Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Supporting information

Hydrogenation of 5-hydroxymethylfurfural to liquid fuel 2, 5 dimethylfuran over nickel supported tungsten oxide nanostructured catalyst ⁺

Nazia Siddiqui,^a Anupam Singha Roy,^{a,b} Reena Goyal,^a Rubina Khatun,^a Chandrashekar Pendem,^a Appala Naidu Chokkapu ^a

Ankur Bordoloi,^a Rajaram Bal,^{a*}

Fig-S1 EDX pattern of catalyst

Fig-S2 SEM elemental mapping of Ni/WO₃

Fig-S 3 TEM elemental mapping of Ni/WO $_3$

Fig-S 4 Effect of HMF concentration

Fig-S 5 Effect of Time at 100°C

Detail kinetic calculation given below

 $t_{1/2} = 0.03r^2/Dp$ (I)

 $t_{1/2} = 0.23r\delta/Df x(C_0/Ce)$ (II)

Where

r = Radius of adsorbent in cm

 δ = Thickness of water film adhered to the adsorbent in cm (assume = 0.001cm)

Dp = Pore diffusion coefficient in cm2/s

Df = Film diffusion coefficient in cm2/s

C₀ = Concentration of metals on adsorbent in mg/gm

Ce = Concentration of metals in solution at equilibrium in mg/l

 $t_{1/2}$ = time required to bring down the metals concentration to half of initial concentration in seconds.

 $t_{1/2}\xspace$ has been calculated from equation no. (III)

$$t_{1/2} = -[(0.5)]/K_1 \tag{III}$$

To find out the rate limiting step of the overall adsorption the value of first order rate constant

(K₁) obtained from the slopes of the straight lines of first order model.¹ ln $(qe - qt) = \ln (qe) - K_1 t$

 $qt = (C_i - Ct)V/m$

 $q_e = (Ci-Ce)V/m$

Where Ci and Ce are the initial and equilibrium concentration of HMF, respectively (mg/l), V is the volume of the solution (I), and W is the weight of the catalyst used (g). qe and qt are the amount of HMF adsorbed per gram metal (mg/g) at equilibrium and time t,

 K_1 is the slope of graph

Initial concentration of HMF =0.05g Density of HMF = 1.29 gm/ml Water = 20ml Total volume= 20ml water + 0.4 ml So, The HMF concentration= (1000*1000)/20.4 Ci = 49019.6 mg/l

Table: 1 kinetic calculation parameters

t (s)	Conv.	ct	qt	ln(qe-qt)
7200	29.8	34411.7592	5843.13632	9.515515324
10800	37.2	30784.3088	7294.11648	9.402417812
14400	63.3	17990.1932	12411.76272	8.853665039

Fig-S 6 plot of ln (qe-qt) vs Time.

Slop = $-9x10^{-5}$ $K_1 = 9x10^{-5}$ $t_{1/2} = -[ln(0.5)]/9x10^{-5}$ =7701 r = 11 Nm=11x10⁻⁷cm $t_{1/2} = 0.03r^2/\text{Dp}$ Dp = $0.03x (11x10^{-7}\text{cm})^2/7701$ Dp = $4.7x10^{-20}$ $t_{1/2} = 0.23r\delta/\text{Df } x(C_0/\text{Ce})$ Co =Concentration of metals on adsorbent in mg/gm

Ce = Concentration of metals in solution at equilibrium in mg/l

Ce = 17990.19

Co = (49019.6-17990.19)*(0.0204/0.05)

= 31029.5mg/gm

 $Df = 0.23 \times 11 \times 10^{-7} \times 0.001 \times 31029.5 / (3465 \times 77990.1)$

= 1.4x10⁻¹³ Cm²/s

Here we concluded that Df value is very small so this reaction is not a control reaction.

S.No	Catalysts	Solvent	Pressure (bar)	Time	Temp.(^o C)	DMF	Ref.
				(h)		Selectivity%	
1	CuCrO ₄	1-	-	10	220	61	2
		Butanol					
2	CuRu/C	1-	-	10	220	71	2
		Butanol					
3	Ru/C	THF	20	2	180	80.6	3
4	PtCo@HCS	1-	10	2	180	98	4

Table: 1 Comparison with reported literature

		Butanol					
5	Pd/C	CO_2/H_2O	10barH ₂ /4MPaCO ₂	2	80	100	5
6	Ni-W ₂ C/AC	THF	40	3	180	80.1	6
7	PdAu/C	THF	H ₂ Balloon	6	60	96	7
8	Ru/Co ₃ O ₄	THF	7	24	130	93.4	8
9	Ru/C	IPA	-	6	190	81	9
10	Pd/Fe ₂ O ₃	IPA	-	6	180	72	10
11	NiSi-PS	1,4	15	3	130	72.9	11
		Dioxane					
12	Ni/HT	1,4	12	4h	180	91.1	12
		Dioxane					
13	Ru/NaY	THF	15	1	220	78	13
14	Ni/CNx	H ₂ O	30	6	200	98.7	14
15	Ni/WO ₃	H ₂ O	10	6	180	>95	This
							Work

ICP Result Expressed in: percent (%)

S.No	Sample	Element %		
		W	Ni	
1	Fresh 5% Ni/WO ₃	35.64	1.62	
2	2 nd recycle spent catalyst	35.64	1.61	
3	5 th recycle spent catalyst	35.63	1.60	

References

- 1. P. Mondal, B. Mohanty, C. B. Majumder and N. Bhandari, *AIChE Journal*, 2009, 55, 1860-1871.
- 2. Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu and J. A. Dumesic, *Nature*, 2007, 447, 982-985.
- 3. J. Zhang, L. Lin and S. Liu, *Energy & Fuels*, 2012, 26, 4560-4567.
- 4. G. H. Wang, J. Hilgert, F. H. Richter, F. Wang, H. J. Bongard, B. Spliethoff, C. Weidenthaler and F. Schuth, *Nature materials*, 2014, 13, 293-300.
- 5. M. Chatterjee, T. Ishizaka and H. Kawanami, *Green Chemistry*, 2014, 16, 1543.
- 6. Y. B. Huang, M. Y. Chen, L. Yan, Q. X. Guo and Y. Fu, *ChemSusChem*, 2014, 7, 1068-1072.
- 7. S. Nishimura, N. Ikeda and K. Ebitani, *Catalysis Today*, 2014, 232, 89-98.
- 8. Y. Zu, P. Yang, J. Wang, X. Liu, J. Ren, G. Lu and Y. Wang, *Applied Catalysis B: Environmental*, 2014, 146, 244-248.
- 9. J. Jae, W. Zheng, R. F. Lobo and D. G. Vlachos, *ChemSusChem*, 2013, 6, 1158-1162.

- 10. D. Scholz, C. Aellig and I. Hermans, *ChemSusChem*, 2014, 7, 268-275.
- 11. X. Kong, Y. Zhu, H. Zheng, X. Li, Y. Zhu and Y.-W. Li, *ACS Catalysis*, 2015, 5, 5914-5920.
- 12. X. Kong, R. Zheng, Y. Zhu, G. Ding, Y. Zhu and Y.-W. Li, *Green Chem.*, 2015, 17, 2504-2514.
- 13. A. S. Nagpure, A. K. Venugopal, N. Lucas, M. Manikandan, R. Thirumalaiswamy and S. Chilukuri, *Catalysis Science & Technology*, 2015, 5, 1463-1472.
- 14. R. Goyal, B. Sarkar, A. Bag, N. Siddiqui, D. Dumbre, N. Lucas, S. K. Bhargava and A. Bordoloi, *Journal of Catalysis*, 2016, 340, 248-260.