Wet-chemical Route to Macroporous Inverse Opal Ge Anodes for Lithium Ion Batteries with High Capacity Retention

Sebastian Geier, ^[a] Roland Jung, ^[b] Kristina Peters, ^[c] Hubert A. Gasteiger, ^[b] Dina Fattakhova-Rohlfing, ^[d] and Thomas F. Fässler^{*[a]}

[a, b] Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany

[c] Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany

[d] Materials Synthesis and Processing, Institute of Energy and Climate Research (IEK-1), Wilhelm-Johnen-Straße, 52425 Jülich, Germany

Contents

Raman spectrum of amorphous Ge on a Cu substrate	2
Raman spectrum of α -Ge on a Cu substrate	2
EDS spectrum of the as-prepared Ge electrode	3
Voltage profile of α -Ge	3
Voltage profile of the 100th cycle of the as-prepared Ge electrode	4
Determination of the mass loading	4

Figure S1: Raman spectrum of an amorphous Ge thin film on a Cu substrate.

Figure S2: Raman spectrum of an α -Ge thin film on a Cu substrate.

Figure S3: EDS spectrum of an amorphous Ge thin film on a Cu substrate.

Figure S4: Voltage profile of the first and second cycle of an electrode made of an inverse opal-structured α -Ge thin film on a Cu substrate.

Figure S5: Voltage profile of the 100th cycle of an as-prepared inverse opal-structured amorphous Ge electrode.

Determination of the mass loading

The electrodes were prepared by infiltration of the PMMA spheres with 7 μ L of a 0.1 mol/L K₄Ge₉/*en* solution which leads to a maximum loading of 282 μ g of active material. Treatment with GeCl₄ vapor adds another 31 μ g of Ge by cross-linking of the [Ge₉]⁴-clusters, and thus in total a maximum loading of 313 μ g is achieved. The applied drop-casting process goes hand in hand with inevitable losses. Therefore we estimated the real mass loading of our electrodes by two different methods: using the before-mentioned concentration of the solution and the film thickness, we calculated the loading as follows:

$$V = \pi \times r^2 \times h \times (1 - 0.74) \tag{1}$$

where V is the volume, r the radius, h the height, and where the term between parentheses describes the spherical packing of the inverse opal structure, assuming a fcc packing of the PMMA opals.

This calculation under the assumption of an averaged film thickness of 2.75 μ m gives a loading of 300 μ g which is in good agreement with the maximum loading. For the determination of *C*-rates and capacities we went with a maximum loading of 313 μ g to avoid an overestimation of our capacities.