Supplementary data

A reduced graphene oxide-NiO composite electrode with a

high and stable capacitance

Xiaoming Sun, Hao Lu, Peng Liu, Thomas E. Rufford, Rohit Ranganathan Gaddam, Xin Fan, X. S. Zhao*

School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.

Correspondence to george.zhao@uq.edu.au.

Figure S1 XRD pattern of T-GO.

Figure S2 (a) *AFM* image of nickel oxide nanoparticles on RGO from EGO-NiO and (b)

cross-section thickness contour.

Figure S3 (a) XRD patterns of GO-solNiO and phGO-NiO and (b) small-angle XRD patterns of GO-solNiO and phGO-NiO.

Figure S4 N₂ adsorption-desorption isotherm of EGO-NiO.

Figure S5 SEM images in low and high magnifications of GO-solNiO (a, b) and phGO-NiO (c, d).

Figure S6 SEM-EDS data of (a) EGO-NiO, (b) GO-solNiO and (c) phGO-NiO.

Figure S7 GCD curves at different current densities of pristine GO (a) and EGO-NiO (b), Nyquist plots of GO (c) and EGO-NiO (d). The insets in Figures S6 c and d show high-

frequency Nyquist plots.

Figure S8 Cycling performance of EGO-NiO for 5000 cycles at 20 A g⁻¹

Materials	Preparation method	Specific capacitance C _s (F·g ⁻¹)	Cycle stability (%, cycle numbers)
NiO-reduced graphene oxide (this work)	Vacuum-thermal treatment	880 at 1 A g ⁻¹	84%, (1000) at 20 A g ⁻¹
NiO film ⁵⁴	Chemical bath deposition + template removal	309 at 1 A g ⁻¹	89%, (4000) at 1 A g ⁻¹
NiO/Graphene ⁵⁵	Vacuum promoted low- temperature heat treatment	220 at 0.1 A g ⁻¹	100%, (1000) at 2 A g ⁻¹
NiO/ultrathin derived graphene ⁵⁶	Nanocasting + chemical bath deposition	425 at 2 A g ⁻¹	79%, (2000) at 10 A g ⁻¹
NiO/nanoporous graphene ⁵⁷	Atomic layer deposition	1005.8 at 1 A g ⁻¹	94%, (1500) at 2 A g ⁻¹
NiO/3D graphene ⁵⁸	CVD + electrochemical deposition	745 at 1.4 A g ⁻¹	100%, (2000) at 80 mV s ⁻¹

Table S1 Comparison of NiO-based pseudocapacitive electrode materials