Electronic Supporting Information (ESI)

Calcium containing iron oxide as an efficient and robust catalyst in (photo-)electrocatalytic water oxidation at neutral pH

Hung-Chun Chiu¹, Wei-Hsiang Huang¹, Liang-Ching Hsu², Yan-Gu Lin², Yi-Hsuan Lai³ and Chia-Yu Lin^{1*}

¹No. 1, University Road, Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan

²No. 101, Hsin-Ann Road, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

³No. 70, Lienhai Road, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

* Corresponding authors: cyl44@mail.ncku.edu.tw

Contents

Experiment section	page S2
Tables S1-S2	page S5
Supporting Figures S1–S17	page S6
Reference	page S16

Experimental Section

General consideration. Starting materials for this work were of the highest available purity and used as received from commercial suppliers. Flourine-doped tin oxide coated glass (FTO; sheet resistance 7 ohm sq⁻¹, TEC GlassTM 7) was used as the electrode substrate and cleaned with an ammonia-hydrogen peroxide-deionized water mixture (volume ratio: 1:1:5) at 70 °C for 30 min before the deposition of catalytic material. Deionized water was used throughout the work.

Preparation of CaFeO_x thin film modified electrodes. CaFeO_x thin film modified electrodes were prepared by spin-coating an ethanolic precursor solutions onto the FTO substrate and subsequent annealing at 400 °C for 30 min. The resultant electrode was designated as FTO|CaFeO_x. The precursor solution contains 0.2 M iron(III) nitrate, 0.3 M ethanolamine, and calcium acetate of various concentrations (from 0 to 0.12 M). The content of Ca in the CaFeO_x thin film was controlled by adjusting the molar ratio of Ca²⁺/Fe³⁺ (r) in the precursor solution.

Preparation of Co-phosphate (Co-Pi) thin film modified electrodes. Co-Pi thin film modified electrodes were by electrochemical deposition onto the FTO substrate using the similar procedure reported previously.¹ Briefly, Co-Pi was electrodeposited onto the FTO substrate (with exposed area of $\sim 1.0 \text{ cm}^2$) from phosphate buffer solution (0.1 M, pH 7) containing 0.5 mM Co(NO₃)₂•6H₂O (98%, Sigma-Aldrich) at an applied potential of $\sim 1.1 \text{ V}$ (vs. Ag/AgCl) till a charge of 1.0 C cm⁻² was passed.

Preparation of FeO_x thin film modified electrodes. FeO_x thin film modified electrodes were by electrochemical deposition onto the FTO substrate using the similar procedure reported previously.² Briefly, FeO_x was electrodeposited onto the FTO substrate (with exposed area of ~1.0 cm²) from HEPES buffer solution (0.1 M, pH 7) containing 1.0 mM FeSO₄•7H₂O (99%, Sigma-Aldrich) using cyclic voltammetry at a scan rate of 50 mV s⁻¹ in the potential range between 0.61 to 1.76 V vs. RHE for 25 cycles. Note that the solution was entirely bubbled with nitrogen for at least 30 min to remove dissolved oxygen before the dissolution of FeSO₄.

Preparation of iron phosphate modified electrodes. Iron phosphate modified electrodes were prepared by electrochemical deposition onto the FTO substrate in phosphate buffer (0.1 M, pH 7) containing 0.5 mM FeSO₄•7H₂O (99%, Sigma-Aldrich) under constant applied current density of 1 mA cm⁻² for 1000 s under N₂ purge. Note that the solution was entirely bubbled with nitrogen for at least 30 min to remove dissolved oxygen before the dissolution of FeSO₄.

Preparation of pristine and CaFeO_x modified BiVO₄ photoanodes. Before the fabrication of the pristine and CaFeO_x modified BiVO₄ photoanodes, BiOI nanosheets (*nano*BiOI), as the template for the synthesis of BiVO₄, was firstly prepared by electrochemical deposition onto the FTO substrate using the similar procedure reported previously.³ Briefly, *nano*BiOI was electrodeposited onto the FTO substrate (with exposed area of 1.0-1.5 cm²) from an aqueous plating solution containing 40 mM Bi(NO₃)₃•5H₂O

(98%, Sigma-Aldrich), 400 mM KI (99.5%, Sigma-Aldrich), and 50 mM p-benzoquinone (98%, Sigma-Aldrich) at an applied potential of -0.1 V (vs. Ag/AgCl) for 4 min. Thereafter, the BiVO₄ photoanode was fabricated by drop-coating 100 ml dimethyl sulfide solution containing 0.2 M vanadyl acetylacetonate (98%, Sigma-Aldrich) onto the *nano*BiOI modified electrode, followed by thermal treatment at 450 °C for 2 h. Finally, the annealed electrode was subjected to an etching process in 1 M NaOH solution under gentle stirring to remove excess V_2O_5 . The obtained BiVO₄ electrode is designated as FTO|BiVO₄. The CaFeO_{x(r=0.6)} modified BiVO₄ photoanode (FTO|BiVO₄|CaFeO_{x(r=0.6)}) was prepared by spin-coating a precursor solution contains 0.2 M iron(III) nitrate, 0.3 M ethanolamine, and 0.12 M calcium acetate onto FTO|BiVO₄ and follow-up thermal annealing at 400 °C for 30 min.

Physical Characterization. The surface morphology of the electrodes was characterized using a Hitachi SU-8010 scanning electron microscope (SEM). X-ray diffraction (XRD) analyses were carried out using an Ultima IV (Rigaku Co., Japan) X-ray diffractometer. The amount of Fe, Ca, Co species in the catalysts of interests was determined by using Horiba Jobin Yvon JY 2000-2 ICP optical emission spectrometer. The surface composition of the films was verified by X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe system, ULVAC-PHI, Chigasaki, Japan), using a microfocused (100 μ m, 25 W) Al X-ray beam, with a photoelectron take off angle of 45°. The Ar⁺ ion source for XPS (FIG-5CE) was controlled by using a floating voltage of 0.2 kV. The binding energies obtained in the XPS analyses were corrected for specimen charging, by referencing the C 1s peak to 285.0 eV. The local coordination of Fe in FTO|CaFeO_x samples was characterized with Fe K-edge extended X-ray-absorption fine-structure (EXAFS) spectra. The FTO|CaFeO_x samples were fixed on a holder (Kapton tape); data were collected at Taiwan Light Source (TLS) beamline BL17C1 in National Synchrotron Radiation Research Center. Data of Ca K-edge X-ray-absorption near-edge structure (XANES) were collected at TLS beamline BL16A1. The spectra of samples and reference materials were collected in a fluorescence mode with a Lytle detector.

Electrochemical and photoelectrochemical characterization. Electrochemical experiments were performed in a two-compartment, separated with a Nafion[®] 117 film, three-electrode electrochemical cell with a CHI 760 electrochemical workstation (CH Instruments, Inc., USA) at room temperature under N₂, artificial gas (70% CO₂, 10% CO, 10% CH₄, and 10% H₂), or CO₂ atmosphere and all potentials (E) are reported against the reversible hydrogen electrode (RHE) by using the equation Eq. 1:

 $E (V vs. RHE) = E (V vs. Ag/AgCl) + 0.197 + 0.059 \times pH - iR_u$, where R_u is the uncompensated resistance, measured at open circuit potential, and i is the current flowing through the cell. FTO|CaFeO_x, with various calcium contents, were used as the working electrode connected to a Pt foil counter electrode and a Ag/AgCl_{sat} reference electrode. The electrocatalytic properties, in terms of Tafel slope, exchange current density (i₀), overpotential (η), and stability, of the modified electrodes (all with exposed area of ~1.0 cm²) were evaluated using linear sweep voltammetry (LSV), at a scan rate of 10 mV s⁻¹, and controlled-current electrolysis (CCE), at an applied current density of 1 or 5 mA cm⁻², in phosphate buffer solution (0.1 M) of various pHs ranging from 6 to 10. η is defined as the difference between the applied potential (V vs. RHE) to the thermodynamic potential of water oxidation, which is 1.23 V vs. RHE, and for the reliable comparison, initial overpotential (η_0) is defined as the one obtained at the first 0.5 minute during 2-h CCE, whereas final overpotential (η_f) is defined as the one obtained in the end of 2-h CCE.

Photoelectrochemical (PEC) properties of FTO|BiVO₄ and FTO|BiVO₄|CaFeO_{x(r=0.6)} (exposed area of ~1.0 cm²) in phosphate buffer (1.0 M, pH 7) were examined in a two-compartment, separated with a Nafion[®] 117 film, three-electrode electrochemical cell using LSVs, at a scan rate of 10 mV s⁻¹, and chronoamperometry at an applied potential of 1.23 V *vs*. RHE under light illumination (AM 1.5 G 100 mW cm⁻²) provided by a solar light simulator (XES-40S2-CE, SAN-EI Electric)

Oxygen measurement. The amount of O_2 generated from the two-compartment three-electrode electrochemical systems was detected and quantified by headspace gas analysis with an Ocean Optics fluorescence O_2 probe (FOSPOR-R). The O_2 probe was inserted in an anodic compartment through a tightly sealed septum and continuous O_2 readings (O_2 partial pressure) at 1 s intervals throughout the experiment. The three-electrode electrochemical cell was operated with the sequence: at an applied current density of 0 mA cm⁻² for a period of 30 min (control experiment), followed by 2-h CCE of water at 5 mA cm⁻² and another 30 min at zero applied current density.

Table S1 The actual $Ca^{2+/}Fe^{3+}$ atomic ratio, Tafel slope, and exchange current density (i₀) of FTO|CaFeO_x prepared with various nominal $Ca^{2+/}Fe^{3+}$ molar ratios (r).

	Nominal Ca ²⁺ /Fe ³ molar ratio (r)						
	0	0.05	0.25	0.5	0.6		
Actual Ca ²⁺ /Fe ³⁺ atomics ratio ^a	0	0.12	0.42	0.64	0.74		
Tafel slope (mV dec ⁻¹)	65.3 ± 1.4	64.1 ± 0.1	74.5 ± 2.1	79.9 ± 2.5	77.0 ± 3.2		
$i_0 (pA cm^{-2})$	1.8 ± 1.0	3.5 ± 1.3	83.6 ± 8.1	206.1 ± 106.7	244.5 ± 79.6		
^a : determined by XPS							

Table S2 Atomic ratios, measured by XPS, of P/Fe and Ca/Fe of $FTO|CaFeO_{x(r=0)}$ and $FTO|CaFeO_{x(r=0.6)}$ before and after 2-h treatment in phosphate buffer (0.1 M, pH 7).

	Sample									
	FTO CaFeO _{x(r=0)}				FTO CaFeO _{x(r=0.6)}					
	as-prepared	after 2-h immersion	after 2-h CCE at 1 mA cm ^{-2}	after 2-h CCE at 5 mA cm ^{-2}	as- prepared	after 2-h immersion	after 2-h CCE at 1 mA cm ⁻²	after 2-h CCE at 5 mA cm ⁻²		
P/Fe (At%/At%)	0	0.13	0.17	0.20	0	0.43	0.37	0.52		
Ca/Fe (At%/At%)	0	0	0	0	0.74	0.14	0.13	0.08		

Figure S1 XRD patterns of FTO|CaFeO_x prepared with various different nominal Ca²⁺/Fe³⁺ molar ratios (r), ranging from (i) 0, (ii) 0.05, (iii) 0.25, (iv) 0.5, to (v) 0.6. F and * stand for the diffraction peaks belonging to FTO substrate and γ -Fe₂O₃, respectively.

.

Figure S2 XPS spectra of FTO|CaFeO_x prepared with varied nominal Ca²⁺/Fe³⁺ molar ratios (*r*): (i) 0, (ii) 0.05, (iii) 0.25, (iv) 0.5, to (v) 0.6. (a) Fe 2p region. (b) Ca 2p region. (c) O 1s region. (d) C 1s region.

Figure S3 (a) Tafel plot, obtained using linear sweep voltammetry at a scan rate 10 mV s⁻¹, and (b) η_0 , recorded in the beginning of controlled-current electrolysis at applied current density of 1 mA cm⁻² in phosphate buffer (0.1 M, pH 7)., of FTO|CaFeO_x prepared with various different nominal Ca²⁺/Fe³⁺ molar ratios (r), ranging from (i) 0, (ii) 0.05, (iii) 0.25, (iv) 0.5, to (v) 0.6.

Figure S4 CVs of (a) FTO|CaFeO_{x(r= 0)} and (b) FTO|CaFeO_{x(r= 0.6)} recorded at various scan rates (v), including 5, 10, 20, 40, 60, 80, 100, 200 and 400 mV s⁻¹, in phosphate buffer (0.1 M, pH 7). The plots of $\Box J vs. v$, where the $\Box J$ is the sum of the anodic current and cathodic current measured at open-circuit potential (OCP) from (a) and (b), are shown in (c). The capacitances of FTO|CaFeO_{x(r= 0)} and FTO|CaFeO_{x(r= 0.6)} were estimated from the slope of the curve of charging current density vs. v (c), where the slope is equal to $2C_{dl}$. However, since the area-averaged capacitance of CaFeO_x is unknown, the relative effective surface area is calculated instead of actual effective surface area. As revealed in (c), the effective surface area of FTO|CaFeO_{x(r= 0)} is about 3.9 times higher than that of FTO|CaFeO_{x(r= 0.6)}.

Figure S5 Overpotential (η) transients of (i) CaFeO_{x(r=0.6)} and (ii) FeO_x measured at an applied current density of 5 mA cm⁻² in phosphate buffer (0.1 M, pH 7).

Figure S6 Evolution of O₂ at FTO|CaFeO_{*x*(*r*=0.6)} during CCE in phosphate buffer (0.1 M, pH 7). Current density 5 mA cm⁻² was applied only between 30 and 150 min (green and red arrows indicate the beginning and end of CCE, respectively). The amount of O₂ was quantified with an O₂ fluorescence probe (black trace); the theoretical amount of O₂ with 100 % Faradaic efficiency is shown as a red trace.

Figure S7 Overpotential (η) transient of FTO|CaFeO_{x(r=0.6)} measured at an applied current density of 5 mA cm⁻² in phosphate buffer (1.0 M) under CO₂ atmosphere. Solution pH of phosphate buffer shifted from 7.0 to 6.7 under purge of CO₂ gas.

Figure S8 Overpotential (η) transients of CaFeO_{x(r=0.6)} measured at an applied current density of 5 mA cm⁻² in sodium bicarbonate (1.0 M)-sodium carbonate (0.1 M) electrolyte solution (pH 8.7) under N₂ atmosphere.

Figure S9 Raman spectra of (i) $FTO|CaFeO_{x(r=0)}$ and (ii) $FTO|CaFeO_{x(r=0.6)}$.

Figure S10 Ca K-edge XANES spectra for $FTO|CaFeO_{x(r=0.6)}$.

Figure S11 (a) The content of Ca²⁺ and Fe³⁺, quantified by using ICP, in (I) as-prepared FTO|CaFeO_{x(r=0.6)}, (II) FTO|CaFeO_{x(r=0.6)} after 2-h CCE at 1 mA cm⁻² in phosphate buffer (1.0 M, pH 7), and (III) FTO|CaFeO_{x(r=0.6)} after two times 2-h CCE at 1 mA cm⁻² in phosphate buffer (1.0 M, pH 7). (b) η transients of FTO|CaFeO_{x(r=0.6)} during (i) 1st and (ii) 2nd CCE at 1 mA cm⁻² in phosphate buffer (1.0 M, pH 7).

Figure S12 XPS spectra of (a, c, e, g) FTO|CaFeO_{x(r=0)} and (b, d, f, h) FTO|CaFeO_{x(r=0.6)} before (i) and after (ii) 2-h CCE at an applied current density of 1 mA cm⁻² in phosphate buffer (0.1 M, pH 7). (a, b) Fe 2p region. (c, d) Ca 2p region. (e, f) O 1s region. (g, h) P 2p region.

Figure S13 P/Fe atomic ratios for $CaFeO_{x(r=0.6)}$ measured using EDX after different periods of electrolysis at an applied current of 5 mA cm⁻² in phosphate buffer (0.1 M, pH 7).

Figure S14 Linear sweep voltammetry, recorded at a scan rate of 10 mV s⁻¹, of (i) unmodified and (ii) iron phosphate modified FTO in phosphate buffer (0.1 M, pH 7).

Figure S15 (a) CV, recorded at a scan rate of 50 mV s⁻¹ and (b) η transients, recorded at an applied current density of 5 mA cm⁻², of CV pretreated FTO|CaFeO_{x(r=0)} in phosphate buffer (0.1 M, pH 7).

Figure S16 Overpotential (η) transients of (i) CaFeO_{x(r=0.6)} and (ii) FeO_x measured at an applied current density of 10 mA cm⁻² in phosphate buffer (1.0 M, pH 7).

Figure S17 (a, b) SEM images, with scale bar 500 nm, of FTO|BiVO₄ (a) and FTO|BiVO₄| CaFeO_{x(r=0.6)} (b). (c) TEM and HRTEM images (inset), and (d) EDS of FTO|BiVO₄| CaFeO_{x(r=0.6)}. Scale bars in TEM and HRTEM images are 200 and 10 nm, respectively.

Reference

- 1. M. W. Kanan and D. G. Nocera, *Science*, 2008, **321**, 1072.
- 2. M. X. Chen, Y. Z. Wu, Y. Z. Han, X. H. Lin, J. L. Sun, W. Zhang and R. Cao, ACS Appl. Mater. Interfaces, 2015, 7, 21852.
- 3. K. J. McDonald and K. S. Choi, *Energy Environ. Sci.*, 2012, **5**, 8553.