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1. Experimental and computational methods 

Extraction of graphite negative electrodes from commercial cells 

Electrodes are extracted from commercial 18650 cells (Samsung 25R6, Samsung E35, Sony 

VTC5, one cell extracted from a Tesla Model S battery pack) by the following procedure: 

first, the cells are discharged at a rate of 1C to 0V and held there for 2h. Cells are opened 

under argon atmosphere before the electrode samples are extracted. The samples are then 

washed in dimethyl carbonate (DMC), dried, and removed from the glovebox. The Liatrion 

and Nanotek electrodes were used as shipped. 

Tomographic imaging and reconstruction 

Tomographic imaging was conducted at the TOMCAT beamline at the Swiss Light Source at 

an X-ray beam energy of 13 keV. Using the 40x microscope and an sCMOS camera with 

2560 x 1200 pixels readout resulted in a pixel size of 162.5 x 162.5 nm2 and a corresponding 

field of view of 416 x 195 μm2. For each tomographic scan, 1201 projections at an exposure 

time of  600 ms were acquired, filtered using the Paganin phase retrieval algorithm1 (𝛿 = 2 ×
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10−8, 𝛽 = 1 × 10−9, 𝑑 = 5 mm), and reconstructed using Fourier-based reconstruction 

algorithms implemented at the TOMCAT beamline2. 

Histogram processing and calculating the threshold range 

Each reconstructed dataset was cropped to a size of 350 x 350 x 150 vox3 (57 x 57 x 24 μm3) 

and linearly rescaled such that 99.98 % of all gray values fall in the [0, 1] interval. The 0.02 % 

of all voxels with gray values outside the [0, 1] range were neglected for binning the datasets 

into histograms with 1000 bins. 

The eleven different automatic thresholding techniques were applied to the resulting 

histograms: Otsu3, Huang4, Isodata5, Peak-average (where threshold is defined as the mean of 

the two peak positions, when the histogram data is fitted with a set of two Gaussians), 

Minerror6, Moments7, Max-Entropy8, Triangle9, Yen10, Shanbhag11 and Li12. They were 

implemented in MATLAB based on the threshold criteria derived in the respective 

publications. However, to avoid convergence problems with some iterative methods, all 

possible thresholds in the [0, 1] histogram range were tested against the respective criteria for 

each method to find the optimal thresholds.   

The mean of the eleven threshold values plus/minus one standard deviation was taken to be 

the threshold range. 

Binarization with the max-flow-min-cut algorithm  

Formally, the idea of including morphological information in the segmentation process can be 

implemented using graph cuts theory13. For binarizing our datasets, we used a MATLAB 

based implementation of the max-flow-min-cut algorithm by Jing Yuan14–16 available on 

MATLAB Central17.  

The idea of the max-flow-min-cut algorithm is presented in Figure S1. Each pixel of the 

image (or in 3D equivalently each voxel) is connected with its neighbors and additionally to 



two terminals called ‘source’ (red ball) and ‘drain’ (blue ball). The task of binarizing an 

image is equivalent to finding the ‘minimal’ cut (orange lines) through the network, which 

completely separates source from drain. Pixels remaining connected to the source are 

associated with the foreground and those remaining connected to the drain are associated with 

the background. The cut is called ‘minimal’, because it is found by minimizing the total 

cutting cost, which is the sum of costs that we associate with cutting the required connections 

to separate source from drain (orange lines). The cost associated with cutting an individual 

connection can be defined to depend on the type of connection (pixel – terminal or pixel – 

pixel) and the gray value of the respective pixel. For example, if we define the cost of cutting 

a pixel – source connection as 𝐸𝑝−𝑆 = |𝜇𝑝 − 𝜇𝐷|, the cost of cutting a pixel – drain 

connection as 𝐸𝑝−𝐷 = |𝜇𝑝 − 𝜇𝑆| (𝜇𝑝 being the gray value of the respective pixel and 𝜇𝑆, 𝜇𝐷 

being two reference gray values for the source (foreground gray value) and drain (background 

gray value) terminals respectively) and set the cost for cutting a pixel – pixel connection 𝐸𝑝𝑝 

to zero, a binarization is obtained that is equivalent to thresholding at a level 
𝜇𝑆+𝜇𝐷

2
. However, 

if 𝐸𝑝𝑝 is finite, pixels can be flipped and assigned to the same phase as their neighboring 

pixels (see Fig. 2 in the main text). The higher 𝐸𝑝𝑝 is compared to 𝐸𝑝−𝑆 and 𝐸𝑝−𝐷, the more 

expensive it will be to associate neighboring voxels with different domains. We therefore 

define 𝐸𝑝𝑝 as the filtering parameter for the binarization process, which controls feature 

preservation and smoothness of the binarization (“alpha” parameter in the MATLAB code17). 

A rigorous mathematical treatment and background information on graph cuts theory and 

max-flow-min-cut algorithms can be found in references13–16. 

We chose the two terminal reference values 𝜇𝑆 and 𝜇𝑃 symmetrically above and below a 

given threshold. The binarization process is then entirely defined by the two input parameters 

(i) threshold and (ii) cost for cutting a pixel – pixel connection 𝐸𝑝𝑝.  



 

Figure S1. Illustration of the max-flow-min-cut principle 

 

Microstructure calculations 

All microstructure characteristics were calculated on the binarized data as obtained from the 

max-flow-min-cut algorithm, using MATLAB based custom implementations. The definition 

of the tortuosity is based on18; the resulting linear system of equations is assembled based on19 

and solved with the MATLAB pre-implemented conjugate gradients squared method. For the 

specific surface area calculation, the surface was represented using triangulation and divided 

by the corresponding active material volume, which was calculated from Gauss’ divergence 

law.  

 

 

 

 



2. Gravimetric measurements of electrode porosities 

The focus of this work is to quantify the binarization uncertainty of X-ray tomographic data, 

as well as the resulting uncertainty in the microstructural parameters. However, measuring 

porosities, tortuosities, or specific surface areas with different experimental techniques (e.g. 

mercury intrusion, X-ray tomography, gravimentric measurements, electrochemical 

impedance spectroscopy, BET, etc…) can help in understanding limitations to different 

methods and subtle differences among them. The results may greatly differ from one another 

and these variations reflect the differences in what the technique is probing. 

For example, porosity of an electrode can be determined from a combination of gravimetric, 

thickness, and helium pycnometry measurements: (i) From thickness and gravimetric 

measurements of both the current collector alone and the entire electrode sheet, the volumetric 

loading (𝜌vl) of the coating can be determined. (ii) From the helium pycnometry 

measurements, the effective density (𝜌eff) of the solid phase can be obtained (weighted 

density of the active material, carbon black, binder, and potential other additives). We have 

conducted these measurements for three of the seven electrodes: 

 𝜌vl - volumetric 

loading (g/ml) 

𝜌eff - eff. bulk 

density (g/ml) 

25R6 1.46 ± 0.08 2.21 ± 0.03 

E35 1.39 ± 0.03 2.17 ± 0.03 

VTC5 1.43 ± 0.07 2.22 ± 0.03 

 

The indicated standard deviations are calculated from measuring several samples from each 

electrode. The porosity can then be calculated according to: 𝜖 =
𝑉pore

𝑉total
= 1 −

𝑉solid

𝑉total
= 1 −

𝜌vl

𝜌eff
, 

which leads to the results shown in Figure S42:  



 

Figure S2. Comparison of porosities obtained from  

the tomographic and the gravimetric measurements. 

 

The porosities from the gravimetric measurements are always higher than the porosities 

determined through tomography. This systematic deviation likely stems from the porosity 

contribution of many tiny pores and substructures within the active material particles that are 

(partially) below the spatial resolution limit of microtomography. In other words, the active 

material does not only consist of dense particles with a uniform bulk density equal to the one 

of graphite. 

To illustrate this potential explanation, Figure S43 (top part) shows binarizations of the Sony 

VTC5 electrode data (i) with the target porosity obtained from the tomographic analysis as 

presented in the main text (22 %) and (ii) with the target porosity obtained from the 

gravimetric experiments (36 % porosity). 

 



  

Figure S3. Top: comparison of the binarizations resulting from the tomographic analysis 

(22 %) and the gravimetric analysis (36 %). Bottom: binarization of an NMC cathode. 

 

As evident from the images, the inhomogeneous gray value distributions within the active 

particles allows for different binarization interpretations. While the binarization with 36 % 

porosity matches the target porosity obtained from the gravimetric measurements, it is not 

necessarily be the better choice for microstructure analysis: the non-enclosed pores between 

the particles are likely overestimated to compensate for the tiny (enclosed) pores within the 

active material that are below the spatial resolution limit of the tomography. Because only 

non-enclosed pores in a microstructure are relevant for its transport properties, an 



overestimation of pore space using gravimetric approach could result in large errors in 

transport measurements.  

In Figure S43 (bottom part), we show that this interpretation ambiguity does not occur for 

electrodes consisting of dense cathode materials of uniform density. In this case, binarization 

is very reliable and the porosity estimates from the known material composition of the 

electrode may be exploited to constrain the binarization protocol20. 

The above presented analysis illustrates (i) that comparing different measurement techniques 

can be difficult, because different constraints are attached to each technique, and (ii) that a 

very precise definition of the quantity (e.g. all pores space between particles and within 

particles) to be measured is required. 

 

 

 

 

 

 

 

 

 



3. Validation of microstructural uncertainties in anodes with 

additional cathode data 

To validate the idea that high Otsu interclass variances correlate with low microstructural 

uncertainties also for different sample materials or imaging conditions, Figure S4 expands our 

analysis on two commercial LIB cathodes. Both samples show very small microstructure 

uncertainties at large Otsu interclass variances in agreement with our findings on graphite-

based electrodes. 

 

Figure S4. Validating data from two cathodes. 

 

 

 

 

 

 

 

 



4. Detailed evaluation of all electrodes 

 

 

Figure S5. Uncertainty analysis of the Samsung 25R6 electrode. 

 



 

Figure S6. Uncertainty analysis of the Samsung E35 electrode. 

 

 

 

Figure S7. Uncertainty analysis of the Litarion electrode. 



 

Figure S8. Uncertainty analysis of the Nanotek GCA-400 electrode. 

 

 



 

Figure S9. Uncertainty analysis of the Nanotek GCA-2000 electrode. 

 

 

 

Figure S10. Uncertainty analysis of the Tesla electrode. 



 

 

Figure S11. Uncertainty analysis of the Sony VTC5 electrode. 
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