External charring limits sugar yields obtained from flow-through subcritical water hydrolysis

Supporting Information for a manuscript submitted to Sustainable Energy & Fuels

Zijian Ma,^a Patricia Guerra,^a Maksim Tyufekchiev,^a Azadeh Zaker,^a Geoffrey A. Tompsett,^a

Paulo Cesar Torres Mayanga,^b Tânia Forster-Carneiro,^b Peng Wang,^c Michael T. Timko^{*a}

^a Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road,

Worcester, MA 01609

^b School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato,

n.80, 13083-862 Campinas, SP, Brazil

^c Bruker Optics, Bruker Corporation, Billerica, MA, USA

Summary. The Supporting Information provides a schematic representation of the batch and flow processes; raw data for TG analysis (thermal loss curves and differential thermograms), TG fitting and data quality assurance, Raman spectroscopy, and ATR infrared spectroscopy. The Supporting Information is divided into 4 sections: 1) experimental details, 2) TGA results obtained for flow-through treated samples, 3) IR results obtained from analysis of flow-through treated samples, 4) results obtained from analysis of batch-treated samples.

1. Experimental details. Green coffee powder was knife milled and used as a feed for flowthrough and batch subcritical water hydrolysis processing. Figure SI-1 is a schematic representation of both processes.

Figure SI-1. Schematic representation of the flow and batch processes.

2. Thermogravimetric Analysis of Flow-Through Samples. Figure SI-2 contains the raw thermal loss curves obtained for the feed biomass and for biomass treated at 150, 175, 200, and 250 °C. Figure SI-3 shows the raw DTG curves. Figure SI-4 shows representative results of DTG curve fitting. Figure SI-5 compares TGA compositional analysis to NREL analysis. Table SI-1 provides average temperatures and ranges (calculated as standard deviations) used to fit all raw DTG spectra.

Figure SI-2. Raw TGA thermograms obtained for coffee powder and coffee powder treated under FT-SWH conditions (temperatures listed).

Figure SI-3. DTG data obtained from biomass treated under FT-SWH conditions.

Figure SI-4. Raw DTG thermogram obtained for coffee powder showing curve fits for water,

semi-volatile (SV1), hemicellulose, cellulose, and lignin.

Figure SI-5. Comparison of holocellulose, lignin, and moisture content of green coffee powder obtained using TGA and the NREL analysis methods.

 Table SI-1. Average peak temperatures and full-width half maxima (FWHM) used for peak

 fitting biomass and solid residue DTG curves.

 Biomass/residue
 Average Peak Temperature
 FWHM

Biomass/residue component	Average Peak Temperature (°C)	FWHM (°C)
SV1s	200±18	60
SV2	207±0	55
hemicellulose	262±28	60
cellulose	329±17	60
lignin	352±9	200
char	410±21	108

3. Spectroscopic Analysis of Flow-Through Samples. Table SI-2 provides Raman band assignments of all major bands observed in the powder samples. Table SI-3 provides the same for IR bands. Figure SI-6 provides raw ATR-FTIR spectra obtained from the feed biomass and for biomass treated at 150, 175, 200, and 250 °C. Figure SI-7 shows representative curve fits for specific C=C and C=O bands in the ATR-FTIR spectra.

Green Powder	SWH 150 °C	SWH 175 °	E SW C 20(/H) °C	SWH 250 °С	Assignment	Compound	Reference
(cm ⁻)	(cm -)) (cm	-) (cn	n ⁻¹)	(cm ⁻¹)			
1656						C=C	Lipids, Polyphenols	Keidel et al. ¹
1596							(chlorogenic) acids	Rubayiza and Meurens ²
	1580	1580	1580	1580)	G-band		Sadezky et al. ³
1445						CH ₃	Roasted coffee,	Rubayiza and
							Lipid fraction form arabica and robusta coffee	Meutens
	1435	1435	1426	1426	ō	D3 band		Sadezky et al. ³
1374sh						CH ₂	Roasted coffee,	Rubayiza and
1332							Lipid fraction form	Meurens-
1311sh							coffee	
1300sh								
1265						CH	Roasted coffee,	Rubayiza and
						deformation	Lipid fraction form arabica and robusta coffee	Mediciis.
	1317	1317		1317	1	D-band		Sadezky et al. ³
1120						cyclohexane (cyc) CH	Chlorogenic acid	El-Abassy et al. ⁴
1092	1096	1096	1096				carbohydrates	
	944	944					Unknown	
576	768	768					Unknown	
375	571	571	571				Unknown	

Table SI-2. Raman band positions and assignments of the spectra at different temperatures for the green coffee powder and its hydrothermal treatment products

Table SI-3. IR band positions and assignments of the spectra at different temperatures for the green coffee powder and its hydrothermal carbonization residues.

Coffee powder (cm ⁻¹)	SWH 150 °C (cm ⁻¹)	SWH 175 °C (cm ⁻¹)	SWH 200 °C (cm ⁻¹)	SWH 250 °C (cm ⁻¹)	Assignment	Reference
670	668 776	674 780	664 783	664 812	Skeletal modes (starch) Skeletal modes (starch)	Reis et al. ⁵ Reis et al. ⁵ Ballesteros et al. ⁶
	110	100	105	012	α-linked D-galactopyranose units	iters et un , Dunesteros et un
894	895	899	894	851	Skeletal modes (starch), β -linked	Reis et al. ⁵ , Ballesteros et al. ⁶
1029	1030	1028	1036	1031	C-O, C-O-H, glycosidic bands from	Reis et al. ⁵
	1051	1050	1057	1057	carbohydrates C-O Chlorogenic acids, lignin aromatic C-H deformation	Mishra et al. ⁷ , Agarwal an Atalla ⁸
1102	1115	1105	1105	1113	Chlorogenic acids, carbohydrates	Mishra et al. ⁷ , Hineno ⁹
1147	1160	1152	1161	1157	Chlorogenic acids, carbohydrates	Mishra et al. ⁷ , Hineno ⁹
	1202	1205	1203	1213	carbohydrates	Hineno ⁹
1240	1231	1232			Chlorogenic acids	Mishra et al. ⁷
	1263	1269	1261	1266	Lignin, aryl ring breathing with C=O	Agarwal and Atalla ⁸
1323	1318	1313	1319	1316	Unknown	
	1342	1337	1332	1337	C-O-C ester, lignin O-H bend	Pujol et al. ¹⁰ , Craig et al. ¹¹
1374	1368	1366	1367	1361	Chlorogenic acids	Mishra et al. ⁷
1422	1424	1424	1430	1430	Unknown	
1457	1456	1448	1457	1451	CH bending of CH ₃ , Chlorogenic acids, lignin O- CH ₃ or CH ₂ scissor	Agarwal and Atalla ⁸
1508	1509	1504	1512	1509	C=C,	Pujol et al. ¹⁰
1598	1615	1615	1610	1601	C=C, lignin ring C=C	Agarwal and Atalla ⁸
1636	1649	1654	1658		C=C, lipids, fatty acids, chlorogenic acids, lignin C=C	Pujol et al. ¹⁰ , Raba et al. ¹ Agrawal and Atalla ⁸
1729	1720	1715	1704	1705	C=O, triglycerides or esters	Reis et al. ⁵ , Pujol et al. ¹⁰ , Rab et al. ¹²
2857 2918	2850	2853	2853	2848	C-H aliphatic	Reis et al. ⁵ , Craig et al. ¹¹
2956	2930	2922	2922	2924	C-H aliphatic	Reis et al. ⁵ , Craig et al. ¹¹
3322	3337	3337	3334	3339	О-Н	Reis et al. ⁵

Figure SI-6. Raw ATR infrared spectra obtained for feed and feed treated at different FT-SWH temperatures (as indicated). Specific bands are highlighted for chemical content.

Figure SI-7. Curve fitting analysis of ATR infrared spectra for the feed and for biomass treated at 250 °C.

4. Analysis of Samples Obtained from Batch Experiments. Coffee powder was treated batchwise at conditions comparable to those used for FT-SWH treatment (e.g., 175 and 200 °C). Figure SI-8 provides ATR-IR spectra obtained from batch-treated biomass at 175 °C showing retention of bands associated with semi-volatile content; in comparison, bands associated with semi-volatile content are not observed in the spectrum obtained from analysis of the sample treated under FT-SWH conditions. Figure SI-9 provides DTG data obtained from batch-treated samples and compares them to samples obtained from flow-through treatment. The char region is highlighted to show that the char content of samples treated under batch conditions is greater than that obtained under flow conditions.

Figure SI-8. ATR-IR spectra obtained from analysis of the biomass feed, FT-treated biomass (175 °C), and batch-treated biomass (175 °C).

Figure SI-9. DTG data obtained from analysis of batch and FT-treated biomass at 175 and 200

°C.

References

- 1. A. Keidel, David von Stetten, Carla Rodrigues, Cristina Ma ' Guas and P. Hilderbrandt, *J. Agric. Food Chem.*, 2010, 11187–11192.
- 2. A. B. Rubayiza and M. Meurens, J. Agric. Food Chem., 2005, 53, 4654-4659.
- 3. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner and U. Poschl, *Carbon*, 2005, **43**, 1731–1742.
- 4. R. M. El-Abassy, Patrice Donfack and A. Materny, *Food Chemistry* 2011, **126**, 1443–1448.
- 5. N. Reis, Adriana S. Franca and L. S. Oliveira, *Talanta*, 2013, 115, 563–568.
- L. F. Ballesteros, J. A. Teixeira and S. I. Mussatto, *Food Bioprocess Technology*, 2014, 7, 3493–3503.
- S. Mishra, Poonam Tandon, Pinkie J. Eravuchira, Rasha M. El-Abassy and A. Materny, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 104, 358– 367.
- 8. U. P. Agarwal and R. H. Atalla, in *Advances in Chemistry*, ed. D. D. Cyril Heitner, John Schmidt, CRC Press, 2010.
- 9. M. Hineno, Carbohydrate Research, 1977, 56, 219-227.
- 10. D. Pujol, C. Liu, J. Gominho, M. A. Olivella, N. Fiol, I. Villaescusa and H. Pereira, *Industrial Crops and Products*, 2013, **50**, 423-429.

- 11. A. P. Craig, Adriana S. Franca and L. S. Oliveira, *LWT Food Science and Technology*, 2012, **47**, 505-511.
- 12. D. N. Raba, M.-A. Poiana, A. B. Borozan, M. Stef, F. Radu and M.-V. Popa, *PloS one*, 2015, **10**, e0138080.