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Figure 1: Geometry of cell design

1 Mathematical description of model and numerical solution

1.1 Constant electrode flux mass transfer model

Di
∂2ci
∂x2 +Di

∂2ci
∂y2 −uy

∂ci
∂y

= 0 (1)

The diffusion-convection equation for species i at steady state is given by eq. (1), where the the

only non-zero component of the fluid velocity u = (ux,uy) is the y component. The diffusivity of

species i Di is a positive constant. The flow profile uy is an analytic function given by equation

(2).

uy =
1

2µ
∆Pdrop

(
Lxx − x2

)
(2)

The boundary conditions for species i are given in eq. (3) - (7). They can also be seen in Figure

2a where for each species on one electrode they are produced and the other they are consumed

at a rate fast enough to assume ci = 0.

ci = ci,0 on inlet (3)

∂ci
∂y

= 0 on outlet (4)

−~n ·Ni |x=0 or Lx = 0 on walls (5)

−~n ·Ni |x=0 or Lx = Ri,electrode on producing electrode (6)

ci = 0 on consuming electrode (7)

As ux = 0, the boundary conditions that are specified as a flux, equations (6) - (7), can be

rearranged to neumann boundary conditions for concentration to the surface.
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Figure 2: Diagrams showing boundary conditions
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Left:
∂ci
∂x

∣∣∣∣∣
x=0

=

 0 on insulating wall

−Ri,lef t/Di on electrode
(8)

Right:
∂ci
∂x

∣∣∣∣∣
x=Lx

=

 0 on insulating wall

Ri,right/Di on electrode
(9)

Since the concentration ci for each species i is modelled by an equation of the same form, we

denote for the rest of this section c = ci , u = uy in order to simplify notation. We use a space

discretisation x0, · · · ,xnx and y0, · · · , yny where xi = i∆x for each i ∈ {0, · · · ,nx} and yj = j∆y for

each y ∈ {0, · · · ,ny}. Then the dimensions of the channel are given by Lx = nx∆x and Ly = ny∆y.

With this notation, the model (1) for the concentration ci,j = c(xi , yj) can be discretised as eq.

(10) - (12). The 2nd order derivative with respect to x and y are discretised with 2nd order body

centred finite difference schemes (eq. (10) & (11)). For ∂c
∂y , a 2nd order upwinding scheme is

used since the velocity in the y direction (uy) is always strictly positive.

∂2c

∂x2 =
ci+1,j − 2ci,j + ci−1,j

(∆x)2 (10)

∂2c

∂y2 =
ci+1,j − 2ci,j + ci−1,j

(∆y)2 (11)

∂c
∂y

=
3ci,j − 4ci,j−1 + ci,j−2

2∆y
(12)

The boundary conditions are discretised as follows:

c|x=0 = c0,j (13)

c|x=Lx = cnx ,j (14)

∂c
∂x

∣∣∣∣∣
x=0

=
c2,j − c0,j

2∆x
(15)

∂c
∂x

∣∣∣∣∣
x=Lx

=
cnx+1,j − cnx+1,j

2∆x
(16)

c|y=0 = ci,0 (17)

∂c
∂y

∣∣∣∣∣
y=Ly

=
ci,ny+1 − ci,ny−1

2∆x
(18)

(19)

The space was discretised onto a grid and the resulting sparse matrices are solved using a

multi-purpose inbuilt linear solver (MATLAB).

It is important to note that for the mass transfer model, the exit of the channel is not simulated

(seen in Fig. 2a). This is because 1) the concentration distribution at the point the fluid is

separated into two is the parameter of interest 2) the velocity of fluid can in this region can
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be approximated by an analytic function of x (see eq. 2). The second important point to

note is that the outflow condition is only valid if the solution down stream does not affect the

solution upstream of the boundary. However, the diffusion counterflow will be far smaller

than the transport via convection out of the cell (by virtue of the fact the products are being

hydrodynamically separated). Therefore, this error is not significant in terms of the outcomes

found.

1.2 Multi-physics model

1.2.1 Optics

The transfer matrix method is implemented by first defining the structure of the optical system

and for each layer (k ∈ {1, · · · ,m}) a complex refractive index (ñk) and layer thickness (dk) given.

From this, the 2x2 layer and interface matrices are calculated. Then the system matrix S̄

can be determined and overall transmittance, reflectance and absorptance computed. Layer

absorptance is calculated by stepping through each layer in the stack and calculating the power

absorbed. This methodology is repeated for each wavelength over the wavelength range of

interest. Byrnes [1] gives an extensive description of how to implement the transfer matrix

model.

One important consideration on the stability of the transfer matrix method is that, as the layer

widths increases, the amount of light passing through that layer is reduced exponentially. This

means the layer matrix tends to equation (20).

Lk =

∞ 0

0 0

 as dk→∞ (20)

This can cause computational issues so L1,1 where Li,j denotes the (ith, jth) entry of the kth layer

matrix Lk in the stack is replaced by some arbitrary large number which is large enough to keep

numerical errors small.

Secondly, when the stack is completely absorbing, the system transfer matrix becomes ill-

conditioned. Therefore it becomes difficult to accurately solve the problem for when light is

shined simultaneously in to both ends of the stack. A work-around is to only solve for light in

the forward direction, and to flip the stack in order to solve the reverse problem ‘forward’. As

the light from either end of the stack is assumed to be incoherent, the total optical power flow

in the stack can be calculated through summation.

1.2.2 Current density distribution

A secondary current density distribution model was employed which includes the electrode

kinetics but not the mass-transfer effects [2]. As the current density is significantly lower than

the limiting current that the electrolyte can support this is a valid methodology.

∇2Φ = 0 i = −κ∇Φ (21)
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The boundary conditions come from specifying the current density across the boundary. Either

the boundary is insulating (−~n · i = 0) or it allows the flow of charge across it (−~n · i = ielectrode)

where the electrode current density ielectrode is a function of the electrode potential E which

is defined as E = Φelectrode −Φ(y) + constant) on the electrode-electrolyte interface. Here the

constant is arbitrary and comes from the type reference electrode system used, Φelectrode is the

absolute electric potential of the electrode and is constant and Φ(y) is the absolute electric

potential of the electrolyte at the interface and is dependant on the position on the interface (y).

Given i = −κ∇Φ , this becomes ~n · ∇φ = 0 for the insulating boundaries (walls, inlet, outlet,

separator). At the electrodes, ~n · ∇φ = ielectrode/κ. A diagram of the boundary conditions for the

current density distribution can be seen in Figure 2b.

Using the same notation as was used in the discretisation of the constant flux mass transfer

model, the laplace equation is discretised using a 2nd order centred finite difference scheme as

shown in eq. (22). The boundary conditions for this are given by eq. (23) - (26).

0 =
Φi+1,j − 2Φi,j +Φi−1,j

(∆x)2 +
Φi,j+1 − 2Φi,j +Φi,j−1

(∆y)2 (22)

∂Φ
∂x

∣∣∣∣∣
x=0

=
Φ2,j −Φ0,j

2∆x
(23)

∂Φ
∂x

∣∣∣∣∣
x=Lx

=
Φnx+1,j −Φnx−1,j

2∆x
(24)

∂Φ
∂y

∣∣∣∣∣
x=0

=
Φi,2 −Φi,0

2∆y
(25)

∂Φ
∂y

∣∣∣∣∣
x=Ly

=
Φi,ny+1 −Φi,ny−1

2∆y
(26)

The kinetics of the electrode gives the voltage current relationship.

• Cathode: Bulter-Volmer

icathode(E) = i◦
(
eαaf (E−Eeq) − e−αcf (E−Eeq)

)
(27)

Where the electrode potential E of the interface is a function of position on the surface of

the electrode, hence E(y). αa, αc, f , Eeq and i◦ are all constants as defined in the list of

symbols in the main text.

• Photo-anode: Integrated IPCE vs E relationship

ianode(E) =
∫ ∞

0
e
(
IP CEf(E,λ)qf

p(λ) + IP CEb(E,λ)qb
p(λ)

)
dλ (28)

Where IP CEi , qip is the incident photon to current efficiency and the spectral photon flux

respectively where the superscript i gives the direction of illumination (f for forward and

b for backward). The spectral photon flux qp vanishes for small wavelengths of light and
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Table 1: Numerical solution details (Where N.D.A is Non-Dimensional Analysis)

Model Symbol Value/Dataset/Notes

N
.D

.A Mass transfer

nx 401
ny 401
Ly,entrance = 0.5×Lx
Ltoty = Ly,entrance +Ly,electrode

Fu
ll

m
u

lt
i-

p
hy

si
cs

m
od

el

Optics
λstart 310 nm
λend 1000 nm
∆λ 1 nm

Current density model

λstart 310 nm
λend 600 nm
∆λ 1 nm
Ly,entrance/L

tot
y 0.2

Ly,exit/L
tot
y 0.3

nx 148
ny 148

Mass transfer

nx 101
ny 101
Ly,entrance = 0.5×Lx
Ltoty = Ly,entrance +Ly,electrode

IP CE vanishes for large wavelengths of light (and also for qp but for a λ greater) meaning

that this integral is accurately approximated by some interval [λstart ,λend].

The relationship between IP CE and E is measured experimentally. Then for a given

electrode potential E, the value for IPCE can be interpolated from the experimental data.

The boundary conditions at the electrodes leads to a non-linear system, which can be solved

using a Newton-Raphson procedure (MATLAB).

1.2.3 Transport equation

The transport equation is discretised and solved in much the same fashion as in the mass-

transfer only model. The only difference is that now Ri,left/right is a function of y which is

calculated from the solution of the secondary current density model (ielectrode) by eq. (29).

Ri,left/right =
ηf aradiacilef t/right

ne-F
(29)

1.3 Discretisation details

Details of the discretisation of the dimensions x,y and λ are given in Table 1. This also includes

the length of any entrance or exit. For the optic component of the multi-physics model, the

interval [λstart ,λend] and interval spacing ∆λ refer to the set of wavelengths at which the transfer

matrix model was solved for. For the current density model, these was parameters refer to the

discretisation of the integration given in eq. (28).
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2 Separator position in cell

For the basic investigation of the given cell design the separator was placed in the middle of the

cell (at Lx/2). However this is not necessarily the optimal position for it as DH2 and DO2 equals

4.5× 10−9 and 2.1× 10−9 m2s−1 respectively and the water splitting stoichiometry means the

molar flux of H2 is twice that of O2.

The effect of this can be seen in Figure 3 for a given set of model parameters where the separator

position at which highest collection efficiency is achieved is at x/Lx = 0.420. It is positioned to

the left of the centre as hydrogen has both a higher diffusivity and molar production rate.
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Figure 3: Product concentration ratio at the outlet of the cell from the mass transfer only
model. The key model parameters are Lx = 5 mm, Ly,electrode = 10 mm, 〈uy〉 = 10× 10−5 ms−1,
DH2 = 4.5× 10−9 m2s−1 and DO2 = 2.1× 10−9 m2s−1

3 Experimental details

3.1 Calculation of effective interfaces

In order to measure the optics of the glass : thin film : electrolyte interface a test cell was made

by stacking a 1 mm silicone gasket and a microscope coverslip (soda lime glass) on top. The

optics of this cell was represented in the transfer matrix model by the diagram in Figure 4.

The forward and backwards transmittance and total reflectance was determined by a UV-vis

spectrophotometer with an integrating sphere attachment.

From this, the system intensity transfer matrix S̄ could be calculated (eq. (30)) using the

intensity reflection and transmittance coefficients for forward and backward illumination for
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Figure 4: Optical geometry of the test cell

the whole stack. The intensity reflection r̄+/− and transmission t̄+/− coefficients can be related

to the total reflectance R+/− and transmittance T +/− by equation (31) where the superscript

denotes the forward (+) and backward (−) propagating electromagnetic waves.

S̄ =
1
t̄+

 1 −r̄−

r̄+ t̄+t̄− − r̄+r̄−

 (30)

R+ = r̄+ T + = t̄+
Real{ñj+1}

ñj
R− = r̄− T − = t̄−

Real{ñj }
ñj+1

(31)

The intensity system matrix is matrix multiplication of all the intensity interface matrices and

intensity layer matrices in order of the stack (eq. (32)). Therefore if all the complex refractive

indices are known for all the layers except the equivalent interface (see Figure 4), then the

equivalent interface matrix is given by equation (33).

S̄ = Ī0,1L̄1Ī1,2 · · · L̄j Ī
equiv
j,j+1 L̄j+1 · · · L̄mĪm,m+1 (32)

Ī
equiv
j,j+1 =

(
Ī0,1L̄1Ī1,2 · · · L̄j

)−1
S̄
(
L̄j+1 · · · L̄mĪm,m+1

)−1
(33)

The intensity reflection and transmission coefficients for the equivalent interface now can be

calculated from:

r̄+ = S̄21
S̄11

t̄+ = 1
S̄11

r̄− = − S̄12
S̄11

t̄− = det(S̄)
S̄11

(34)

The assumption that the glass coverslip was made of soda lime glass was found to be accurate

enough for the purpose of this model. This was done by taking literature values for the complex

refractive index for soda lime glass [3] and comparing the model outputs to the transmittance

and reflectance of the glass coverslip only. The result of this can be seen in Figure 5.

3.1.1 Optics of photo-anode and cathode

For the calculation of the equivalent interface matrix for the photo-anode, there was slightly

higher predicted reflectance from the glass optiwhite than was measured for the stack at
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Figure 5: Measured and calculated transmittance and reflectance of the glass coverslip only
showing the accuracy of the soda lime glass nk data
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wavelengths lower than 335 nm, leading to a equivalent interface R− value that was negative.

This failure of the model (specifically optiwhite nk data) to match reality is negligible as: 1)

deviation is small (difference in reflectance between the experimental data for the test cell and

predicted results for optiwhite glass alone is smaller than 0.3% for the 310-335 nm region) 2)

This error is for the negative direction (glass-photoanode-electrolyte) and the solar illumination

is in the opposite direction and so the small fraction that is reflected throughout the stack is

subject to this error.

4 Electrode current density distribution

As seen in Figure 6, the current density distribution on the surface of the electrode is negligible

and hence the assumption of constant electrode reaction flux is accurate.
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Figure 6: Electrode current density from the multiphysics model with Lx = 1 mm, Ly,electrode = 10
mm and Vbias = 1.4 V
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5 Predicted photocurrent behaviour from IP CE integration

Figure 7 shows an example of the predicted photocurrent vs electrode potential behaviour of the

photo-anode using the experimentally determined IP CE data and the calculated irradiance at

the surface of the electrode assuming an optical geometry (air-optiwhite-water-Fe2O3-optiwhite-

air).
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Figure 7: Integrated IPCE curve at various electrode potentials for AM1.5 illuminating air-
optiwhite-water-Fe2O3-optiwhite-air for a channel width Lx = 1 mm
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