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Film characterization details: Crystal structure is determined by X-ray diffraction (Bruker D8 Advance with 

CuK radiation; step size 0.02o at room temperature ~23 oC) with quantitative Rietveld refinement analysis (Fullprof 
suite38) and Raman spectroscopy (Renishaw inVia spectrometer with 514 nm Spectra physics laser). Scanning electron 
microscopy (Jeol iT300) featuring an Oxford X-max (80 mm2) detector for energy dispersive analysis of X-rays (EDAX) 
were used for investigating the topography and composition of the films. Surface composition was obtained from X-
ray photoelectron spectroscopy XPS (VSW Scientific XPS spectrophotometer employing Al K radiation of 1,486.6 eV). 
Diffuse reflectance spectrum between wavelengths 300-1200 nm is acquired against BaSO4 as the reference with a 
Shimadzu-2600 spectrophotometer. 

Fig. S1 Thermogravimetric analysis of dry precursor powder.
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Fig. S2 Cu2SnS3 unit cell derived from the Rietveld refinement of the film XRD.

Table S1 Summary of the main PV metric of 24 CTS solar cells with the structure: glass/Mo/CIS/CdS/i-ZnO/ZnO:Al/Ni-
Al, and total area of 0.5 cm2. AM1.5G illumination was employed at 23oC.
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Best cell 202 27.6 34.5 1.92

mean 142.20 18.0 30.53 1.35

Std. 
dev. 33.92 4.23 2.52 0.34



Impedance Spectroscopy of the CTS cells at various temperatures
Fig. S3a shows three equivalent circuits were used for the systematic analysis of the impedance spectra of CTS 
devices. Fig. S3b and c show an example of the fits obtained for the impedance spectrum recorded at 300 K. Circuit 1 
is a basic circuit with one resistance, representing a series resistance, connected to a parallel RjCj loop associated with 
the shunt resistance and junction capacitance. It is clearly seen that Circuit 1 can only fit half of the spectrum. Circuit 2 
includes an additional parallel RbCb loop linked to the non-Ohmic back contact barrier originating from partially 
sulfurized Mo layer. The simulated responses  of Circuit 2 could only fit the frequency response below 5 kHz and 
above 50 kHz. The phase and magnitude components exhibt of multiple time constants which are commonly 
associated with defect states. The impedance spectra over the entire frequency range can be satisfactorily fitted by 
inclusion of two series RC loops as shown in Circuit 3, with the net error converging below 3%. Circuit 3 has been used 
in a number of studies,[42,43,46–48] with the time constants R1C1 and R2C2 linked to defect states. Fig. S4 shows the 
variations of these time constants with temperatures between 80 to 370 K. 

Fig. S3. Equivalent circuits used for the systematic analysis of the device impedance spectra between 0.5 Hz to 1 MHz 
(a). Frequency dependence of the impedance modulus (b) and phase (c) measured at 300 K. Circuit 3 
(referred as the equivalent circuit in the manuscript) leads to the most consistent fit over the entire 
frequency range.



Fig. S4. Temperature dependence of the RC elements associated with the two defect states.


