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1 1. Experimental Section

2 Materials and catalyst synthesis. A hydrothermal process was used to synthesize the raw 

3 powders. In a typical process, 2 ml concentrated hydrochloric acid (37%) and 0.79 g 

4 potassium permanganate were added to 50 ml deionized water to form a homogeneous 

5 solution and then transferred into an autoclave, which was hydrothermally treated at 140 oC 

6 for 12 hours. After cooling to ambient temperature, the resultant brown powders were washed 

7 with ethanol and deionized water and then dried in air at 70 oC for 12 hours. Following this, a 

8 certain amount of Ca(NO3)2 4H2O and La(NO3)2 4H2O were added to 15 ml of 1.3 mol l-1 

9 NH4OH. Then, 0.1 g of the as-prepared brown samples and 0.05 g carbon nanotubes 

10 (diameter 30 - 50 nm, length ~15 m, purity > 95 wt%, Alpha Nano Technology Co. Ltd., 

11 China) were dispersed in the above solution, where the mixture was decentralized for 1 hour 

12 and then transferred into a 100 ml autoclave and hydrothermally treated at 150 oC for 6 hours. 

13 The product were washed with deionized water and then dried in air at 60 oC for 6 hours. 

14 Finally, the samples were calcined in air at 200 oC, 300 oC, 400 oC and 500 oC for 1, 3 and 5 

15 hours, denoted as Composite-3h-200 oC，Composite-3h-300 oC，Composite-3h-500 oC， 

16 composite-1h, composite-3h, and composite-5h. Their compositions are described as follows. 

17 Table I summarizes the composition and the name of all specimens studied in this work.

18
19 Table S1. List of electrode composition studied in this work

Annealing time 
temperature and

CaO/La2O3 CNT/(CaO/La2O3/MnO2)

Composite-3h-200 oC 3 hour, 200 oC 1 0.10
Composite-3h-300 oC 3 hour, 300 oC 1 0.10
Composite-3h-500 oC 3 hour, 500 oC 1 0.10

Composite-1h 1 hour, 400 oC 1 0.10
Composite-3h 3 hour, 400 oC 1 0.10
Composite-5h 5 hour, 400 oC 1 0.10

Composite-3h-CNT0 3 hour, 400 oC 1 0
Composite-3h-CNT0.05 3 hour, 400 oC 1 0.05
Composite-3h-CNT0.15 3 hour, 400 oC 1 0.15

Composite-3h-CaO0 3 hour, 400 oC 0 0.10
Composite-3h-CaO0.5 3 hour, 400 oC 0.5 0.10
Composite-3h-CaO2 3 hour, 400 oC 2 0.10

20

21 The role of CNT support and presence of CaO on the bi-functionality was studied by 

C:UsersAdministratorAppData#ocalyoudaoDictBetaApplication7.0.0.1012resultuidictresult.html
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1 varying the mass fraction of CNTs and CaO in the composite electrode annealed for 3 hours 

2 (e.g. composite-3h). Four ratios of CNTs to CaO/La2O3/MnO2 were adopted, 0:1, 0.05:1, 

3 0.1:1 and 0.15:1, which were named as, composite-3h-CNT0, composite-3h-CNT0.05, 

4 composite-3h-CNT0.10 (equivalent to composite-3h), and composite-3h-CNT0.15, 

5 respectively. The role of CaO was studied by changing the mass ratio of CaO/La2O3 with a 

6 magnitude of 0:1, 0.5:1, 1:1 and 2:1, which are denoted as composite-3h-CaO0, composite-

7 3h-CaO0.5, composite-3h-CaO1 (equivalent to composite-3h), and composite-3h-CaO2. 

8 Characterization. The morphology and structure of the as-synthesized samples were 

9 characterized by using an FEI Sirion 200 field-emission scanning electron microscope (SEM) 

10 operating at 5 kV and high-resolution transmission electron microscopy (TEM, Hitachi JEM-

11 2100F) at 200 kV. The x-ray diffraction (XRD) patterns of catalyst samples were collected on 

12 a Philips PW3830 x-ray diffractometer using Cu Kα radiation (λ = 0.15406 nm) with a 

13 current of 40 mA and voltage of 40 kV. The intensity data were collected at 25 oC from 5o to 

14 80o with a scan rate of 1.20o min-1. 

15 Electrode preparation and measurements. To prepare a catalyst ink, 5 mg of the 

16 catalyst was ultrasonically dispersed into 1 mL ethanol and 8 L 5 wt% Nafion® solution to 

17 form a homogeneous ink. Then, 4L of the ink was deposited onto a glassy carbon rotating 

18 disk electrode (RDE) and dried at room temperature. The catalyst loading was 0.1 mg cm-2. 

19 The initial electrochemical measurements were conducted in a standard three-electrode 

20 electrochemical cell at room temperature. The working electrode was immersed in a glass cell 

21 containing 0.1 M KOH aqueous electrolyte. A platinum rod and a saturated calomel electrode 

22 were used as the counter and reference electrodes. Electrochemical activity was studied using 

23 linear sweep voltammetry (LSV) employing a rotating disk electrode (RDE). In an O2-

24 saturated electrolyte solution, the bi-functional catalyst activities were evaluated at a potential 

25 from -1 to 0.7 V vs SCE. The rotation rate of the RDE and the potential scan rate were 

26 controlled at 1600 rpm and 5 mV s-1. Baseline catalysts were examined for the purpose of 

27 comparison, including 20 wt% Pt/C (Johnson Matthey), IrO2/C (Johnson Matthey), CNTs and 

28 the corresponding composite catalysts. For more quantitative analyze using Koutecky-Levich 
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1 theory, the electrode was rotated at several other rates, e.g. 100, 400, 900 and 1600 rpm.

2 Battery fabrication and measurement. A home-made ZAB was used to study the 

3 performance of the air electrode comprised of the aforementioned catalysts. A 20 mg of 

4 catalyst was dispersed in 10 ml of ethanol and 40 μL of 5 wt% Nafion® solution. The air 

5 electrode was prepared by spraying the catalyst slurry onto a gas diffusion layer (Toray TGP-

6 H-090, 2 cm × 2 cm) to achieve a loading of 2 mg cm-2. A clean zinc plate (thickness: 0.8 

7 mm, Shengshida Metal Mater. Co. Ltd., China) was used as the anode, and the electrolyte 

8 was a 6 M KOH solution. The polarization curve and power density were obtained by using a 

9 galvanodynamic method (a current density ranging from 0 to 1000 mA cm-2). For the long-

10 term studies, the cell OCV and the power density were measured during a continuous power 

11 generation mode, where a total of 30 pieces of zinc plates was replaced including the 

12 electrolyte. And the charge-discharge cycling experiments were operated through the 

13 recurrent galvanic pulse method.
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1 Fig. S1 XPS spectrum of composite-3h obtained before (a, c and e) and after (b, d and f) full-
2 range degradation testing (a) (b)Overall spectrum, High-resolution curves of (c) (d) O 1s 
3 region and (e) (f) Ca 2p region.
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18 Fig. S2 (a) ORR and OER polarization curves of composite-3h, the commercial 20%Pt/C and 

19 IrO2/C. (b) ORR and OER polarization curves of composite-3h, composite-3h-CNT0, pure 

20 MnO2, pure La2O3/MnO2 and pure CNTs catalysts.  (c) RDE curves with composite-3h 

21 nanocomposite catalyst loaded on a glassy carbon substrate in an oxygen-saturated 0.1 M 

22 KOH electrolyte at various rotation rates. (d) the corresponding Koutecky−Levich plots 

23 obtained from Fig. S1c at different potentials.
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18 Fig. S3 (a) ORR and OER polarization curves of composite-3h-200oC, composite-3h-300oC 

19 composite-3h and composite-3h-500oC nanocomposite catalysts. (b) ORR and OER 

20 polarization curves of composite-1h, composite-3h and composite-5h nanocomposite 

21 catalysts. (c) ORR and OER polarization curves of composite-3h-CaO0, composite-3h-

22 CaO0.5, composite-3h and composite-3h-CaO2 nanocomposite catalysts. (d) ORR and OER 

23 polarization curves of composite-3h-CNT0, composite-3h-CNT0.05, composite-3h and 

24 composite-3h-CNT0.15 nanocomposite catalysts.
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14 Fig. S4 (a) Typical discharge curves of zinc-air fuel cell with commercial 20% Pt/C and 

15 composite-3h as the air cathode under a continuous discharging process until the complete 

16 consumption of zinc plate at 6 M KOH, (Inset: long-time discharge curve). (b) Charge and 

17 discharge polarization (V-i) curves of the rechargeable Zn-air battery using the commercial 

18 20%Pt/C, IrO2/C and composite-3h as the cathode.
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11 Fig. S5 the real zinc-air battery.
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1 Table S2 Comparison of bifunctional oxygen electrochemical activities of different 

2 electrocatalysts in this work and literatures.

Sample ORR: Ehalf

(V) 
OER: E(V) 

at j= 1 mA cm-2
ΔE/V

(EOER-EORR)
Reference 

Pt/C 0.85 1.71 0.86 This work

IrO2/C 0.60 1.57 0.97 This work

CNTs 0.54 1.73 1.19 This work

MnO2 0.78 1.65 0.87 This work

La2O3/MnO2 0.49 1.71 1.22 This work

Composite-3h-200 oC 0.83 1.62 0.79 This work

Composite-3h-300 oC 0.84 1.62 0.78 This work

Composite-3h-500 oC 0.41 1.73 1.32 This work

Composite-1h 0.35 1.71 1.36 This work

Composite-3h 0.83 1.6 0.77 This work

Composite-5h 0.61 1.66 1.05 This work

Composite-3h-CNT0 0.65 1.66 1.1 This work

Composite-3h-CNT0.05 0.54 1.63 1.09 This work
Composite-3h-CNT0.15 0.67 1.67 1 This work

Composite-3h-CaO0 0.52 1.65 1.13 This work

Composite-3h-CaO0.5 0.83 1.62 0.79 This work

Composite-3h-CaO2 0.64 1.66 1.02 This work

FCO/HrGOS 0.77 1.61 0.84 1

CoFe2O4/rGO 0.78 1.57 0.79 2

CaMnO3 microsphere 0.76 1.9 1.14 3

CaMn3O6 0.77 1.85 1.08 3

FMC-3 0.80 1.59 0.79 4

La2O3/Co3O4/MnO2–CNTs 0.84 1.59 0.76 5

3

4
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