Supplementary data

A reduced graphene oxide-NiO composite electrode with a

high and stable capacitance

Xiaoming Sun, Hao Lu, Peng Liu, Thomas E. Rufford, Rohit Ranganathan Gaddam, Xin Fan, X. S. Zhao*
School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
Correspondence to george.zhao@uq.edu.au.

Figure S1 XRD pattern of T-GO.

Figure S2 (a) AFM image of nickel oxide nanoparticles on RGO from EGO-NiO and (b)

Figure S3 (a) XRD patterns of GO-solNiO and phGO-NiO and (b) small-angle XRD patterns of GO-solNiO and phGO-NiO.

Figure $\boldsymbol{S} 4 \mathrm{~N}_{2}$ adsorption-desorption isotherm of EGO-NiO.

Figure S5 SEM images in low and high magnifications of GO-solNiO (a, b) and phGO-NiO (c, d).

Figure S6 SEM-EDS data of (a) EGO-NiO, (b) GO-solNiO and (c) phGO-NiO.

Figure $\boldsymbol{S} 7$ GCD curves at different current densities of pristine $G O$ (a) and EGO-NiO (b),
Nyquist plots of GO (c) and EGO-NiO (d). The insets in Figures S6 c and d show high-
frequency Nyquist plots.

Figure S8 Cycling performance of EGO-NiO for 5000 cycles at $20 \mathrm{~A} \mathrm{~g}^{-1}$

Table S1 Comparison of NiO-based pseudocapacitive electrode materials

Materials	Preparation method	Specific capacitance $\mathbf{C}_{\mathrm{s}}\left(\mathrm{F} \cdot \mathrm{g}^{-1}\right)$	Cycle stability (\%, cycle numbers)
NiO-reduced graphene oxide (this work)	Vacuum-thermal treatment	880 at $1 \mathrm{~A} \mathrm{~g}^{-1}$	$\begin{gathered} 84 \%,(1000) \\ \text { at } 20 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$
NiO film ${ }^{54}$	Chemical bath deposition + template removal	309 at $1 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1}$	$\begin{gathered} 89 \%,(4000) \\ \text { at } 1 \mathrm{Ag}^{-1} \end{gathered}$
NiO/Graphene ${ }^{55}$	Vacuum promoted lowtemperature heat treatment	220 at $0.1 \mathrm{~A} \mathrm{~g}^{-1}$	$\begin{gathered} 100 \%,(1000) \\ \text { at } 2 \mathrm{Ag} \mathrm{~g}^{-1} \end{gathered}$
$\mathrm{NiO} /$ ultrathin derived graphene ${ }^{56}$	Nanocasting + chemical bath deposition	425 at $2 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1}$	$\begin{aligned} & 79 \%,(2000) \\ & \text { at } 10 \mathrm{Ag} \mathrm{~g}^{-1} \end{aligned}$
$\mathrm{NiO} /$ nanoporous graphene ${ }^{57}$	Atomic layer deposition	1005.8 at $1 \mathrm{Ag} \mathrm{g}^{-1}$	$\begin{gathered} 94 \%,(1500) \\ \text { at } 2 \mathrm{Ag}^{-1} \end{gathered}$
NiO/3D graphene ${ }^{58}$	CVD + electrochemical deposition	745 at $1.4 \mathrm{~A} \mathrm{~g}^{-1}$	$\begin{aligned} & 100 \%,(2000) \\ & \text { at } 80 \mathrm{mV} \mathrm{~s}^{-1} \end{aligned}$

