Supporting Information

Ultra-high surface area mesoporous carbons for colossal pre combustion

CO₂ capture and storage as materials for hydrogen purification

Michael Cox, and Robert Mokaya

School of Chemistry, University of Nottingham, University Park, NG7 2RD Nottingham, UK.

*r.mokaya@nottingham.ac.uk

Sample	Surface area (m ² g ⁻¹)	Pore volume ^a (cm ³ g ⁻¹)	Mesoporosity ^b (%)	Reference
CA-4700	3771	1.75 (0.21)	12	This work
AC-0	3100	1.46 (0.41)	28	1
SU-AC-400	4196	2.26 (0.70)	31	2
AC-2M	3420	2.22 (0.94)	42	1
UGil-900	4200	2.41 (n.d.)		3
PPY-4700	3568	2.46 (2.18)	89	This work
PPY-4800	3589	2.71 (2.46)	91	This work
MPPY-4800	3934	2.92 (2.72)	93	This work
PPY-5800	2974	2.85 (2.63)	92	This work
PPY-3900	3285	2.60 (2.30)	88	This work
PPY-4900	2842	2.77 (2.50)	90	This work
PPY-5900	2798	3.54 (3.35)	95	This work
MOF-210	6240	3.60 (n.d.)		4
NU-100	6143	2.82 (n.d.)		5

Table S1. Textural properties of polypyrrole-derived activated (PPY-xT) and compactivated (MPPY-4800) carbons compared to other carbons and porous materials that possess varying levels of mesoporosity.

^aThe values in the parenthesis refer to mesopore volume. ^bProportion of pore volume arising from mesopores. (n.d. = not determined)

References

- M. Sevilla, W. Sangchoom, N. Balahmar, A. B. Fuertes and R. Mokaya, ACS Sust. Chem. Eng., 2016, 4, 4710.
- J. He, J. W. F. To, P. C. Psarras, H. Yan, T. Atkinson, R. T. Holmes, D. Nordlund, Z. Bao and J. Wilcox, *Adv. Energy Mater.* 2016, 6, 1502491.
- 3. A. S. Jalilov, Y. Li, J. Tian, J. M. Tour, Adv. Energy Mater. 2017, 7, 1600693.
- H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim and O. M. Yaghi, *Science* 2010, **329**, 424.
- O. K. Farha, A. O. Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *Nat. Chem.* 2010, 2, 944.

Sample		Reference				
	1 bar	20 bar	30 bar	40 bar	50 bar	
CA-4700	3.7	19.5 (18.0)	22.3 (19.8)	24.1 (20.4)	25.6 (20.5)	This work
AC-0	2.4	20.4 (19.2)	24.6 (22.5)	27.1 (24.1)	28.5 (24.2)	1
AC-2M	2.3	22.8 (20.7)	29.2 (26.0)	34.5 (29.7)	38.3 (31.7)	1
SU-AC-400	4.3	22.4 (20.3)	28.3 (25.1)	32.5 (27.5)	34.9 (28.3)	2
UGil-900	2.6	22.9 (21.5)	29.4 (27.0)	33.9 (29.6)	35.2 (30.8)	3
PPY-4700	2.3	22.8 (20.6)	29.6 (26.0)	35.4 (30.2)	40.3 (32.9)	This work
PPY-4800	2.5	25.0 (22.5)	33.0 (29.0)	39.5 (34.0)	45.3 (37.2)	This work
MPPY-4800	2.8	28.1 (25.5)	37.2 (33.0)	45.6 (39.5)	54.1 (45.4)	This work
PPY-5800	1.3	24.1 (21.5)	32.8 (28.7)	41.8 (35.8)	50.8 (42.3)	This work
PPY-3900	2.2	23.2 (20.9)	30.7 (26.9)	37.5 (32.0)	44.5 (36.5)	This work
PPY-4900	2.0	23.6 (21.2)	31.9 (27.9)	41.4 (34.4)	49.3 (41.0)	This work
PPY-5900	2.1	25.7 (22.5)	34.9 (29.7)	44.6 (37.1)	55.1 (44.5)	This work
MOF-210	0.9	19.2 (16.0)	38.9 (33.7)	55.0 (46.7)	64.2 (52.5)	4
NU-100	2.7	24.6 (22.0)	40.9 (36.3)	52.7 (46.8)		5

Table S2. Total and excess gravimetric CO_2 uptake of polypyrrole-derived activated (PPY-xT) carbons and compactivated (MPPY-4800) carbon compared to other carbons and metal organic frameworks (MOFs).

 $^{a}CO_{2}$ uptake at 25 °C and various pressures (i.e., 1, 20, 30, 40 and 50 bar). The values in the parenthesis are excess CO_{2} uptake.

References

- M. Sevilla, W. Sangchoom, N. Balahmar, A. B. Fuertes and R. Mokaya, ACS Sust. Chem. Eng., 2016, 4, 4710.
- J. He, J. W. F. To, P. C. Psarras, H. Yan, T. Atkinson, R. T. Holmes, D. Nordlund, Z. Bao and J. Wilcox, *Adv. Energy Mater.* 2016, 6, 1502491.
- 8. A. S. Jalilov, Y. Li, J. Tian, J. M. Tour, Adv. Energy Mater. 2017, 7, 1600693.
- H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim and O. M. Yaghi, *Science* 2010, **329**, 424.
- O. K. Farha, A. O. Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *Nat. Chem.* 2010, 2, 944.

Supporting Figure S1. Thermogravimetric analysis (TGA) curves of polypyrrole-derived activated (PPY-xT) carbons heated in air.

Supporting Figure S2. Powder XRD patterns of polypyrrole-derived activated (PPY-xT) carbons.

Supporting Figure S3. Rouquerel plots used to calculate the BET surface area of polypyrrolederived activated (PPY-xT) carbons. We also show the values of the BET (or C) constants.

Supporting Figure S4. Excess CO_2 uptake of polypyrrole-derived activated (PPY-xT) carbons, compactivated (MPPY-4800) carbon and benchmark MOFs (MOF-210 and NU-100)^{*} at 25 °C and pressure of 0 – 50 bar.

*Data for MOF-210 is taken from reference 51 (O. K. Farha, A. O. Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *Nat. Chem.* 2010, **2**, 944).

*Data for NU-100 is taken from reference 50 (H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim and O. M. Yaghi, *Science* 2010, **329**, 424).

Supporting Figure S5. Nitrogen sorption isotherms (A) and corresponding pore size distribution (PSD) curves (B) of mesoporous polypyrrole-derived (PPY-xT) activated carbons, a compactivated (MPPY-4800) carbon, and a microporous activated carbon (CA-4700).

Supporting Figure S6. Excess CO₂ uptake of polypyrrole-derived activated (PPY-xT) carbons, compactivated (MPPY-4800) carbon, and a microporous activated carbon (CA-4700).

Supporting Figure S7. Total CO₂ uptake of polypyrrole-derived activated (PPY-xT) carbons, compactivated (MPPY-4800) carbon, and a microporous activated carbon (CA-4700).

Supporting Figure S8. Excess CO_2 uptake of polypyrrole-derived activated (PPY-xT) carbons, compactivated (MPPY-4800) carbon, a microporous activated carbon (CA-4700) and micro/mesoporous activated carbons (AC-0 and AC-2M)*.

*Data for AC-0 and AC-2M is taken from reference 37 (M. Sevilla, W. Sangchoom, N. Balahmar, A. B. Fuertes and R. Mokaya, *ACS Sust. Chem. Eng.*, 2016, **4**, 4710).

Supporting Figure S9. Total and excess CO₂ uptake at 0 °C for activated (SD-4800) and compactivated (MSD-4800) carbon derived from wood sawdust.

Supporting Figure S10. Excess volumetric CO₂ uptake of polypyrrole-derived activated (PPY-xT) carbons, compactivated (MPPY-4800) carbon and benchmark MOFs (MOF-210 and NU-100) at 25 °C and pressure of 0 – 50 bar. Packing density values (g cm⁻³) used are: 0.15 (NU-100) and 0.12 (MOF-210) according to reference 61 (Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha and T. Yildirim, *J. Am. Chem. Soc.* 2013, **135**, 11887–11894).

*CO₂ uptake ata for MOF-210 is taken from reference 51 (O. K. Farha, A. O. Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *Nat. Chem.* 2010, 2, 944).

*CO₂ uptake data for NU-100 is taken from reference 50 (H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim and O. M. Yaghi, *Science* 2010, **329**, 424).

Supporting Figure S11. Total (top) and excess (bottom) CO_2 uptake of activated (PPY-xT) carbons, compactivated (MPPY-4800) carbon and MOFs (MOF-210 and NU-100) at 25 °C. Crystal density of 0.25 and 0.30 g cm⁻³, respectively, was used to estimate the volumetric uptake of MOF-210 and NU-100. CO_2 uptake data for the MOFs is adapted from reference 50 and 51.