Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Supplementary materials

An investigation of Cu-Re-ZnO catalysts for the hydrogenolysis of glycerol under flow conditions

Mzamo L. Shozi^a, Venkata D.B.C. Dasireddy^a, Sooboo Singh^a, Pheladi Mohlala^b, David J. Morgan^c, Sarwat Iqbal^c and Holger B. Friedrich^{a*}

^aSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4000, South Africa
^bSasol Technology R&D, 1 Klasie Havenga Street, Sasolburg, 1974, South Africa
^cCardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom

^{*} To whom correspondence should be addressed: Email: friedric@ukzn.ac.za

Figure S1. Deconvolution of the TPR profiles of (a) Cu/ZnO and (b) Re/ZnO in order to determine reduction temperatures.

Figure S2. TPD profiles of (a) Cu/ZnO, (b) Re/ZnO and Re-Cu/ZnO. The mass spectrometer is calibrated in order to obtain quantitative data. This is achieved by injecting a known volume of the gas to be detected (propylene), V_{cal} through the septum. The peak area, A_{cal} of the mass spectrometer signal for propylene can be obtained from the AutoChem peak-editing software. The ratio of (V_{cal} / A_{cal}) can be used as a calibration factor for the calculations of Brønsted acid sites concentrations, N_{as} , using the formula below:

$$N_{as} = A_{pms} \left(\frac{V_{cal}}{A_{cal}} \right) \left(\frac{L}{10^{3} cc} \right) \left(\frac{mole}{22.414 L@STP} \right) \left(\frac{10^{6} \, \mu moles}{mole} \right)$$

Figure S3. SEM-EDX images of (a) ReO_x/ZnO , (b) CuO/ZnO and (c) Re-CuO/ZnO

Figure S4. TEM images of (a) ZnO, (b) ReO_x/ZnO, (c) CuO/ZnO and (d) Re-CuO/ZnO

Figure S5. The Re(4f) and Cu(2p) core-level spectra for the catalysts: (a) CuO/ZnO, (b) Re-CuO/ZnO and (c) ReO_x/ZnO . Cu is Cu(2+) oxide, whilst Re is predominantly Re(7+) (Re₂O₇). The small lower peaks come from reduction under x-ray beam.

Figure S6. XRD diffractograms of spent catalysts (a) Re/ZnO, (b) Cu/ZnO and (c) Re-Cu/ZnO.