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Relative Humidity During Tracking under Ambient Conditions
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Figure S1: The relative humidity under ambient conditions during cell tracking from day 1 to day

50.

Fig. S1 shows the relative humidity under ambient conditions during the duration of cell tracking.
Readings were taken from a Thomas Traceable® digital hygrometer once a day during the day of

test.



Temperature Dependence Study of TEAOH-PAM
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Figure S2: Temperature dependence study of TEAOH-PAM solid polymer electrolyte.

Fig. S2 shows the temperature dependence study of TEAOH-PAM, indicating stability up to 80

°C. The Arrhenius equation ¢ = %

- E,/RT
o.e

is used to fit the data. Where 9 is the ionic conductivity,

90 is the pre-exponential factor, Euis the activation energy, R is the universal gas constant and T is

the absolute temperature. The activation energy was estimated by extracting the slope of the In of

the conductivity and the inverse of the temperature and multiplying it by R.



EIS Before and After cycling of Liquid and Solid TEAOH EDLC devices
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Figure S3: Nyquist (A and C) and Bode (B and D) plots of liquid (A and B) and solid (C and D)

TEAOH devices before (black) and after (red) 10,000 charge discharge cycles at 5 mA cm™.

Fig. S3 (A and B) show that the ESR of the liquid TEAOH device increased from 1.9 Q to 4.2 Q
after cycling, accompanying with this increase, was the increase of the phase angle in the liquid
devices. This indicates the dehydration of the liquid electrolyte. In Fig. S3 (C and D), the ESR
of the solid TEAOH device remained at 1.1 Q for the duration of the cycling and maintained its
phase angle at -84 degrees, suggesting a stable film and performance. The data was fitted with a

typical equivalent circuit shown in the inset of Fig. S3(B), where the elements include the series



resistance of the device (R;), an RC element (C. and R.) that describes the interface between the
electrolyte, electrode, and the current collector, and a second RC element (C4 and R,)) that
describes the deliverable capacitance of the carbon double layer and the leakage resistance. For
EDLC devices, R, should ideally be sufficiently large. Constant phase elements are used to

compensate the non-homogeneity of the system.



