Supporting Information

An Electrolyte-Affinity Hybrid Membrane with the Supporting of Polymer and Modification of Amphiphilic Block Copolymer for Superhigh-Flexible and High-Performance Supercapacitor

Xiaoning Zhao, Yunlong Yang, Jiayu Wu, Yongtao Tan, Ying Liu, Long Kang, Fen Ran*

State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China *Corresponding authors: Fen Ran (<u>ranfen@163.com</u>; or <u>ranfen@lut.cn</u>)

2. Experimental

2.1. Chemicals

Polyether sulfone (PES, Ultrason E6020P) was obtained from *BASF*, Germany. Activated carbon was purchased from *Shenyang Kejing Auto-instrument Co. Ltd.* Vinylcyanide (AN) and acrylic acid (AA) from *Sinopharm Chemical Reagent Co. Ltd.* was further purified by distillation prior to use. NiCl₂·6H₂O was purchased from *Tianjin Beichen Founder Reagent Factory* and NH₃·H₂O was obtained from *Tianjin BASF Chemical Co., Ltd.* All the other chemicals (analytical grade) were obtained from *Sinopharm Chemical Reagents Co. Ltd*, China, and used without further purification. Azo-bis-isobutryonitrile (AIBN) was purchased from Tianjin Tianhe Chemical Reagent Factory (Tianjin, China) and used as the initiator. RAFT agent was synthesized according to the literature [S1].

2.2. Synthesis of Nickel Hydroxide (Ni(OH)₂)

Ni(OH)₂ materials were prepared by a facile-improved precipitation method. In a typical procedure, 40 g of NiCl₂·6H₂O was dissolved in 141 mL deionized water in a glass beaker with magnetic stirring at room temperature. Then the NiCl₂·6H₂O solution was slowly adjusted to pH=9 by dropwise addition of 5 wt % NH₃·H₂O at a temperature of 20 °C, controlling the addition time to more than 2 h. The resulting suspension was stirred at this temperature for an additional 3 h. Finally the solid was filtered and washed with a copious amount of distilled water, and dried at 60 °C for 6 h.

2.3. Synthesis of PAA-b-PAN-b-PAA

The general procedure for synthesis of polyacrylic acid (PAA) was as follows. AA, RAFT agent, AIBN and DMF were added into a tube. After bubbling for 30 min with nitrogen, the reaction mixture was allowed to warm under a nitrogen atmosphere to 75 °C, and the polymerization lasted for 4 h. After precipitating in ethyl ether, the product was dried under vacuum at 60 °C overnight.

The synthesis of *PAA-b-PAN-b-PAA* was carried out in a sealed tube, and shown as follows: acrylonitrile (AN), the macro-RAFT agent (PAA), AIBN and DMF were added to a tube, and stirred for 10 min. After bubbling with nitrogen for 30 min the reaction mixture was allowed to warm to 75 °C under a nitrogen atmosphere and polymerization was carried out for 12 h. After precipitation in ethyl ether the product

was dried under vacuum at 60 °C overnight.

2.4. Preparation of Ultrathin Porous Membranes

The membranes were prepared by a phase-separation technique. In a typical synthesis, Ni(OH)₂ (1.7 g) mixed with acetylene black (0.15 g) and conducting graphite (0.15 g) were firstly dispersed in dimethylacetamide (DMAC) under magnetic stirring and ultrasonication to obtain a homogeneous turbid solution. Then, PES (0.45 g) and *PAA-b-PAN-b-PAA* (0.05 g) were dissolved in the solution and stirred for 24 h. The casting solutions were prepared as membranes by spin coating at 20 °C, which was immediately immersed in a coagulation bath of deionized water at 20 °C. Then, the ultrathin hybrid polymer-nickel hydroxide membranes were transferred to a water bath for 24 h to remove the residual solvent. Finally, the flexible membranes were dried in vacuum oven at 60 °C for 24 h named as FME-Ni(OH)₂. The FMEs without containing conductive agent (acetylene black and conducting graphite) or the block copolymer *PAA-b-PAN-b-PAA* were fabricated in the similar way, and named as FME-NC, and FME-NP, respectively. The hybrid polymer-carbon membrane was also prepared in the same conditions as FME-AC.

2.5 Materials Characterization

The microstructures and morphologies were characterized by field emission scanning electron microscope (SEM, JSM-6701F, JEOL, Japan) and transmission electron microscope (TEM, JEM-2010, JEOL, Japan). The photographs of were taken using a camera (PowerShot S100V, Canon, Japan). The crystal structure was analyzed by X-ray diffraction (XRD Bruker, D8 Advance, Germany). The surface area was calculated using the Brunauer-Emmett-Teller (BET) equation. Pore size distribution was calculated by the Barrett-Joyner-Halenda (BJH) method using the adsorption branch of the isotherm. The surface chemical compositions of the samples were analyzed by X-ray photoelectron spectroscope (XPS, physical Electronics UK). *2.6 Electrode Preparation*

For the preparation of FME-Ni(OH)₂, FME-NP, FME-NC and FME-AC electrodes, a thin membrane of about 1×1 cm² was cut down from the membrane, and pressed between two foam nickels (Chang Sha Lyrun New Material Co. Ltd., 90 PPI, 2 mm) of 1.5×2 cm in size (the nickel foam functions as the current collector) at 10 MPa. The capacitance values were calculated based on the mass of Ni(OH)₂ and AC in the membranes, respectively. And the mass of FME-Ni(OH)₂, FME-NP, FME-NC and FME-AC electrodes were 2.5, 2.6, 3.7 and 8.6 mg, respectively. For

comparison, the Ni(OH)₂ electrode was prepared by the traditional method according to the method reported in the literature. Ni(OH)₂ powder, acetylene black and conducting graphite at a mass ratio of 80: 7.5: 7.5 (wt %) was added in an agate mortar until a homogeneous black powder obtained. To this mixture, polytetrafluoroethylene (5 wt %) was added with a few drops of ethanol. The resulting paste was pressed at 10 MPa to nickel foam that served as a current collector then dried at 80 °C for 12 h. Each Ni(OH)₂ electrode contained 4 mg of the electroactive material and had a geometric surface area of 1 cm².

2.7 Electrochemical Characterization

All electrochemical measurements were conducted in a classical threeelectrode glass cell setup at room temperature. The synthesized sample, platinum foil electrode $(1.5 \times 1.5 \text{ cm})$ and a saturated calomel electrode (SCE) served as working electrode, counter electrode and reference electrode, respectively. The performance of electrochemical properties was tested using cyclic voltammetry (CV), galvonostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in a CHI660E (Shanghai, China) electrochemical workstation. The cycle stability test was carried out on a land cell tester.

The electrochemical measurements of the asymmetric supercapacitor were carried out in a two-electrode, where the FME-Ni(OH)₂ and FME-AC were used as positive electrode and negative electrode, respectively. The mass ratio of the positive and negative electrodes (FME-Ni(OH)₂: FME-AC) was estimated to be 1:3 from the specific capacitor and potential window obtained from their galvanostatic charge-discharge curves. All of the above electrochemical measurements were performed in 6 M KOH aqueous solutions electrolytes.

2.8 The preparation of polymer gel electrolyte

The polymer gel electrolyte was prepared according to the method reported in literature [S2]. 2 g polyvinyl alcohol (PVA) was dissolved in 20 ml distilled water under continuous heating at 85 °C and stirring until the solution turned clear. Then, 4.2 g lithium chloride (LiCl) was slowly added with magnetic stirring and the solution was stirred for additional one hour. After cooling to room temperature, the PVA-LiCl gel electrolyte was obtained.

Calculations: The specific capacitance of electrode can be calculated from the discharge curves at different current densities by the equation:

$$C = I \times t / (\Delta V \times m) \qquad C_m = I \times t / m \tag{1}$$

Where C (F/g), C_m (C/g) is the specific capacitance, I (A) is discharge current, t (s) is the discharge time, ΔV (V) is the potential drop during discharge process and m (g) is the mass of active materials.

The energy and power density of device are calculated from the discharge curves at different current densities using the following equations:

$$E = C \times V^2 / (2 \times 3.6) \tag{2}$$

$$P = E \times 3600/\left(\Delta t\right) \tag{3}$$

Where E (Wh/kg) is the energy density of device, C (F/g) is the specific capacitance, V (V) is the potential drop during discharge process, P (W/kg) is the power density of device, and Δt (s) is the discharge time.

Figure S1 Digital photographs of the FMEs with excellent flexibility

Figure S2 XPS spectrum (a) and C 1s XPS spectra (b) for the FME-Ni(OH)₂

The enrichment of the block copolymer PAA-*b*-PAN-*b*-PAA on the membrane surface can be confirmed by X-ray photoelectron spectroscope (XPS) analysis. The strong O 1s signal at the binding energy (BE) of 535 eV and N 1s signal at the BE of 403 eV in the wide scan spectrum (**Figure S2 a**) indicate the surface of FME-Ni(OH)₂ membrane was covered with PAA-*b*-PAN-*b*-PAA chains, and the Ni 2p signal at the BE of 859 eV suggest the existence of Ni(OH)₂. The C 1s core-level spectrum of the FME membrane surface was recorded and analyzed (**Figure S2 b**). It is curve-fitted into five peak components at 284.5, 285.4, 286.2, 289.7 and 291.9 eV, respectively attributable to the C-C, C-N, C-O, O-C=O and $\pi \rightarrow \pi^*$ species [S3]. These results confirmed the existence of PAA and PAN blocks on the surface of FME-Ni(OH)₂. The appearing of $\pi \rightarrow \pi^*$ peak can be attributed to the introduction of conductive additive (acetylene black and conducting graphite). All these results indicate that a porous, well electrical conductivity and electrolyte-affinity flexible membrane electrode material is fabricated successfully.

Figure S3 SEM images of PES membrane: a and b) the cross-sectional views; and c and d) the surface views

Figure S4 SEM (a and b) and TEM (c and d) images of Ni(OH)₂; (e) SAED pattern of Ni(OH)₂; and (f) XRD pattern of Ni(OH)₂

Figure S5 TEM image of Ni(OH)₂ in hybrid membrane

Figure S6 N_2 adsorption-desorption isotherms and pore size distributions of FME-NP (a and b) and FME-NC (c and d)

Figure S7 Electrochemical performance of pure $Ni(OH)_2$ in 6 M KOH aqueous solution: (a) CV curves at different scan rates over a potential range from -0.2 to 0.6 V; (b) GCD curves at different current densities; (c) complex-plane impedance plot; and (d) specific capacitance at different current densities

Figure S8 The electrochemical properties of FME-Ni(OH)₂: (a) CV curves at the different scanning rates; (b) GCD curves at various current densities

Figure S9 Coulombic efficiency of FME-Ni(OH)₂, FME-NP and FME-NC at a current density of 5 A/g $\,$

Figure S10 The electrochemical impedance spectroscopy curves of FME-Ni(OH) $_2$ at different bending states

Figure S11 Electrochemical performance of FME-AC in 6 M KOH aqueous solution: (a) CV curves at different scan rates over a potential range from -1 to 0 V; (b) GCD curves at different current densities; (c) complex-plane impedance plot; and (d) specific capacitance at different current densities

Figure S12 The electrochemical capacitance performance of $FME-Ni(OH)_2//FME-Ni(OH)_2$ SC device: (a) CV curves at various scanning rates; (b) GCD curves at various current densities

Figure S13 (a) cycle life (b) specific capacitance versus bending cycles of FME-Ni(OH)₂//FME-AC ASC device at a current density of 1 A/g

Figure S14 Equivalent circuit of all impedance spectra for different samples

Sample	$R_{S}(\Omega)$	$R_{CT}(\Omega)$	$\mathrm{W}_{0}\left(\Omega ight)$
FME-Ni(OH) ₂	0.6043	0.7238	0.3129
FME-NP	0.5969	0.8969	0.3415
FME-NC	0.6491	1.811	0.2773
FME-Ni(OH) ₂ //FME-AC ASC	0.105	4.569	0.146

Table S1 Fitted parameters for EIS obtained by Zswinpwin software of different samples

Current density		0.5	1	2	3	4	5	
Specific capacitance (F/g)&(C/g)		Ni(OH) ₂	1588.6 (556.0)	1320.6 (462.2)	1115.4 (390.4)	1015.7 (355.5)	940.8 (329.3)	884.0 (309.4)
		FME- Ni(OH) ₂	2198.6 (769.5)	1849.1 (647.2)	1510.9 (528.8)	1318.3 (461.4)	1200.0 (420.0)	1111.9 (389.2)
		FME-NP	2210.0 (773.5)	1816.0 (635.6)	1430.3 (500.6)	1199.1 (419.7)	1049.1 (367.2)	924.0 (323.4)
	Sample	FME-NC	992.9 (347.5)	658.0 (230.3)	452.0 (158.2)	366.2 (128.2)	309.0 (108.2)	267.3 (93.6)
		FME-AC	241.4	214.4	200.0	190.5	185.6	182.5
		FME- Ni(OH) ₂ //F ME-AC ASC	102.2 (163.5)	90.4 (144.6)	77.4 (123.8)	68.8 (110.1)	62.6 (100.2)	58.0 (92.8)

 Table S2 The specific capacitance of different samples calculated from discharging curves

ASCs	Specific capacitance	Energy density & Power density	Current density or scan rate	Cycle life	Measurement conditions	Ref. (year)
Ni(OH) ₂ /AC/ CNT//AC	82.1 F/g	32.3 Wh/kg at 504.8 W/kg	0.5 A/g	83.5 % after 1000 cycles	6 M KOH	[<mark>S4]</mark> (2015)
Ni(OH) ₂ nano- sheets//AC	248 F/g	22 Wh/kg at 800 W/kg	1 A/g	85.7 % after 4000 cycles	6 M KOH	[<mark>S5]</mark> (2015)
Ni(OH) ₂ //AC	153 F/g	35.7 Wh/kg at 490 W/kg	5 mv/s	81 % after 10000 cycles	1 M KOH	[S6] (2013)
CNT/Ni(OH) ₂ //rGO	78 F/g	35 Wh/kg at 1800 W/kg	2 A/g	—	1 M KOH	[<mark>S7]</mark> (2015)
β-Ni(OH) ₂ /Ni- foam //AC	105.8 F/g	36.2 Wh/kg at 100.6 W/kg	0.13 A/g	92 % after 1000 cycles	6 M KOH	[S 8] (2014)
Graphene@Ni (OH) ₂ //graphene@C NT	44.8 F/g	18 Wh/kg at 850 W/kg	1 A/g	_	1 M KOH	[S 9] (2014)
Graphene film //graphene film	111 F/g	15.4 Wh/kg at 554 W/kg	10 mv/s	_	2 M KCl	[S 10] (2010)
rGO/CB //rGO/CB	112 F/g	9.95 Wh/kg	5 mv/s	94 % after 5000 cycles	$1 \text{ M} \text{H}_2 \text{SO}_4$	[S 11] (2014)
Carbon nanofiber //carbon fiber	43.7 F/g	6.07 Wh/kg At 250 W/kg	0.5 A/g	95.9 % after 5000 cycles	2 M H ₂ SO ₄	[812] (2013)
FME- Ni(OH) ₂ //FME -AC	102.2 F/g	36.3 Wh/kg at 400 W/kg	0.5 A/g	88.8 % after 1000 cycles	6 M KOH	This work

 Table S3
 The energy densities and power densities of various asymmetric supercapacitors reported in literatures

References

[S1] T.L. John, F. Debby, S. Ronald, Functional polymers from novel carboxylterminated trithiocarbonates as highly efficient RAFT agents, Macromolecules 35 (2002) 6754–6756.

[S2] L.H. Du, P.H. Yang, X. Yu, P.Y. Liu, J.H. Song, W.J. Mai, Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices, Journal of Materials Chemistry A 2 (2014) 17561-17567.
[S3] H.L. Fan, F. Ran, X.X. Zhang, H.M. Song, W.X. Jing, K.W. Shen, Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process, Electrochimica Acta 138 (2014) 367–375.

[S4] L.P. Sui, S.H. Tang, Y.D. Chen, Z. Dai, H.X. Huangfu, Z.T. Zhu, X.L. Qin, Y.X. Deng, G. M. Haarberg, An asymmetric supercapacitor with good electrochemical performances based on Ni(OH)₂/AC/CNT and AC, Electrochimica Acta 182 (2015) 1159–1165.

[S5] W.P. Sun, X.H. Rui, M. Ulaganathan, S. Madhavi, Q.Y. Yan, Few-layered Ni(OH)₂ nanosheets for high-performance supercapacitors, Journal of Power Sources 295 (2015) 323–328.

[S6] H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials, Nature Communications 5 (2013) 54–56.

[S7] R.R. Salunkhe, J.J Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Largescale synthesis of coaxial carbon nanotube/Ni(OH)₂ composites for asymmetric supercapacitor application, Nano Energy 59 (2015) 211–218.

[S8] J.C. Huang, P.P. Xu, D.X. Cao, X.B. Zhou, S.N. Yang, Y.J. Li, G.L. Wang, Asymmetric supercapacitors based on beta-Ni(OH)₂ nanosheets and activated carbon with high energy density, Journal of Power Sources 246 (2014) 371–376.

[S9] M. Li, Z. Tang, M. Leng, J.M. Xue, Flexible solid-state supercapacitor based on graphene-based hybrid Films, Advanced Functional Materials 24 (2014) 7495–7502.

[10] A.P. Yu, I. Roes, A. Davies, Z.W. Chen, Ultrathin, transparent, and flexible graphene films for supercapacitor application, Applied Physics Letters 25 (2010)

253105.

[11] Y.M. Wang, J.C. Chen, J.Y. Cao, Y. Liu, Y. Zhou, J.H. Ouyang, D.C. Jia, Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor, Journal of Power Sources 271 (2014) 269–277.

[S12] L.F. Chen, Z.H. Huang, H.W. Liang, W.T. Yao, Z.Y. Yu, S.H. Yu, Flexible allsolid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose, Energy & Environmental Science 6 (2013) 3331–3338.