Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Supplementary material

Hydrothermal Co-liquefaction of Biomasses – Quantitative Analysis of Bio-crude and Aqueous Phase Composition

René B. Madsen, Rikke Bernberg, Patrick Biller, Jacob Becker, Bo B. Iversen, Marianne Glasius

Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark

Table S1 – Elemental distribution in bio-crude from HTL of model compounds. Carbohydrate (cellulose:hemicellulose 3:1), protein (soya protein), lipid (unrefined rapeseed oil)

	C [%]	H [%)	N [%)	S [%)	O [%)
Carbohydrate	78.49	7.38	0.10	0.17	13.87
Protein	76.11	9.28	5.75	0.89	7.97
Carbohydrate:Lipid	77.11	11.04	0.09	0.09	11.68
Protein:Lipid	70.34	10.93	2.67	0.27	15.79
Carbohydrate:Protein	77.30	8.82	5.63	0.49	7.76
Carbohydrate:Protein:Lipid	75.59	10.53	2.76	0.19	10.93

Figure S2 – Normalized peak areas of monoglycerides

Table S3 – Compounds quantitated in the aqueous phase

Small organic acids	Fatty acids
acetic acid	tetradecanoic acid
isobutyric acid	palmitoleic acid
methacrylic acid	palmitic acid
butyric acid	linoleic acid
crotonic acid	oleic acid
isovaleric acid	stearic acid
pent-4-enoic acid	Oxygenated aromatics
pent-3-enoic acid	benzoic acid
valeric acid	phenol
tigllic acid	phenyl acetic acid
3-methylbut-2-enoic acid	m-cresol
3-methylpentanoic acid	p-cresol
4-methylpentanoic acid	hydrocinnamic acid
5-hexenoic acid	Cyclic oxygenates
3-methylpent-2-enoic acid	cyclopentanone
3-methylpent-3-enoic acid	2-methylcyclopent-2-enone
2-methylpent-2-enoic acid	butyrolactone
levulinic acid	3-methylcyclopent-2-enone
4-oxohexanoic acid	2,3-dimethylcyclopent-2-enone
4-methylpent-3-enoic acid	δ-valerolactone
5-oxohexanoic acid	3,4-dimethylcyclopentenone
octanoic acid	(?,?)-dimethylcyclopentenone
dodecanoic acid	4,4-dimethylcyclopentenone
oxalic acid	3-ethylcyclopent-2-enone
malonic acid	Nitrogenates
succinic acid	pyrazine
methylsuccinic acid	methylpyrazine
glutaric acid	2,5-dimethylpyrazine
ethylsuccinic acid	ethylpyrazine
adipic acid	2,3-dimethylpyrazine
2-oxoglutaric acid	2,3,5-trimethylpyrazine
propantricarboxylic acid	2-pyrrolidone
	3-hydroxypyridine, monoacetate
	3-hydroxypyridine

Figure S4 – Measured and calculated concentrations of small organic acids, fatty acids, oxygenated aromatics, and cyclic oxygenates quantitated in aqueous phase from HTL of mixtures of biomass.