Supplementary Information

Destabilisation of Ca(BH₄)₂ and Mg(BH₄)₂ via confinement in nanoporous Cu₂S hollow spheres

Qiwen Lai^{\dagger} and Kondo-Francois Aguey-Zinsou^{\dagger , *}

[†]Merlin group, School of Chemical Engineering, The University of New South Wales,

Sydney NSW 2052, Australia, E-mail: f.aguey@unsw.edu.au

Fig S1. Hydrogen desorption profiles of as-synthesised (a) $Ca(BH_4)_2@Cu_2S$ and (b) $Mg(BH_4)_2@Cu_2S$ as monitored by mass spectrometry. In addition to hydrogen, diborane and hydrogen sulphide was released.

Fig. S2 Hydrogen desorption profiles of (a) bulk $Ca(BH_4)_2$ and (b) bulk $Mg(BH_4)_2$ both physically mixed with 70 mass% of Cu_2S hollow spheres as monitored by mass spectrometry. In addition to hydrogen diborane and hydrogen sulphide was released.

Fig. S3 TGA/DSC profiles of (a) bulk $Ca(BH_4)_2$ and (b) bulk $Mg(BH_4)_2$ both physically mixed with 70 mass% of Cu_2S hollow spheres.

Fig. S4 (a)-(b) Typical TEM images of physical mixture of $Ca(BH_4)_2 + 5$ mass % Cu_2S , and corresponding (c) EDS elemental mapping, (d) EDS and (e) lines scan analysis.

Fig. S5 (a)-(b) Typical TEM images of physical mixture of $Mg(BH_4)_2 + 5$ mass % Cu₂S, and corresponding (c) EDS elemental mapping, (d) EDS and (e) lines scan analysis.

Fig. S6 (a)-(b) Typical TEM images of physical mixture of $Ca(BH_4)_2 + 5$ mass % Cu_2S after absorption at 400 °C under 6 MPa H₂ pressure, and corresponding (c) elemental mapping, (d) EDS and (e) lines scan analysis.

Fig. S7 (a)-(b) Typical TEM images of physical mixture of $Mg(BH_4)_2 + 5$ mass % Cu₂S after absorption at 400 °C under 6 MPa H₂ pressure, and corresponding (c) elemental mapping, (d) EDS and (e) lines scan analysis.