Electronic Supplementary Information (ESI)

Drastic Improvement in the Photocatalytic Activity of Ga$_2$O$_3$ Modified with Mg–Al Layered Double Hydroxide for the Conversion of CO$_2$ in Water

Corresponding authors

Prof. Kentaro Teramura and Prof. Tsunehiro Tanaka

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615–8510, Japan

Tel: +81–75–383–2559 Fax: +81–75–383–2561

E–mail address: teramura@moleng.kyoto-u.ac.jp

List of the authors

Shoji Iguchi,a Yudai Hasegawa,a Kentaro Teramura,a,b Shotaro Kidera,a Soichi Kikkawa,a
Saburo Hosokawa,a,b Hiroyuki Asakuraa,b and Tsunehiro Tanakaa,b

Affiliation and full postal address

a. Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615–8510, Japan.

Figure S1 UV/Vis spectra of (A) 0.25Ag/95-MgAl/Ga₂O₃, (B) 95-MgAl/Ga₂O₃, (C) Mg–Al LDH, and (D) Ga₂O₃. UV/Vis diffuse reflectance spectra of the photocatalysts were measured using a UV-VIS Spectrophotometer (V-650, JASCO) equipped with an integrated sphere. BaSO₄ plate was used as a standard baseline for these spectra.
Figure S2 TEM images of (a) 1.0Ag/Ga₂O₃, (b) 1.0Ag/30-MgAl/Ga₂O₃, (c) 1.0Ag/95-MgAl/Ga₂O₃, (d) 0.25Ag/95-MgAl/Ga₂O₃, (e) 1.0Ag/95-MgAl/Ga₂O₃, and (f) 3.0Ag/95-MgAl/Ga₂O₃, captured on JEM-2100F TEM system (Japan Electron Optics Laboratory).
Figure S3 Ag 3d X-ray photoelectron spectra of (a) Ag powder, (b) Ag₂O, (c) 0.25Ag/95-MgAl₂Ga₂O₃, and (d) 0.25Ag/95-MgAl₂Ga₂O₃ after photoirradiation for 5 h. X-ray photoelectron spectra of composite photocatalysts were measured by ESCA-3400 (Shimadzu) using Mg Kα characteristic X-ray radiation. Peak positions were corrected by using C 1s peaks.
Figure S4 Surface atomic ratio of Ag cocatalyst loaded x-MgAl/Ga$_2$O$_3$ composite photocatalysts ($x = 0, 30, 50, 70, 95$) and bare Mg–Al LDH. X-ray photoelectron spectra of composite photocatalysts were measured by ESCA-3400 (Shimadzu) using Mg K_α characteristic X-ray radiation. Surface atomic ratios of elements were calculated using the following equations.

$$ A_{\text{total}} = A_{\text{Ag}} + A_{\text{Ga}} + A_{\text{Mg}} + A_{\text{Al}} $$

$$ \text{Ag} \ (%) = 100 \times \frac{A_{\text{Ag}}}{A_{\text{total}}} $$

$$ \text{Ga} \ (%) = 100 \times \frac{A_{\text{Ga}}}{A_{\text{total}}} $$

$$ \text{Mg} + \text{Al} \ (%) = 100 \times \frac{(A_{\text{Mg}} + A_{\text{Al}})}{A_{\text{total}}} $$

where $A_{\text{Ag}}, A_{\text{Ga}}, A_{\text{Mg}},$ and A_{Al} are peak areas in the spectra attributed to Ag 3d, Ga 2p, Mg 2p, and Al 2p, respectively.
Figure S5 Anodic photocurrent value of Ag cocatalyst loaded x-MgAl/Ga$_2$O$_3$ composite photocatalysts ($x = \rightarrow$: 0, \rightarrow: 30, \rightarrow: 50, \rightarrow: 70, \rightarrow: 95) with on/off UV light irradiation in the presence of methanol in the electrolyte solution. The composite photocatalysts were coated on a fluorine doped tin oxide (FTO) conductive glass by the electrophoresis deposition. The powder sample of the composite photocatalyst was dispersed thoroughly in an acetone solution containing iodine (I$_2$), and then direct current (DC) was applied to the FTO glasses, which comprised two-electrode electrochemical cell, at 10.0 V stable bias. Photocurrent value was measured by using three-electrode electrochemical cell under the photoirradiation by 200 W Hg-Xe lamp through quartz glass window. The obtained anodic photocurrent values were normalized by the weight of Ga$_2$O$_3$ contained in the composite photocatalysts.
Table S1

The result of photocatalytic conversion of CO$_2$ in water for 0.25Ag/95-MgAl/Ga$_2$O$_3$ composite photocatalyst and a series of reference photocatalysts. The content of Ga$_2$O$_3$ in photocatalyst powder was fixed at 0.19 g. Reaction solution: 1.0 L of aqueous NaHCO$_3$ solution (0.1 M), CO$_2$ supply: 30 mL min$^{-1}$, light source: 400 W high-pressure Hg lamp (through quartz glass jacket), photoirradiation time: 1 h.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type</th>
<th>Weight / g</th>
<th>Formation rate / µmol h$^{-1}$</th>
<th>Selectivity to CO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Ga$_2$O$_3$</td>
<td>H$_2$</td>
</tr>
<tr>
<td>95-MgAl/Ga$_2$O$_3$</td>
<td>composite</td>
<td>1.0</td>
<td>0.19</td>
<td>534.9</td>
</tr>
<tr>
<td>0.25Ag/95-MgAl/Ga$_2$O$_3$</td>
<td>composite</td>
<td>1.0</td>
<td>0.19</td>
<td>131.2</td>
</tr>
<tr>
<td>95-MgAl/0.25Ag/Ga$_2$O$_3$</td>
<td>composite</td>
<td>1.6</td>
<td>0.19</td>
<td>148.0</td>
</tr>
<tr>
<td>95-MgAl + 0.25Ag/Ga$_2$O$_3$</td>
<td>mixture</td>
<td>1.0</td>
<td>0.19</td>
<td>348.2</td>
</tr>
<tr>
<td>0.25Ag/Ga$_2$O$_3$</td>
<td>bare</td>
<td>0.19</td>
<td>0.19</td>
<td>130.7</td>
</tr>
<tr>
<td>1.0Ag/Mg$_2$Al LDH</td>
<td>bare</td>
<td>0.50</td>
<td>0.00</td>
<td>trace</td>
</tr>
</tbody>
</table>
Figure S6 Schematic illustrations of 0.25Ag/Ga$_2$O$_3$ (bare photocatalyst), 95-MgAl/0.25Ag/Ga$_2$O$_3$ (reference composite photocatalyst), 95-MgAl + 0.25Ag/Ga$_2$O$_3$ (mixture photocatalyst), and 0.25Ag/95-MgAl/Ga$_2$O$_3$ (composite photocatalyst).
Figure S7 The amounts of products evolved (left axis) and the selectivity toward CO evolution (right axis) in the repeating test for the photocatalytic conversion of CO\(_2\) in water using 0.25Ag/95-MgAl/Ga\(_2\)O\(_3\) photocatalyst. Red circle: CO, green square: O\(_2\), blue triangle: H\(_2\), black diamond: selectivity toward CO evolution. Photocatalyst weight: 1.0 g, reaction solution: 1.0 L of an aqueous NaHCO\(_3\) solution (0.1 M), CO\(_2\) supply: 30 mL min\(^{-1}\), light source: 400 W high-pressure Hg lamp (through a quartz glass jacket). The reaction solution was thoroughly degassed by a flow of high-purity CO\(_2\) gas after 1st and 2nd run.
Figure S8 TEM images of (a) before and (b) after reaction for 0.25Ag/95-MgAl/Ga₂O₃, and (c) before and (d) after reaction for 1.0Ag/95-MgAl/Ga₂O₃, captured on JEM-2100F TEM system (Japan Electron Optics Laboratory).