SUPPORTING INFORMATION

Continuous silicon oxycarbide fiber mats with tin nanoparticles as high capacity anode for lithium-ion batteries

Aura Tolosa,^{1,2} Mathias Widmaier,^{2,3} Benjamin Krüner,^{1,2} John M. Griffin,⁴ and Volker Presser^{1,2*}

- ¹ INM Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- ² Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
- ³ Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 Renningen, Germany
- ⁴ Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, United Kingdom
- * Corresponding author's eMail: volker.presser@leibniz-inm.de

Figure S1: SEM and TEM micrographs (inset) of the SiOC fibers synthesized at 1000 °C, containing different amounts of Sn: 0.05 (A), 0.1 (B), and 0.2 (C).

Figure S2: TEM micrographs corresponding to EDX point analysis, for the samples containing 0.2 Sn synthesized at 1200 °C (A-B) and 1000 °C (C-D).

Figure S3: Material characterization of fibers synthesized at 1000 °C. Fiber diameter distribution (A), Fourier transform infrared spectra (B), Raman spectra (C), X-ray diffraction pattern and literature values for diffraction peak positions (D), solid-state ²⁹Si NMR (E), and ¹³C NMR (F).

Figure S4: Comparative Raman spectra for the samples synthesized at 1000 °C (A) and 1200 °C (B) after background normalization. Representation of peak deconvolution of the samples containing 0.1 Sn synthesized at 1000 °C (C) and 1200 °C (D).

Figure S5: Initial five cycles at 0.1 mV·s⁻¹ for the samples containing 0.05 Sn (A-B) and 0.2 Sn (C-D) synthesized at 1000 °C (A, C) and 1200 °C (B, D).

Figure S6: Schematic representation of lithium insertion and extraction in the hybrid material Sn/SiOC (A). Scanning electron micrographs and photograph (*inset*) (B, C), and transmission electron micrographs of the sample 0.05 Sn-1200 after GCPL for 100 cycles (D, E).

Figure S7: Element mapping analysis of the sample 0.05 Sn-1200 after GCPL for 100 cycles, from EDX analysis during TEM imaging.

Figure S8: Electrochemical performance of free-standing electrodes. Comparison between polymer-bound electrodes and fiber mats synthesized at 1000 °C (A) and 1200 °C (B).

Spot	С	0	Si	Sn
1	20.9	39.7	36.5	2.9
2	26.8	5.1	3.0	65.1
3	8.6	15.9	53.5	22.0
4	27.8	32.7	39.5	0.0
5	44.0	22.2	17.4	16.4
6	35.0	33.3	26.6	5.1
7	28.9	38.8	32.1	0.2
8	51.5	28.5	12.0	8.0
9	7.1	4.5	2.6	85.8

Table S1: EDX results (all values in at%) from the point analysis during TEM imaging.

Table S2: Simplified calculated composition based on EDX and ICP-AES results, and calculated theoretical capacity.

Sample	Calculated composition (mass%)			Capacity
	Sn	SiO2	C _{free}	(mAh·g⁻¹)
0.05 Sn-1000	6.2	55.7	38.1	1197
0.1 Sn-1000	10.4	56.1	33.5	1229
0.2 Sn-1000	22.1	53.1	24.8	1259
0.05 Sn-1200	6.4	54.2	39.4	1178
0.1 Sn-1200	10.7	54.6	34.7	1210
0.2 Sn-1200	21.9	55.7	22.4	1295

Table S3: Sheet resistance of the polymer-bound electrodes compared to the fiber matelectrodes.

Sample	Sheet resistance (Ω·cm)		
M-SiOC-1000 (polymer-bound)	9.67 ± 0.91		
M-0.05 Sn-1000 (polymer-bound)	3.57 + 1.01		
0.05 Sn-1000 (fiber mat)	0.71 ± 0.10		
M-SiOC-1200 (polymer-bound)	2.79 ± 0.32		
M-0.05 Sn-1200 (polymer-bound)	3.54 + 0.38		
0.05 Sn-1200 (fiber mat)	0.28 ± 0.05		