Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Three-Dimensional Annealed WO₃ Nanowire/Graphene Foam as an Electrocatalytic Material for an All Vanadium Redox Flow Battery

Daniel Manaye Kabtamu, Yu-Chung Chang, Guan-Yi Lin, Anteneh Wodaje Bayeh, Chien-Yu Chen, Tadele Hunde wondimu and Chen-Hao Wang^{*}

Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 10607, Taipei, Taiwan.

*Corresponding author, E-mail: <u>chwang@mail.ntust.edu.tw</u> Tel: +886-2-2730-3715; Fax: +886-2-2737-6544

Fig. S1 Raman spectra of WO₃ NWs.

Fig. S2 Low magnification SEM images of (a) 3D WO₃ NWs/GS foam and (d) 3D annealed WO₃ NWs/GS foam.

Fig. S3 EDX images 3D annealed WO_3 NWs/GS foam.

Fig. S4 TEM images of (a) GO, (b) WO_3 NWs, and (c) 3D WO_3 NWs/GS foam.

Fig. S5 Narrow-scan O 1s XPS spectra of the GO.

Fig. S6 Nitrogen adsorption and desorption isotherms and the corresponding pore size distribution curves of (a) GO, (b) WO₃ NWs, (c) 3D WO₃ NWs/GS foam, and (d) 3D annealed WO₃ NWs/GS foam.

Fig. S7 Comparison of (a) electrolyte utilization ratio and charge–discharge capacity, (b) charge– discharge energy density of pristine GF, GO-modified GF, WO₃ NWs-modified GF, 3D WO₃ NWs/GS foam-modified GF, and 3D annealed WO₃ NWs/GS foam-modified GF at the current density of 80 mA cm⁻².

Materials	Electrolyte	Current density	CE	VE	EE	Ref.
		(mA cm ⁻²)	(%)	(%)	(%)	
3D annealed WO ₃	$1.6 \text{ M VOSO}_4 + 2.5 \text{ M}$	160	98.18	68.85	67.6	This
NWs/GS foam	H_2SO_4					work
N-doped CNT	$1 \text{ M VOSO}_4 + 2 \text{ M}$	10	81.3	94.7	77.0	1
	H_2SO_4					
Mn ₃ O ₄ /MWCNTs	1.2 M VOSO ₄ + 3 M	20	93.50	90.53	84.65	2
	H_2SO_4					
MoO ₂ /MSU-F-C	1 M VOSO ₄ + 1 M	40	87.6	89.0	78.0	3
	H_2SO_4					
SWCNT	1.5 M VOSO ₄ + 2 M	20	92.2	96.8	89.3	4
	H_2SO_4					
corn-protein-	2 M VOSO + 3 M	150	98.0	70.0	68.6	5
derived N-doped	H_2SO_4					
carbon	112504					
WO ₃ /SAC	1.5 M VOSO ₄ + 3 M	50	94.5	85.2	80.5	6
	H_2SO_4					
Pt/MWNTs	$1 M VOSO_4 + 1 M$	20	83.88	27.55	23.11	7
	H_2SO_4					
Ti/:IrO ₂ :Ta ₂ O ₅	1.7 M VOSO ₄ + 4 M	40	90	90	81.0	8
	H_2SO_4					
polyol Pt/C	$1 M VOSO_4 + 1 M$	40	87.0	81.6	71.0	9
	H_2SO_4					
TiO ₂ /C	3 M VOSO ₄ + 2 M	200	90	73	65.4	10
	H_2SO_4					
CNF/CNT	2 M VOSO ₄ + 3 M	100	97.7	67.5	66.0	11
	H_2SO_4					

Table S1. Comparison of the CE, VE and EE of 3D annealed WO₃ NWs/GS foam-modified GF with previously reported Composite materials as electrode for VRFB Application.

References

- 1. S. Wang, X. Zhao, T. Cochell and A. Manthiram, *The Journal of Physical Chemistry Letters*, 2012, **3**, 2164-2167.
- 2. Z. He, L. Dai, S. Liu, L. Wang and C. Li, *Electrochim. Acta*, 2015, **176**, 1434-1440.
- 3. H. T. Thu Pham, C. Jo, J. Lee and Y. Kwon, *RSC Adv.*, 2016, **6**, 17574-17582.
- 4. W. Li, J. Liu and C. Yan, *Electrochim. Acta*, 2012, **79**, 102-108.
- 5. M. Park, J. Ryu, Y. Kim and J. Cho, *Energy Environ. Sci.*, 2014, 7, 3727-3735.
- 6. C. Yao, H. Zhang, T. Liu, X. Li and Z. Liu, J. Power Sources, 2012, 218, 455-461.
- R. H. Huang, C. H. Sun, T. m. Tseng, W. k. Chao, K. L. Hsueh and F. S. Shieu, J. Electrochem. Soc., 2012, 159, A1579-A1586.
- S. Chandrabose Raghu, M. Ulaganathan, T. M. Lim and M. Skyllas Kazacos, J. Power Sources, 2013, 238, 103-108.
- 9. S. Jeong, S. Kim and Y. Kwon, *Electrochim. Acta*, 2013, **114**, 439-447.
- T. M. Tseng, R. H. Huang, C. Y. Huang, C. C. Liu, K. L. Hsueh and F. S. Shieu, J. *Electrochem. Soc.*, 2014, 161, A1132-A1138.
- 11. M. Park, Y. J. Jung, J. Kim, H. Lee and J. Cho, *Nano Lett.*, 2013, **13**, 4833-4839.