Electronic Supplementary Information for

Self-assembled Fe_3O_4 nanoparticle-doped TiO_2 nanorod superparticles with highly enhanced lithium storage properties

Bin Xue^{a, b}, Tongtao Li^a, Biwei Wang^a, Li Ji^a, Dong Yang^b, Angang Dong^{a,*}

^a Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key

Laboratory of Molecular Catalysis and Innovative Materials, and Department of

Chemistry, Fudan University, Shanghai 200433, China.

^b State Key Laboratory of Molecular Engineering of Polymers (Fudan University),

Shanghai 200433, China

*Corresponding author.

E-mail: agdong@fudan.edu.cn (A. D).

The calculation of ratio between Fe₃O₄ and TiO₂ for Fe₃O₄/(TiO₂)₇₀.

$$m$$
 (TiO₂) = c (TiO₂) × V (TiO₂) = 40 mg/mL × 1.820 mL = 72.8 mg

 $m'(\text{single TiO}_2 \text{ NR}) = \rho (\text{TiO}_2) \times V(\text{single TiO}_2 \text{ NR})$

=
$$3.9 \text{ g/cm}^3 \times \pi \times (5 \times 10^{-7} \text{ cm})^2 \times 5 \times 10^{-6} \text{ cm}$$

= $1.53 \times 10^{-17} \text{ g} = 1.53 \times 10^{-14} \text{ mg}$

n (TiO₂) = m (TiO₂) / m'(single TiO₂ NR)

= 72.8 mg /1.53 \times 10⁻¹⁴ mg

$$= 4.76 \times 10^{15}$$

m (Fe₃O₄) = c (Fe₃O₄) × V (Fe₃O₄) = 40 mg/mL × 0.182 mL = 7.28 mg

 $m'(\text{single Fe}_3\text{O}_4\text{ NP}) = \rho (\text{Fe}_3\text{O}_4) \times V(\text{single Fe}_3\text{O}_4\text{ NP})$

$$= 5.2 \text{ g/cm}^3 \times 4/3 \times \pi \times (1.7 \times 10^{-6} \text{ cm})^3$$
$$= 1.07 \times 10^{-16} \text{ g} = 1.07 \times 10^{-13} \text{ mg}$$

n (Fe₃O₄) = m (Fe₃O₄) / m'(single Fe₃O₄ NP)

= 7.28 mg / 1.07×10^{-13} mg = 6.80×10^{13}

n (TiO₂) / n (Fe₃O₄) = 4.76 × 10¹⁵ / 6.80 × 10¹³ = 70/1

Fig. S1 High-magnification TEM image of TiO₂ NRs.

Fig. S2 TEM image of (a) enlarged Fig. 3e and (b) a smaller $Fe_3O_4/(TiO_2)_{70}$ SPs.

Fig. S3 HRTEM image of $Fe_3O_4/(TiO_2)_{70}$ SPs

Fig. S4 EDS analysis on the cross-section of the $Fe_3O_4/(TiO_2)_{70}$ SPs after ion-beam cutting.

Fig. S5 FESEM image of phase separation in the $\rm Fe_3O_4/(TiO_2)_7$ SPs.

Fig. S6 First galvanostatic charge/discharge curves of the TiO_2 NRs and Fe_3O_4 NP doped- TiO_2 NR SPs at 100 mA g⁻¹.

Fig. S7 The equivalent circuit modes for fitting the EIS in (a) Fig. 6e and (b) Fig. 6f. (R_s , ohmic resistance; R_{ct} , charge transfer resistance; CPE_1 , interfacial capacitance at the electrode/electrolyte interface; Z_w , Warburg resistance; R_f , surface layer resistance; CPE_2 , surface layer capacitance.)

Samples		$R_s(\Omega)$	$R_{\rm f}(\Omega)$	$R_{ct}(\Omega)$
Before cycling	TiO ₂ SPs	5.52	-	531
	Fe ₃ O ₄ /(TiO ₂) ₇₀	1.18	-	112
After cycling	TiO ₂ SPs	1.41	41.3	127
	Fe ₃ O ₄ /(TiO ₂) ₇₀	0.869	5.89	32.3

 Table S1 Impedance parameters of the fitting equivalent circuit.

Fig. S8 Enlarged *ex-situ* FESEM image of the $Fe_3O_4/(TiO_2)_{70}$ SPs after cycling.

Fig. S9 *Ex-situ* XRD pattern of the $Fe_3O_4/(TiO_2)_{70}$ SPs after cycling.

Materials	Weight ratio (%)	Capacity (mAh g ⁻¹)	Cycles	Current density (mA g ⁻¹)	References
Hierarchical nanofibrous Fe ₃ O ₄ -TiO ₂ -carbons composite	32.5 of Fe ₃ O ₄ content	525	100	100	S1
Carbon-coated TiO ₂ (B) nanosheets decorated with	TiO ₂ :Fe ₃ O ₄ :C	763	200	500	S2
Fe ₃ O ₄ nanoparticles	72.31:19.23:7.99				
Fe ₃ O ₄ -nanoparticle-decorated TiO ₂ nanofiber	18.2 of iron content	454.5	200	100	S3
hierarchical heterostructures		187.8	400	1000	
Nanonorous TiO /Co O composito	TiO ₂ :Co ₃ O ₄	290	500	100	S4
Nanoporous $110_2/C0_30_4$ composite	70.5:29.5				
7nO descripted TiO nemospheric compositor	TiO ₂ :ZnO	340.2	100	200	S5
ΣnO decorated $T O_2$ hanosheet composites	66.2:33.8				
Hierarchal mesoporous SnO ₂ @C@TiO ₂ nanochains	73.7 of TiO_2 content	369	100	100	S 6
	TiO ₂ :MnTiO ₃ :C	402.6	300	100	S7
Porous ternary $110_2/Min110_3$ (<i>a</i>)C hybrid microspheres	75.09:20.18:4.73				
	TiO ₂ :MoS ₂	632	100	100	S8
Lattice-mismatched core-shell $\Pi O_2(a) MOS_2$	25.9:74.1				
	TiO ₂ :Fe ₃ O ₄ :C	526	100	100	This work
Fe ₃ O ₄ /(11O ₂) ₇₀ SPS	82:7.7:10.3	550	400	1000	

 $\label{eq:solution} \textbf{Table S2}\ \text{Lithium storage performance comparison between Fe}_{3}O_{4}/(\text{Ti}O_{2})_{70}\ \text{SPs and representative Ti}O_{2}\text{-based composite anode materials.}$

References

(S1) Li, S.; Wang, M.; Luo, Y.; Huang, J. Bio-Inspired Hierarchical Nanofibrous Fe₃O₄-TiO₂-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. *ACS Appl. Mater. Interfaces* 2016, *8*, 17343-17351.

(S2) Xu, H.; Zhu, X. D.; Sun, K. N.; Liu, Y. T.; Xie, X. M. Elaborately Designed Hierarchical Heterostructures Consisting of Carbon-Coated TiO₂(B) Nanosheets Decorated with Fe₃O₄ Nanoparticles for Remarkable Synergy in High-Rate Lithium Storage. *Adv. Mater. Interfaces* 2015, *2*, 1500239.

(S3) Wang, H.; Wang, G.; Yuan, S.; Ma, D.; Li, Y.; Zhang, Y. Fe₃O₄-Nanoparticle-Decorated TiO₂ Nanofiber Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance over Wide Temperature Range. *Nano Res.* **2015**, *8*, 1659-1668.

(S4) Zhao, D.; Hao, Q.; Xu, C. Nanoporous TiO₂/Co₃O₄ Composite as an Anode Material for Lithium-Ion Batteries. *Electrochim. Acta* 2016, 211, 83-91.

(S5) Gao, L.; Li, S.; Huang, D.; Shen, Y.; Wang, M. ZnO Decorated TiO₂ Nanosheet Composites for Lithium Ion Battery. *Electrochim. Acta* **2015**, *182*, 529-536.

(S6) Luo, G.; Liu, W.; Zeng, S.; Zhang, C.; Yu, X.; Fang, Y.; Sun, L. Hierarchal Mesoporous SnO₂@C@TiO₂ Nanochains for Anode Material of Lithium-Ion Batteries with Excellent Cycling Stability. *Electrochim. Acta* **2015**, *184*, 219-225.

(S7) Guo, S.; Liu, J.; Qiu, S.; Liu, W.; Wang, Y.; Wu, N.; Guo, J.; Guo, Z. Porous Ternary TiO 2/MnTiO₃@C Hybrid Microspheres as Anode Materials with Enhanced Electrochemical Performances. *J. Mater. Chem. A* **2015**, *3*, 23895-23904.

(S8) Dai, R.; Zhang, A.; Pan, Z.; Al-Enizi, A. M.; Elzatahry, A. A. Hu, L.; Zheng, G. Epitaxial

Growth of Lattice-Mismatched Core-Shell $TiO_2@MoS_2$ for Enhanced Lithium-Ion Storage. Small

, *12*, 2792-2799.