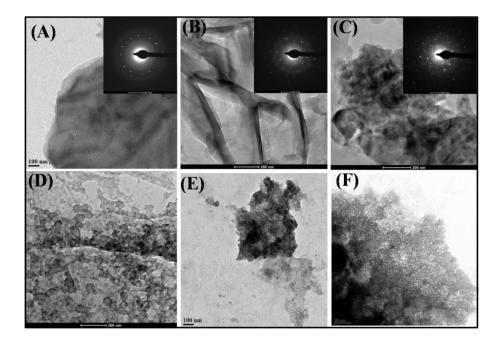
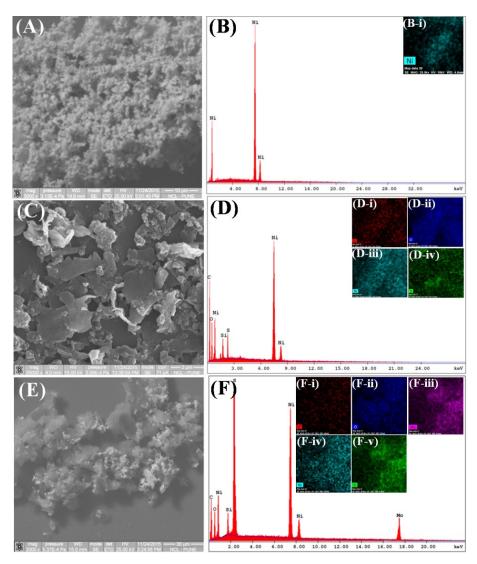
Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Electronic supplementary information

In-situ grown Nickel Nanoparticles in Calixarene Nanoreactor on Graphene-MoS₂ Support for Efficient Water Electrolysis


Babasaheb J. Waghmode*ab, Siddheshwar N. Bhangec, Sreekuttan M. Unnid, Kashinath R. Patilb and Dipalee D. Malkhede*a

^aCentre for Advanced studies in Chemistry, Department of Chemistry, Savitribai Phule Pune University, Pune-411007, India.


^bCentre for Materials Characterization Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India.

^ePhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India.

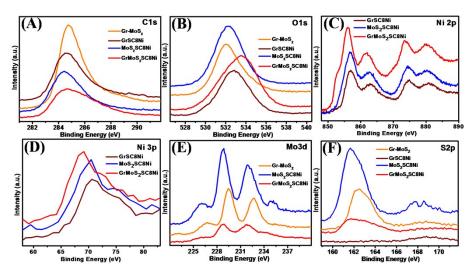

^dLaboratory for Chemistry and Life Sciences, Tokyo Institute of Technology, R1-17, 4259 Nagatsuta, Midoriku, Yokohama 226-850, Japan.

Figure S1. TEM micrograph of (A) Gr (B) MoS₂, (C) Gr-MoS₂, (D) Ni, (E) GrSC8Ni and (F) MoS₂SC8Ni electrocatalysts.

Figure S2. SEM micrograph of (A) Ni, (C) GrSC8Ni and (D) GrMoS₂SC8Ni electrocatalyst; SEM-EDS, Inset with elemental mapping of (B) Ni, (D) GrSC8Ni and (F) GrMoS₂SC8Ni electrocatalyst

Figure S3. Comparative XPS spectra of (A) C1s, (B) O1s, (C) Ni 2p, (D) Ni 3p (E) Mo3d and (F) S2p spectra of Gr, MoS₂ and it's respective composites.

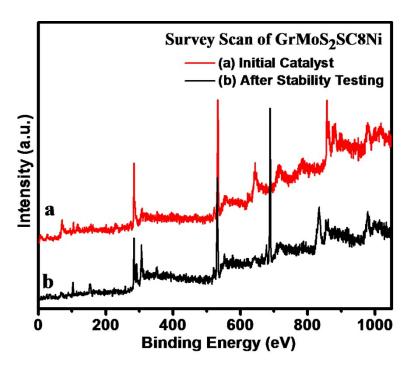
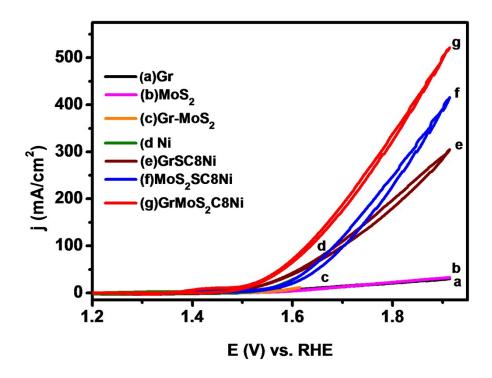



Figure S4. Comparative XPS survey scan of GrMoS₂SC8Ni (a) Initial Catalyst and (b) After Stability Testing.

Figure S5. Comparative CV plots of (a)Gr (b) MoS₂, (c) Gr-MoS₂, (d) Ni, (e) GrSC8Ni, (f) MoS₂SC8Ni, and (g) GrMoS₂SC8Ni electrocatalysts in 1 M KOH electrolytes.

Figure S5 shows the CVs of Ni and its composites obtained after different numbers of cycles. Figure S5(g) shows that the GrMOS₂SC8Ni nanocomposite catalyst shows the oxidation wave attributed to the catalytic oxidation of water. With further cycling, the above oxidation/reduction waves increased in amplitude and

approached a stable value after 100 cycles, suggesting the activation of nanomaterial (i.e., Ni NPs) on the electrode surface. Figure S5 (a, b, c and d) shows that the redox waves assignable to the Gr, MoS₂, Gr-MoS₂ and Ni respectively are all ill shaped. The OER catalytic current of it increases initially until reaching a maximum after 100 cycles and then drops quickly, indicative of poor catalyst stability. For GrSC8Ni, MoS₂SC8Ni and GrMoS₂SC8Ni nanocomposite material [Figure S5 (e, f and g)], the OER current decreases slightly during the first 100 cycles. However, this OER activity gradually decreases with CV cycling, consistent with previous reports that RuO₂ and IrO₂ suffer from large chemical degradation during OER process. GrMoS₂SC8Ni nanocomposite material afford the largest oxygen-evolving current among the studied catalysts. Remarkably, the current density of 10 mA cm⁻², which is a metric relevant to solar fuel synthesis. GrMoS₂SC8Ni nanocomposite material achieved at overpotential smaller than that GrSC8Ni, MoS₂SC8Ni catalysts, Ni and other precursor materials. (Figure S5 and Table S1 of ESI). By contrast, GrSC8Ni and MoS₂SC8Ni nanocomposite material and commercial Pt/C fail to reach such current density. During OER study first we perform a CV and then LSV study.

Table S1. OER performance of the reported Ni based catalyst.

Table S1: OER performances in the basic medium of present catalyst and other Nickel based electro catalyst.					
Sr. No	Catalyst	Current Density (j)	Overpote ntial at (j)	Tafel slope (mV dec ⁻¹)	Reference
1	Gr	10 mA/cm ²	528 mV	363 mV dec ⁻¹	Current Work
2	MoS ₂	10 mA/cm ²	436 mV	226 mV dec ⁻¹	Current Work
3	Gr-MoS ₂	10 mA/cm ²	343 mV	117 mV dec ⁻¹	Current Work
4	Ni	10 mA/cm ²	325 mV	67 mV dec ⁻¹	Current Work
5	GrSC8Ni	10 mA/cm ²	314 mV	51 mV dec ⁻¹	Current Work
6	MoS ₂ SC8Ni	10 mA/cm ²	234 mV	48 mV dec ⁻¹	Current Work
7	GrMoS ₂ SC8Ni	10 mA/cm ²	214 mV	31 mV dec ⁻¹	Current Work
8	Amorphous Ni(OH) ₂	10 mA/cm ²	344 mV	46 mV dec ⁻¹	Cryst. Growth Des. 2015, 15, 4475-4483.
9	Ni _{1-x} FexOOH	10 mA/cm ²	~320 mV	50 mV dec ⁻¹	J. Phys. Chem. C 2015, 119, 18303-18316.
10	Ni _{0.69} Fe _{0.31} O _x /C)	10 mA/cm ²	280 mV	30 mV dec ⁻¹	Langmuir 2014, 30, 7893-7901.
11	NiCo LDH	10 mA/cm ²	367 mV	40 mV dec ⁻¹	Nano Lett. 2015, 15, 1421-1427.
12	β-Ni(OH) ₂ nanosheets	10 mA/cm ²	425 mV	60 mV dec ⁻¹	Chem. Mater. 2015, 27, 5702-5711.
13	ALD NiS _x film	10 mA/cm ²	372 mV	56 mV dec ⁻¹	Chem. Mater. 2016, 28, 1155-1164.
14	PNG-NiCo	5 mA/cm ²	373 mV	156 mV dec ⁻¹	ACS NANO, 2013,11,10190-10196.
15	Ni-Co binary oxide	10 mA/cm ²	~325 mV	~39 mV dec ⁻¹	ACS NANO, 2014,8,9518-9523.
16	rGO (Ni _{2/3} Fe _{1/3} -rGO)	10 mA/cm ²	210 mV	40 mV dec ⁻¹	ACS NANO, 2015 ,9,177-1984.
17	Fe _{0.1} Ni _{0.9} O	10 mA/cm ²	297 mV	37 mV dec ⁻¹	ACS NANO, 2015, 9, 5180-5188.
18	Ni ₂ P/Ni/NF	10 mA/cm ²	200 mV	72 mV dec ⁻¹	ACS Catal. 2016, 6, 714-721.
19	Ni _{1-x} Fe _x /NC	10 mA/cm ²	330 mV	45 mV dec ⁻¹	ACS Catal. 2016, 6, 580-588.
20	3D-OMNiSA	10 mA/cm ²	254 mV	39 mV dec ⁻¹	ACS Catal. 2016, 6, 1446-1450.
21	Ni0.9Fe0.1Ox	10 mA/cm ²	336 mV	30 mV dec ⁻¹	J. Am. Chem. Soc. 2012, 134, 17253-17261.
22	NiFe-LDH/CNT	10 mA/cm ²	300 mV	35 mV dec ⁻¹	J. Am. Chem. Soc. 2013, 135, 8452-8455.
23	Ni(OH) ₂ /NiOOH	10 mA/cm ²	300 mV	40 mV dec ⁻¹	J. Am. Chem. Soc. 2013, 135, 12329-12337.
24	α-Ni(OH) ₂	10 mA/cm ²	331 mV	42 mV dec ⁻¹	J. Am. Chem. Soc. 2014, 136, 7077-7084.
25	Ni3N nanosheets/CC	10 mA/cm ²	400 mV	45 mV dec ⁻¹	J. Am. Chem. Soc. 2015, 137, 4119-4125.
26	Sandwich like NiFe/C	10 mA/cm ²	~210 mV	30 mV dec ⁻¹	ACS Appl. Mater. Interfaces 2015, 7, 9203-9210.
27	[Ni,Fe]O	10 mA/cm ²	300 mV	~48 mV dec ⁻¹	ACS Appl. Mater. Interfaces 2015, 7, 19755-19763.
28	NiS@SLS	11 mA/cm ²	297 mV	47 mV dec ⁻¹	ACS Appl. Mater. Interfaces 2016, 8, 5509-5516.
29	MWCNTs@NCS-2	10 mA/cm ²	~440 mV	96 mV dec-1	ACS Appl. Mater. Interfaces 2016, 8, 945-951.
30	La(Co _{0.71} Ni _{0.25})0.96-δ	10 mA/cm ²	265 mV	71 mV dec ⁻¹	ACS Appl. Mater. Interfaces 2016, 8, 6019-6031.
31	NiSe ₂ /Ti	20 mA/cm ²	295 mV	82 mV dec ⁻¹	ACS Appl. Mater. Interfaces 2016, 8, 4718-4723.
32	SL Ni(OH)2	5 mA/cm ²	302 mV	47 mV dec ⁻¹	ACS Appl. Mater. Interfaces 2014, 6, 10172-10180.
33	CQD/NiFe-LDH	10 mA/cm ²	235 mV	35 mV dec ⁻¹	ACS Appl. Mater. Interfaces 2014, 6, 7918-7925.
34	NiFeMn-LDH	20 mA/cm ²	~289 mV	~47mV dec-1	Chem. Commun., 2016, 52, 908-911.
35	NiFe LDH/oGSH,	10 mA/cm ²	350 mV	54 mV dec ⁻¹	J. Mater. Chem. A, 2015,00, 1-7.
36	NiMo HNRs/TiM	10 mA/cm ²	310 mV	68 mV dec ⁻¹	J. Mater. Chem. A, 2015, 3, 20056-20059.
37	NiFe LDH array	10 mA/cm ²	210 mV	31 mV dec ⁻¹	J. Mater. Chem. A, 2016, 4, 167-172.

References:

- 1 Oliva, P.; Leonardi, J.; Laurent, J. F.; Delmas, C.; Braconnier, J. J.; Figlarz, M.; Fievet, F.; Deguibert, A. *J. Power Sources* 1982, 8, 229.
- 2 Medway, S. L.; Lucas, C. A.; Kowal, A.; Nichols, R. J.; Johnson, D. J. Electroanal. Chem. 2006, 587, 172.
- 3 Kinoshita, K. Electrochemical Oxygen Technology; Wiley-Interscience: New York, 1992.
- 4 Gorlin, Y.; Jaramillo, T. F. J. Am. Chem. Soc. 2010, 132, 13612.