Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Designing Transition Metal and Nitrogen Codoped $SrTiO_3(001)$ Perovskite Surfaces as Efficient Photocatalysts for Water Splitting

Yang Yang⁺, Weijie Zheng⁺, Daojian Cheng^{1,2*}, and Dapeng Cao^{1,2,*}

¹State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

²Beijing Advanced Innovation Center for Soft Matter Science and Engineering,

Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

⁺ Equally contributed to this work

^{*} Corresponding Authors. Email: chengdi@mail.buct.edu.cn or caedp@mail.buct.edu.cn

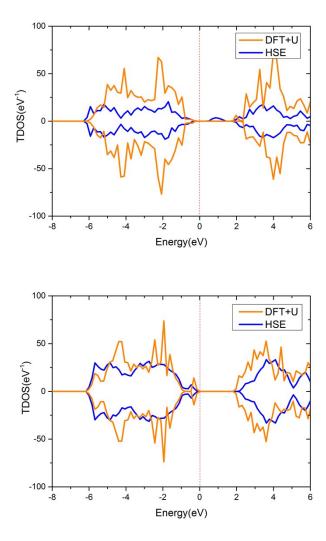


Figure S1. The DOS of V doped (a) and N-Nb codoped (b) $SrTiO_3(001)$ surfaces calculated by DFT+U and HSE.

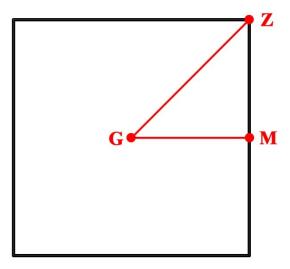


Figure S2. Schematic illustration of the symmetry points $G,\,M,\,Z$ on $SrTiO_3(001)$ surface.