Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information:

(Sustainable Energy & Fuels)

Laccase-Natural Mediator Systems for "Green" Synthesis of Phenolic Monomers from Alkali Lignin

Bin Yao, a Praveen Kolla, b Ranjit Koodali, c Selvaratn Balaranjan, c Sunav Shrestha c and Alevtina Smirnova a,b,†

^a Materials Engineering and Science Program, South Dakota School of Mines and Technology, Rapid City, SD, 57701.

^b Chemistry and Applied Biological Sciences Department, South Dakota School of Mines and Technology, Rapid City, SD, 57701.

^c Chemistry Department, University of South Dakota, Vermillion, SD, 57069.

+Corresponding authors:

Alevtina Smirnova: Tel: (860)428-0446. E-mail: Alevtina.Smirnova@sdsmt.edu

The alkali lignin purchased from Sigma-Aldrich was characterized by nuclear magnetic resonance

(NMR) and Fourier transform infrared spectroscopy (FTIR).

Fig. 1. The ¹H–NMR spectrum of alkali lignin before LMS treatment.

The alkali lignin before treatment by LMS was characterized by NMR (Bruker, 300HZ). The ¹H assigned to the methyl group is at between δ 3.5 and 4.0 ppm. The protons of the aromatic and vinylic group are at between δ 6.3- 7.7 ppm. H α in β -O-4 structures is around 6.05 ppm.

Fig. 2. The FT-IR spectrum of alkali lignin before LMS treatment.

The alkali lignin before treatment by LMS was characterized by FT-IR (Cary 660 FTIR spectrometer) from Agilent Technologies (Fig. 2). The absorption at 3500 cm⁻¹ is caused by the –OH stretching vibration of aliphatic and aromatic groups in the lignin. The absorption peak at 2900 cm⁻¹ is assigned to the stretching vibration of the C–H band of CH₂, CH₃, and CH₃O groups in lignin. The peaks found at 1465 and 1426 cm⁻¹ are assigned to the stretching in the Aryl-O-CH₂ bonds of the lignin. The peak at 1268 cm⁻¹ can be assigned to C–O stretching and C–O. The peak at 1268 cm⁻¹ belongs to C–O stretching and C–O linkage in guaiacyl aromatic methoxyl groups.

Fig. 3. Optimized pH and temperature for Laccase I (Myceliophthora thermophila)

Fig. 4. Optimized pH and temperature of Laccase II (Trametes versicolor)

Supplementary Table 1: Phenolic compounds identified by using pyr-GCMS in the solid-state lignin residue after treatment with LMT-MS and LTV-MS systems in comparison to the raw alkali lignin.

	Raw lignin			5 wt. % LMT-5 wt. % MS			5 wt. % LTV-5 wt. % MS		
Name of the compound *	RT**	Area	% Area	RT**	Area	% Area	RT**	Area	% Area
Phenol, 2¬methyl-	14.9	5.80.10 ⁷	0.94	15.0	1.01·10 ⁸	1.34	14.9	1.32·10 ⁸	1.44
Phenol, 3-methyl-	15.8	1.29·10 ⁸	1.47	15.9	1.00·10 ⁸	1.32	15.9	2.01·10 ⁸	2.05
Phenol, dimethyl-				17.4	6.34.10 ⁷	0.55	17.8	6.34.10 ⁷	0.98
Phenol, dimethyl-				18.0	2.10·10 ⁸	1.88	17.9	2.38·10 ⁸	2.77
Phenol, dimethyl-				18.1	7.89.10 ⁷	0.66	18.2	8.21.10 ⁷	0.48
Hydroquinone	20.3	3.87·10 ⁸	4.43	20.4	4.88·10 ⁸	4.47	20.4	5.56·10 ⁸	4.78
1,2-Benzenediol, 3-methoxy-	22.5	1.98·10 ⁸	2.01		2.12·10 ⁸	2.34		2.52·10 ⁸	2.88
1,2-Benzenediol, 4-methyl-								1.55·10 ⁸	1.76
2-methoxy-4-methylphenol	24.3	2.33.107	0.55	24.9	0.98·10 ⁸	1.12	25.1	1.02·10 ⁸	1.23
Phenol, 4-ethyl-2-methoxy-				26.3	1.57·10 ⁸	1.59	26.2	1.67·10 ⁸	1.83
3-allyl-6-methoxyphenol				27.1	1.45·10 ⁸	1.50	27.2	1.48·10 ⁸	1.54
Phenol, 2-methoxy-4-(2-	28.8	2.76·10 ⁸	3.12	28.8	3.34·10 ⁸	3.87	28.9	3.12·10 ⁸	3.33
propenyl)-, acetate									
4'-Hydroxy-3'-				30.1	1.78·10 ⁸	1.68	30.0	1.88·10 ⁸	1.93
methoxyacetophenone									
Benzoic acid, 4-(acetyloxy)-3-				38.7	1.56·10 ⁸	1.58	38.8	1.82·10 ⁸	1.92
methoxy-, methyl ester									
Benzoic acid, 3,5-dimethoxy-,				57.9	5.56.10 ⁷	0.43	56.7	8.76.10 ⁷	0.99
methyl ester									
[1,1'-Biphenyl]-4,4'-diol,	58.9	8.18.107	1.11						
3,3'-dimethoxy-									
1,1'-Biphenyl, 6-hydroxy-	60.3	4.23.10 ⁷	0.76						
2',3',4'-trimethoxy-									

*The names of compounds are based on the identification using the MS NIST library; RT**- Retention time.