Hz), 6.72 (6H, d, *J* = 8.4 Hz), 6.71 (6H, d, *J* = 8.4 Hz), 4.34 (3H, br.dq), 3.92-3.80 (18H, m), 2.01 (3H, br.d), 1.82-1.49 (33H, m), 1.44-1.31 (18H, m), 1.28-0.86 (15H, m), 1.13 (9H, d, *J* = 6.8 Hz), 0.95 (9H, t, *J* = 7.2 Hz), 0.94 (9H, t, *J* = 7.2 Hz), 0.91 (9H, t, *J* = 7.6 Hz); ¹³C NMR δ_C (100 MHz, CDCl₃)/ppm 169.2, 169.1, 169.0, 168.5, 144.1, 144.0, 143.5, 142.4, 138.1, 137.1, 137.0, 136.9, 133.6, 132.2, 132.1, 132.0, 131.7, 128.7, 128.6, 128.3, 128.2, 128.1, 127.2, 126.9, 126.8, 123.2, 123.2, 121.4, 121.2, 121.1, 120.9, 98.3, 98.2, 89.5, 89.4, 89.3, 89.2, 88.5, 88.4, 50.4, 50.3, 50.2, 41.5, 30.8, 30.6, 30.1, 29.8, 26.2, 26.0, 20.2, 20.2, 20.1, 16.7, 13.9, 13.8; MALDI-TOF-MS *m/z* 3257.9 ([M+5+Na]⁺, 40%), 3256.9 ([M+4+Na]⁺, 61), 3255.9 ([M+3+Na]⁺, 82), 3254.9 ([M+2+Na]⁺, 100), 3254.0 ([M+1+Na]⁺, 92), 3253.0 ([M+Na]⁺, 63); UV-vis *λ*_{max}(CH₂Cl₂)/nm (log *ε*) 373 (4.95), 301 (5.37); CD *λ*(CH₂Cl₂)/nm (Δ*ε*) [293 K] 300 (-37.2), 267 (+12.5).

Preparation of 12


To a solution of **11** (321 mg, 0.322 mmol) and **14** (535 mg, 1.93 mmol) in ^{*i*}Pr₂NH/dioxane (2.6 mL/4.4 mL) were added X-Phos (8 mg, 0.02 mmol), PdCl₂(CH₃CN)₂ (2 mg, 0.008 mmol) and CuI (2 mg, 0.01 mmol) at room temperature under an argon atmosphere, and the mixture was stirred at 90 °C for 24 h. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and

purified by column chromatography on SiO_2 (1:19-15:85 ethyl acetate/dichloromethane), followed by HPLC with a standard normal-phase column (1:9 ethyl acetate/dichloromethane; YMC-Pack SIL, SIL-06, YMC Co., Ltd.) to give 12 (338 mg) as a yellowish brown amorphous solid in 61% yield. An analytical sample was obtained as a yellow solid by further purification through GPC (chloroform), followed by recrystallization from methanol. 12: mp 202-204 °C (dec); elemental analyses Found: C, 79.39; H, 7.02; N, 4.87. Calc. for C₁₁₄H₁₂₀N₆O₉: C, 79.69; H, 7.04; N, 4.89%; IR (KBr) v_{max}/cm⁻¹ 3058, 3043, 2957, 2929, 2871, 2201, 1698, 1648, 1599, 1510; ¹H NMR $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si)/ppm 7.50 (6H, d, J = 8.4 Hz), 7.45 (6H, d, J = 8.4 Hz), 7.32 (6H, d, J = 8.4 Hz), 7.29-7.25 (3H, m), 7.22-7.19 (12H, m), 7.02 (6H, d, J = 8.4 Hz), 3.95 (6H, t, J = 7.6 Hz), 3.68 (6H, t, J = 7.6 Hz), 1.67-1.53 (12H, m), 1.43-1.30 (12H, m), 0.93 (18H, t, J = 7.6 Hz); ¹³C NMR $\delta_{\rm C}(100$ MHz, CDCl₃)/ppm 170.1, 154.3, 144.2, 143.4, 136.0, 132.5, 132.1, 129.8, 128.8, 127.9, 127.6, 127.5, 127.0, 126.7, 121.0, 119.9, 99.3, 98.6, 87.9, 87.1, 80.6, 50.2, 49.6, 30.8, 29.9, 28.4, 20.2, 19.9, 13.8, 13.8; FD-LRMS m/z 1721.91 ([M+5]⁺, 3%), 1720.91 ([M+4]⁺, 11), 1719.90 ([M+3]⁺, 30), 1718.90 ([M+2]⁺, 66), 1717.90 ([M+1]⁺, 100), 1716.89 (M⁺, 78), 1619.85 ([M+3-BOC]⁺, 2), 1618.85 ([M+2-BOC]⁺, 4), 1617.84 $([M+1-BOC]^+, 7), 1616.84 ([M-BOC]^+, 6), 860.95 ([M+5]^{2+}, 1), 860.44 ([M+4]^{2+}, 4), 859.94$ $([M+3]^{2+}, 12), 859.44, ([M+2]^{2+}, 27), 858.94, ([M+1]^{2+}, 39), 858.44, (M^{2+}, 32), 809.90, ([M+3-BOC]^{2+}, 39), 809.90, ([M+3-BOC]^{2+}, 80), ([M+3-BOC]^{2+}, 80),$ 2), 809.41 ([M+2-BOC]²⁺, 4), 808.91 ([M+1-BOC]²⁺, 6), 808.41 ([M-BOC]²⁺, 6).

Preparation of 2


To a refluxed solution of **4a'** (176 mg, 0.170 mmol) and BnNEt₃Cl (5 mg, 0.02 mmol) in CH₂Cl₂ (13 mL) was added SOCl₂ (0.19 mL, 2.6 mmol), and the mixture was further refluxed for 1 h. After removal of the solvent by evaporation, the resulting solid (**4a''**) was dried *in vacuo* and dissolved in THF (10 mL) [acid chloride preparation].

To a solution of **12** (559 mg, 0.325 mmol) in CH_2Cl_2 (29 mL) was added TFA (3.3 mL), and the mixture was stirred at room temperature for 1.5 h, and then diluted with dichloromethane. The diluted reaction mixture was quenched with aq. 1M NaOH and separated. After extraction with dichloromethane, the combined organic layer was dried over magnesium sulfate and concentrated. The residue was purified by column chromatography on SiO₂ (8:92 ethyl acetate/dichloromethane), followed by washing with ethanol to give **12'** (432 mg) as an orange solid in 94% yield [deprotection of BOC].

To a solution of **12'** (240 mg, 0.169 mmol) and Et₃N (0.70 mL, 5.0 mmol) in toluene/THF (17 mL/7 mL) was added the freshly prepared THF solution (10 mL) containing the acid chloride **4a''** at 80 °C, and the mixture was stirred at the temperature for 1 h, and then concentrated. The residue was dissolved in chloroform, and which was washed with aq. 1M NaOH and separated. The organic layer

was dried over magnesium sulfate and purified by column chromatography on SiO₂ (dichloromethane-15:85-7:3 ethyl acetate/dichloromethane) to give 2 (264 mg) as a yellow solid in 65% yield. An analytical sample was obtained as a pale-yellow solid by further purification through GPC (chloroform) and HPLC (5:95 methanol/dichloromethane), and recrystallization from t-butyl alcohol. 2: mp >300 °C; elemental analyses Found: C, 81.69; H, 6.08; N, 5.19. Calc. for C₁₇₁H₁₅₃N₉O₁₅ (MeOH): C, 81.98; H, 6.26; N, 5.18%; IR (KBr) v_{max}/cm⁻¹ 3041, 2956, 2929, 2871, 2200, 1650, 1599, 1579, 1510; ¹H NMR δ_H(400 MHz, CDCl₃, Me₄Si)/ppm 7.39 (3H, s), 7.36 (6H, d, *J* = 8.4 Hz), 7.35-7.28 (9H, m), 7.32 (6H, d, *J* = 8.4 Hz), 7.23-7.20 (6H, m), 7.17 (12H, s), 7.15 (6H, d, J = 8.4 Hz), 6.82 (6H, d, J = 8.4 Hz), 6.83 (6H, d, J = 8.4 Hz), 6.73 (6H, d, J = 8.4 Hz), 3.93-3.84 (18H, m), 1.67-1.50 (18H, m), 1.42-1.27 (18H, m), 0.93 (18H, t, *J* = 7.2 Hz), 0.89 (9H, t, *J* = 7.2 Hz); ¹³C NMR $\delta_{\rm C}(100 \text{ MHz, CDCl}_3)$ /ppm 169.9, 169.1, 168.8, 144.2, 143.9, 143.4, 137.1, 137.0, 135.9, 133.8, 132.6, 132.1, 132.1, 129.9, 128.8, 128.4, 128.3, 127.9, 127.4, 127.3, 127.3, 127.1, 127.0, 123.4, 121.0, 121.0, 120.9, 98.5, 89.4, 89.2, 88.1, 50.5, 50.2, 50.1, 30.1, 29.8, 29.7, 20.1, 20.1, 20.1, 13.9, 13.8; FD-LRMS *m*/*z* 2404.12 ([M+6]⁺, 5%), 2403.12 ([M+5]⁺, 13), 2402.11 ([M+4]⁺, 33), 2401.11 $([M+3]^+, 62), 2400.10 ([M+2]^+, 95), 2399.10 ([M+1]^+, 100), 2398.09 (M^+, 58), 2372.09$ $([M+1-(C=O)]^+, 6), 2371.09 ([M-(C=O)]^+, 6), 2295.04 ([M+1-Bz]^+, 5), 2294.06 ([M-Bz]^+, 6), 2394.06 ([M-Bz]^+, 2394.06$ 1202.06 ([M+6]²⁺, 2), 1201.54 ([M+5]²⁺, 4), 1201.05 ([M+4]²⁺, 10), 1200.55 ([M+3]²⁺, 19), 1200.05 $([M+2]^{2+}, 29), 1199.54$ $([M+1]^{2+}, 31), 1199.05$ $(M^{2+}, 18);$ UV-vis $\lambda_{max}(CH_2Cl_2)/nm$ $(\log \varepsilon)$ 369 (5.08), 319 (sh. 5.09), 293 (5.14).

Scheme S2 Preparation of acetylenes 14, 15 and 16.

Preparation of 14

To a suspended solution of 17^3 (3.19 g, 7.29 mmol), PdCl₂(PPh₃)₂ (76 mg, 0.11 mmol) and CuI (34 mg, 0.18 mmol) in Et₃N (60 mL) was added TMSA (trimethylsilylacetylene, 1.1 mL, 7.9 mmol) at room temperature under an argon atmosphere, and the reaction mixture was stirred at the temperature for 21 h. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO₂ (dichloromethane-1:19-1:9 ethyl acetate/dichloromethane) to give TMS-protected **14** (2.94 g) as a pale yellow oil in 99% yield.

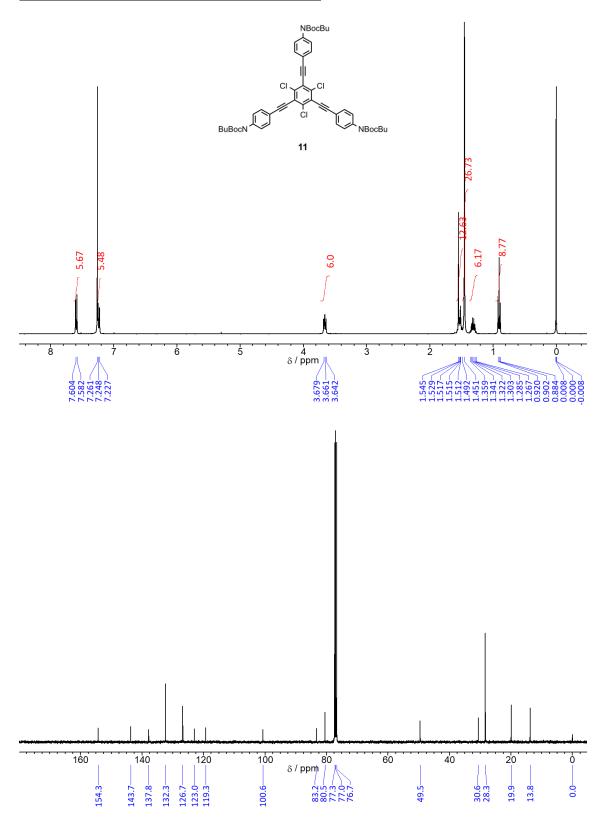
To a solution of TMS-protected **14** (2.94 g, 7.23 mmol) in THF/MeOH (35 mL/35 mL) was added K₂CO₃ (974 mg, 7.06 mmol), and the mixture was stirred at room temperature for 25 min, and then diluted with ethyl acetate. The diluted solution was washed with water and brine, dried over magnesium sulfate, and then purified by column chromatography on SiO₂ (dichloromethane-1:19-1:9 ethyl acetate/dichloromethane) to give **14** (2.26 g) as a white solid in 93% yield. An analytical sample was obtained as a white solid by precipitation in ethyl acetate. **14**: mp 123-124 °C; elemental analyses Found: C, 75.19; H, 6.17; N, 4.19. Calc. for C₂₁H₂₁NO₃: C, 75.20; H, 6.31; N, 4.18%; IR (KBr) $\nu_{\text{max}}/\text{cm}^{-1}$ 3285, 3060, 2951, 2872, 2106, 1721, 1637, 1598, 1504; ¹H NMR $\delta_{\text{H}}(400 \text{ MHz}, \text{CDCl}_3, \text{Me4Si})/\text{ppm 7.80}$ (2H, d, *J* = 8.4 Hz), 7.33 (2H, d, *J* = 8.4 Hz), 7.32 (2H, d, *J* = 8.4 Hz), 6.96 (2H, d, *J* = 8.4 Hz), 3.92 (2H, t, *J* = 7.6 Hz), 3.88 (3H, s), 3.07 (1H, s), 1.63-1.56 (2H, m), 1.41-1.32 (2H, m), 0.92 (3H, t, *J* = 7.2 Hz); ¹³C NMR $\delta_{\text{C}}(100 \text{ MHz}, \text{CDCl}_3)/\text{ppm 169.2}, 166.3, 143.3, 140.4, 133.0, 130.9, 129.1, 128.5, 127.6, 120.7, 82.5, 78.2, 52.2, 50.0, 29.8, 20.1, 13.8; FD-LRMS$ *m/z*337.16 ([M+2]⁺, 3.2%), 336.16 ([M+1]⁺, 23), 335.15 (M⁺, 100).

Preparation of 15

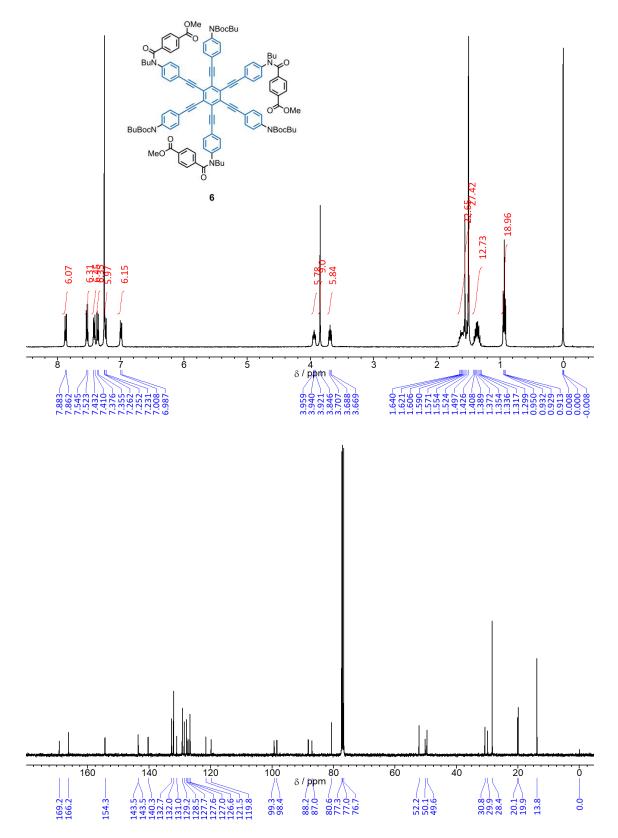
To a solution of **18** (1.60 g, 4.21 mmol), PdCl₂(PPh₃)₂ (45 mg, 0.064 mmol) and CuI (22 mg, 0.12 mmol) in Et₃N (32 mL) was added TMSA (0.65 mL, 4.6 mmol) at room temperature under an argon atmosphere, and the mixture was stirred at the temperature for 25 hours. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO₂ (8:2 dichloromethane/hexane-dichloromethane-2:98 ethyl acetate/dichloromethane) to give TMS-protected **15** (1.43 g) as a yellow oil in 97% yield. An analytical sample was obtained as a pale

yellow oil by further purification through GPC (chloroform). TMS-protected **15**: elemental analyses Found: C, 75.65; H, 7.88; N, 4.02. Calc. for C₂₂H₂₇NOSi: C, 75.59; H, 7.79; N, 4.01%; IR (neat) v_{max}/cm^{-1} 3085, 3061, 3040, 2958, 2931, 2872, 2157, 1649, 1600; ¹H NMR $\delta_{H}(400 \text{ MHz, CDCl}_3, Me_4Si)/ppm$ 7.31 (2H, d, J = 8.4 Hz), 7.27-7.21 (3H, m), 7.17-7.14 (2H, m), 6.94 (2H, d, J = 8.4 Hz), 3.91 (2H, t, J = 7.6 Hz), 1.62-1.54 (2H, m), 1.40-1.30 (2H, m), 0.90 (3H, t, J = 7.6 Hz), 0.22 (9H, s); ¹³C NMR $\delta_{C}(100 \text{ MHz, CDCl}_3)/ppm$ 170.2, 143.7, 136.1, 132.7, 129.6, 128.6, 127.8, 127.4, 121.1, 104.1, 95.1, 50.0, 29.8, 20.2, 13.8; FD-LRMS *m*/*z* 699.34 ([2M+1]⁺, 4%), 698.34 ([2M]⁺, 7), 351.17 ([M+2]⁺, 8), 350.17 ([M+1]⁺, 30), 349.17 (M⁺, 100).

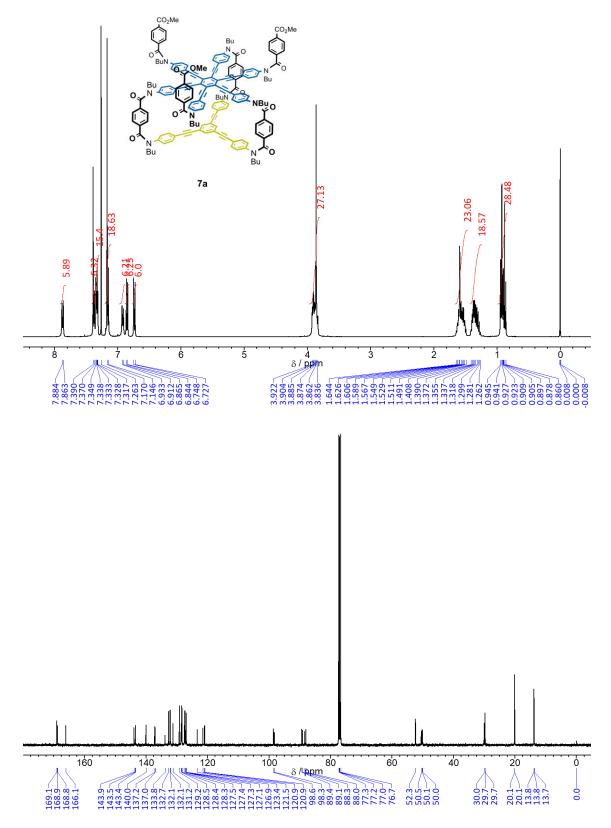
To a solution of TMS-protected **15** (150 mg, 0.429 mmol) in THF/MeOH (1.1 mL/1.1 mL) was added K₂CO₃ (59 mg, 0.43 mmol), and the mixture was stirred at room temperature for 10 min, and then diluted with ethyl acetate. The diluted reaction mixture was washed with water and brine, dried over magnesium sulfate, and then concentrated. The residue was purified by column chromatography on SiO₂ (dichloromethane-1:19 ethyl acetate/dichloromethane) to give **15** (117 mg) as a white solid in 98% yield. An analytical sample was obtained as a white solid by further purification through GPC (chloroform), followed by recrystallization from benzene/hexane. **15**: mp 81-82 °C; elemental analyses Found: C, 82.23; H, 6.93; N, 5.06. Calc. for C₁₉H₁₉NO: C, 82.28; H, 6.90; N, 5.05%; IR (KBr) ν_{max} /cm⁻¹ 3224, 3079, 3056, 3023, 2969, 2955, 2928, 2870, 2102, 1629, 1596, 1504; ¹H NMR $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si)/ppm 7.33 (2H, d, *J* = 8.4 Hz), 7.28-7.22 (3H, m), 7.19-7.15 (2H, m), 6.97 (2H, d, *J* = 8.4 Hz), 3.91 (2H, t, *J* = 7.6 Hz), 3.06 (1H, s), 1.63-1.56 (2H, m), 1.40-1.31 (2H, m), 0.91 (3H, t, *J* = 7.2 Hz); ¹³C NMR $\delta_{\rm C}$ (100 MHz, CDCl₃)/ppm 170.2, 144.0, 136.0, 132.9, 129.7, 128.6, 127.8, 127.5, 120.1, 82.7, 77.9, 50.1, 29.8, 20.2, 13.8; FD-LRMS *m*/*z* 555.27 ([2M+1]⁺, 2%), 554.27 ([2M]⁺, 6), 279.14 ([M+2]⁺, 3), 278.14 ([M+1]⁺, 22), 277.14 (M⁺, 100).

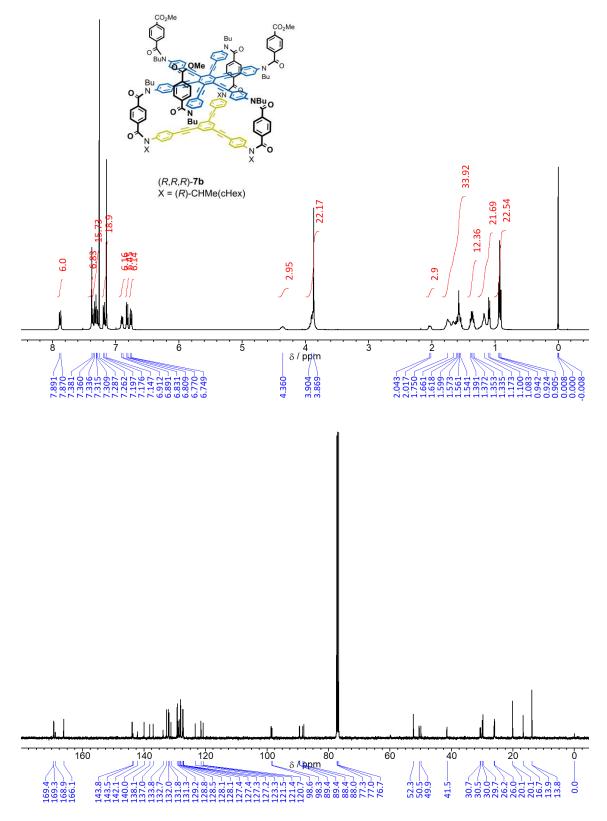

Preparation of 16

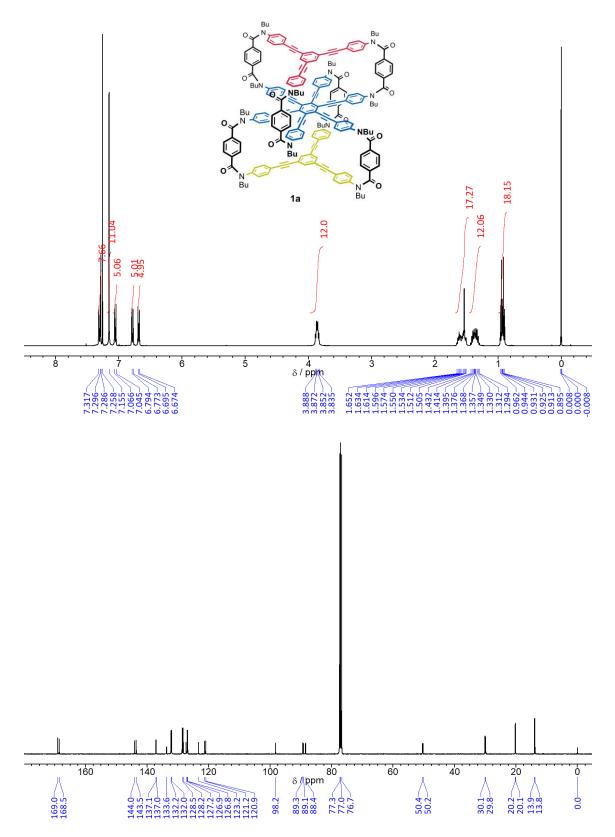
To a solution of 13^3 (5.16 g, 13.8 mmol), PdCl₂(PPh₃)₂ (136 mg, 0.194 mmol) and CuI (65 mg, 0.34 mmol) in Et₃N (100 mL) was added TMSA (2.0 mL, 14 mmol) at room temperature under an argon atmosphere, and the reaction mixture was stirred at the temperature for 22 h. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO₂ (3:7-2:1 dichloromethane/hexane) to give TMS-protected **16** (4.69 g) as a white solid in 99% yield.


To a solution of TMS-protected **16** (4.69 g, 13.6 mmol) in THF/MeOH (66 mL/66 mL) was added K_2CO_3 (1.87 g, 13.6 mmol), and the mixture was stirred at room temperature for 40 min, and then diluted with ethyl acetate. The diluted reaction mixture was washed with water and brine, dried over magnesium sulfate, and then purified by column chromatography on SiO₂ (3:7-2:1 dichloromethane/hexane) to give **16** (3.44 g) as a white solid in 93% yield. An analytical sample was obtained as colorless crystals by recrystallization from dichloromethane/hexane. **16**: mp 71-72 °C;

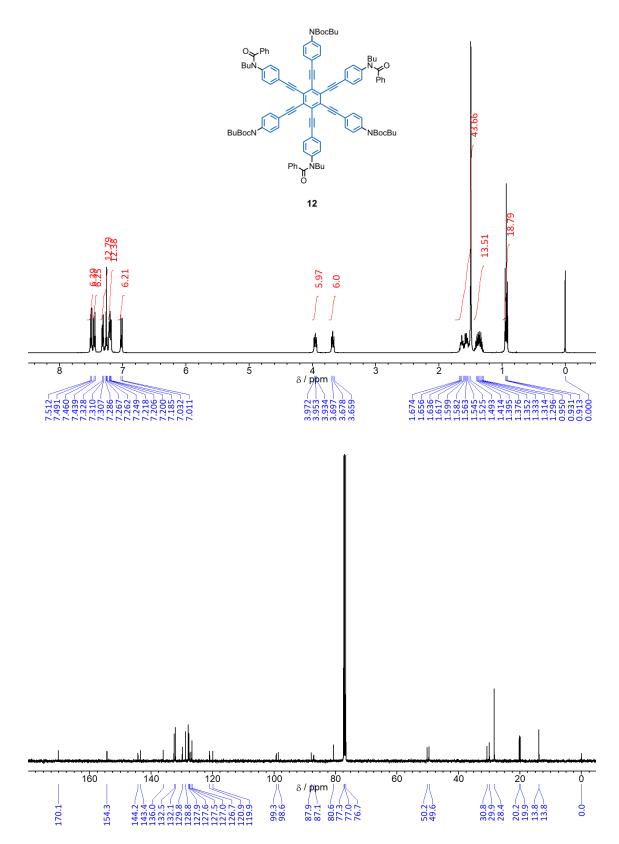
elemental analyses Found: C, 74.66; H, 8.66; N, 4.97. Calc. for C₁₇H₂₃NO₂: C, 74.69; H, 8.48; N, 5.12%; IR (KBr) v_{max} /cm⁻¹ 3241, 2954, 2929, 2872, 2103, 1915, 1683, 1602, 1506; ¹H NMR $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si)/ppm 7.45 (2H, d, *J* = 8.4 Hz), 7.15 (2H, d, *J* = 8.4 Hz), 3.62 (2H, t, *J* = 7.6 Hz), 3.06 (1H, s), 1.54-1.47 (2H, m), 1.43 (9H, s), 1.34-1.25 (2H, m), 0.89 (3H, t, *J* = 7.6 Hz); ¹³C NMR $\delta_{\rm C}$ (100 MHz, CDCl₃)/ppm 154.3, 143.1, 132.5, 126.7, 119.3, 83.3, 80.3, 77.1, 49.5, 30.6, 28.3, 19.9, 13.7; FD-LRMS *m*/*z* 274.17 ([M+1]⁺, 20%), 273.17 (M⁺, 100).

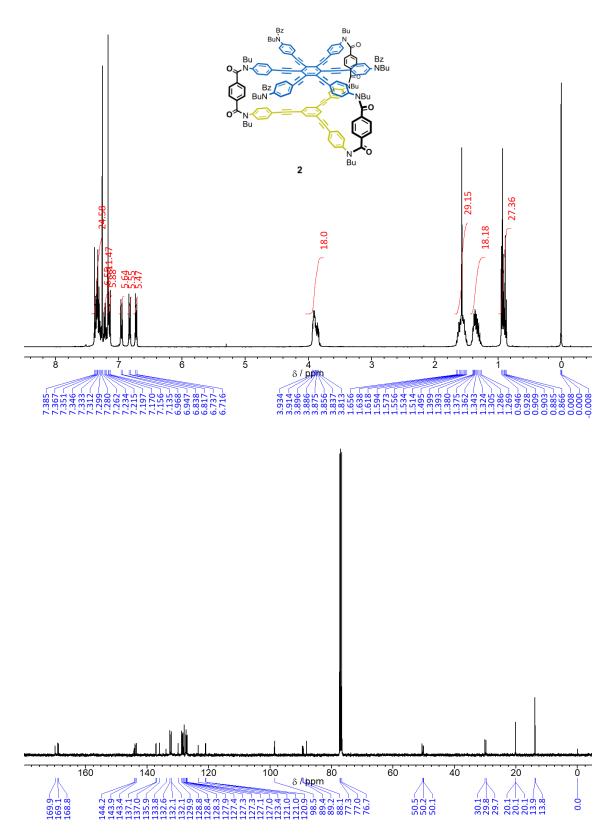

¹H and ¹³C NMR spectra of new compounds

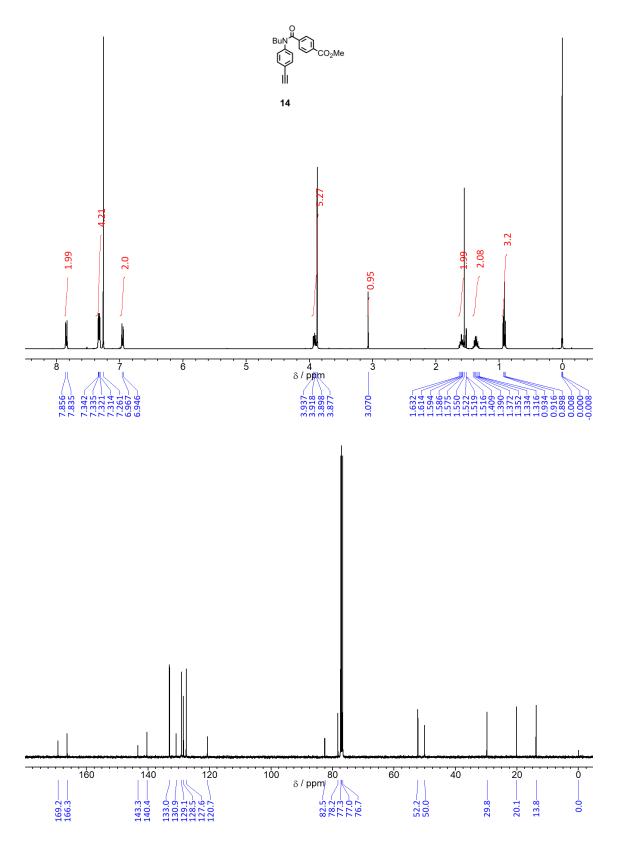

¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **11**, measured in chloroform-d at room temperature.

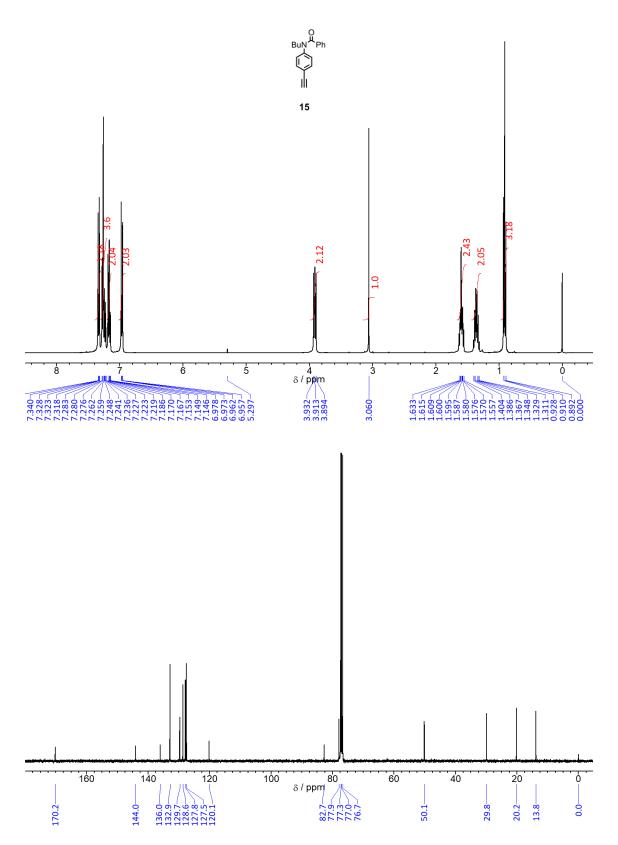

 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of 6, measured in chloroform-*d* at room temperature.

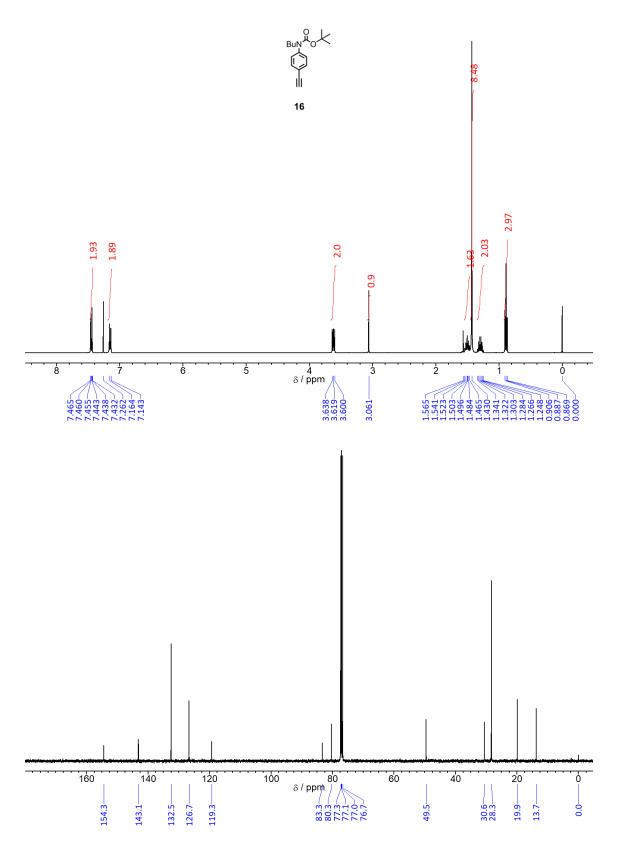
¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 7a, measured in chloroform-*d* at room temperature.


¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of (R,R,R)-7b, measured in chloroform-*d* at room temperature.


¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 1a, measured in chloroform-*d* at room temperature.


¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of (R,R,R)-1b, measured in chloroform-*d* at room temperature.


 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of **12**, measured in chloroform-*d* at room temperature.


¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **2**, measured in chloroform-*d* at room temperature.

 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of **14**, measured in chloroform-*d* at room temperature.

 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of **15**, measured in chloroform-*d* at room temperature.

 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of **16**, measured in chloroform-*d* at room temperature.

References

- 1 Y. Tobe, N. Nakagawa, J. Kishi, M. Sonoda, K. Naemura, T. Wakabayashi, T. Shida and Y. Achiba, *Tetrahedron*, 2001, **57**, 3629–3636.
- 2 R. Katoono, K. Fujiwara and T. Suzuki, *Chem. Commun.*, 2014, **50**, 5438–5440.
- 3 R. Katoono, H. Kawai, M. Ohkita, K. Fujiwara and T. Suzuki, *Chem. Commun.*, 2013, **49**, 10352–10354.
- 4 P. Ehlers, A. Neubauer, S. Lochbrunner, A. Villinger and P. Langer, *Org. Lett.*, 2011, **13**, 1618–1621.
- (a) J. J. Wolff, F. Gredel, T. Oeser, H. Irngartinger and H. Pritzkow, *Chem. Eur. J.*, 1999, 5, 29–38; (b) M. Sonoda, A. Inaba, K. Itahashi and Y. Tobe, *Org. Lett.*, 2001, 3, 2419–2421.