Supporting Information

Green and Facile Fabrication of Hierarchical N-doped Porous Carbon from Water Hyacinths for High Performance Lithium/Sodium Ion Batteries

Guang Zeng,^{a, b,} * Baolong Zhou,^{a,b} Luocai Yi,^{a,b} Hao Li,^{a,b} Xiang Hu,^{a,b} and Yan Li,^{a,b} ^a CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

^b Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

Figure S1. TG curve of the dried stem medulla of water hyacinth under argon atmosphere.

Table S1 Comparison of the yields of the carbon materials in this work and some othertypically biomass derived carbon materials.

Materials	Yield (%)	Ref.	
Water hyacinth	30	This work	
Lotus stem	30.8	[1]	
Asparagus lettuce stem	18	[1]	
Celery	10	[1]	
Bean shell	25	[2]	
Seaweed	35	[3]	
Pokeweed stem	25	[4]	

Table S2 Content of the selected nine ions in the carbonized carbon materials before and after rinsing with hydrochloric acid by ICP (g/100 g).

Samples	K	Ca	Na	Mg	Al	Fe	Zn	Cu	Mn	Total
NPC-700 before rinsing	15.440	1.580	1.650	0.490	0.003	0.019	0.003	0.003	0.170	19.358
NPC-900 before rinsing	14.960	2.060	1.460	0.630	0.006	0.015	0.001	0.002	0.220	19.354
NPC-1100 before rinsing	4.200	2.120	0.130	0.910	0.011	0.007	0.001	0.001	0.300	7.680
NPC-700	0.043	0.210	0.023	0.076	0.001	0.018	0.005	0.005	0.013	0.394
NPC-900	0.041	0.350	0.019	0.055	0.001	0.021	0.002	0.008	0.017	0.514
NPC-1100	0.068	0.390	0.015	0.046	0.004	0.012	0.002	0.008	0.020	0.565

Figure S2. TEM images of (a) NPC-900 and (b) NPC-1100.

Figure S3. XPS survey spectra of NPC-700, NPC-900, and NPC-1100.

 Table S3 Comparison of the electrochemical performances of NPC-700 and some other

Materials	Activating	BET	Initial	Current	Specific	Ref.
	agent	surface	coulombic	density	capacity	
		area (m ²	efficiency	(mA g ⁻¹) /	(mAh g-	
		g-1)	(%)	Cycle	1)	
				number		
Water	Self-	1005.4	65.9	50 / 100	740	This
hyacinth	activation			400 /450	552	work
Mushroom	Self-	19.6	Not	100 / 700	234	5
	activation		reported			
Rice husk	СНООН	243	50.2	75 / 100	403	6
Banana	Dry air	217	55.0	100 / 300	800	7
peel						
Constalk	KOH	847	76.0	100 / 200	592	8
				2000 / 400	481	
Bean shell	KOH	655	<mark><</mark> 40	372 / 100	262	2
				186 / 100	300	
Waste tea	HC1	338	57.0	75 / 200	479	9
Prawn shell	NaOH	336	64.0	100 / 150	730	10
				750 / 150	470	
Garlic peel	КОН	1710	41.0	100 / 100	540	11
Wheat stalk	KOH	36	62.9	372 / 183	475	12
				1860 / 2000	215	
Peanut	КОН	706	40.0	1000 / 400	474	13
shell						
Spongy	No	114	59.5	90 / 200	450	14
pomelo	activation					
peel						
Microalgae	No	29	Not	38 / 100	433	15
	activation		reported			
Coconut oil	No	Not	55.0	100 / 90	300	16
	activation	reported				

typically biomass derived carbon anode for LIBs.

The self-activation by K^+ has been reported in Ref. 5. However, the effect of the selfactivation by K^+ in the water hyacinth in this work has been significantly different from that in the mushroom. As shown in **Table S3**, the BET surface area of the water hyacinth-derived carbon material (NPC-700) in this work is 50 times more than that of the mushroom-derived carbon material in Ref. 5. Furthermore, the NPC-700 delivered much higher reversible capacities than that of the mushroom-derived carbon material in Ref. 5 not only at low current density (50 mA g^{-1}) but also at high current density (400 mA g^{-1}) (**Table S3**).

Table S4 Comparison of the electrochemical performances of NPC-700 and some other

 typically biomass derived carbon anode for SIBs.

Materials	Activating	BET	Initial	Current	Specific	Ref.
	agent	surface	coulombic	density	capacity	
		area (m ² g ⁻	efficiency	(mA g ⁻¹) /	(mAh g-	
		1)	(%)	Cycle	1)	
				number		
Water	Self-	1005.4	47.8	50 / 100	293	This
hyacinth	activation			400 /1000	140	work
Peat moss	Dry air	197	43.9	100 / 200	255	17
Pomelo	H ₃ PO ₄	1272		200 / 220	181	18
peel						
Banana	Dry air	217	67.8	100 / 300	298	7
peel						
Lotus	Dry air	Not	27.0	200 / 200	228	19
petiole		reported				
Bean shell	КОН	655	36.5	200 / 100	140	2
Prawn	NaOH	336	56.0	100 / 200	325	10
shell				400 / 150	234	
Garlic	КОН	1710	41.0	100 / 100	190	11
peel						
Peanut	КОН	706	40.7	250 / 400	190	13
shell						
Peanut	КОН	2500	<34.0	500 / 200	140	20
skin						
Apple	H ₃ PO ₄	196	61.0	20 / 80	230	21
				1000 /	85	
				1000		
Coconut	No	Not	34.0	100 / 200	180	16
oil	activation	reported				
Algal	No	Not	53.3	20 / 60	230	22
bloom	activation	reported				

 Zhang Y., Liu S. S., Zheng X. Y., Wang X., Xu Y., Tang H. Q., Kang F. Y., Yang Q. H. and Luo J. Y., Biomass Organs Control the Porosity of Their Pyrolyzed Carbon. *Adv. Funct. Mater.*, 2017, 27, 1604687

- Xu, G. Y.; Han, J. P.; Ding, B.; Nie, P.; Pan, J.; Dou, H.; Li, H. S.; Zhang, X. G., Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. *Green Chem.* 2015, *17*, 1668-1674.
- 3. Raymundo-Pinero, E.; Cadek, M.; Beguin, F., Tuning Carbon Materials for supercapacitors by Direct Pyrolysis of Seaweeds. *Adv. Funct. Mater.* **2009**, *19*, 1032-1039.
- 4. Chen Y. D., Huang M. J., Huang B. and Chen X. R., Mesoporous activated carbon from inherently potassium-rich pokeweed by in situ self-activation and its use for phenol removal. *J. Anal. Appl. Pyrol.*, **2012**, *98*, 159-165.
- Campbell, B.; Ionescu, R.; Favors, Z.; Ozkan, C. S.; Ozkan, M., Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries. *Sci. Rep-Uk* 2015, 5, 1-9.
- 6. Wang, L. P.; Schnepp, Z.; Titirici, M. M., Rice husk-derived carbon anodes for lithium ion batteries. *J. Mater. Chem. A* **2013**, *1*, 5269-5273.
- Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D., High-Density Sodium and Lithium Ion Battery Anodes from Banana Peels. *Acs Nano* 2014, *8*, 7115-7129.
- 8. Wang, S. B.; Xiao, C. L.; Xing, Y. L.; Xu, H. Z.; Zhang, S. C., Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries. *J. Mater. Chem. A* **2015**, *3*, 6742-6746.
- 9. Choi, C.; Seo, S. D.; Kim, B. K.; Kim, D. W., Enhanced Lithium Storage in Hierarchically Porous Carbon Derived from Waste Tea Leaves. *Sci. Rep-Uk* 2016, *6*, 39099.
- 10. Elizabeth, I.; Singh, B. P.; Trikha, S.; Gopukumar, S., Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries. *J. Power Sources* **2016**, *329*, 412-421.
- Selvamani, V.; Ravikumar, R.; Suryanarayanan, V.; Velayutham, D.; Gopukumar, S., Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. *Electrochim Acta* 2016, *190*, 337-345.
- Zhou, X. Y.; Chen, F.; Bai, T.; Long, B.; Liao, Q. C.; Ren, Y. P.; Yang, J., Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. *Green Chem.* 2016, *18*, 2078-2088.
- Lv, W. M.; Wen, F. S.; Xiang, J. Y.; Zhao, J.; Li, L.; Wang, L. M.; Liu, Z. Y.; Tian, Y. J., Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. *Electrochim Acta* 2015, *176*, 533-541.
- 14. Sun, X. L.; Wang, X. H.; Feng, N.; Qiao, L.; Li, X. W.; He, D. Y., A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. *J. Anal. Appl. Pyrol.* **2013**, *100*, 181-185.
- Ru, H. H.; Bai, N. B.; Xiang, K. X.; Zhou, W.; Chen, H.; Zhao, X. S., Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries. *Electrochim Acta* 2016, 194, 10-16.

- Gaddam, R. R.; Yang, D. F.; Narayan, R.; Raju, K. V. S. N.; Kumar, N. A.; Zhao, X. S., Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. *Nano Energy* 2016, *26*, 346-352.
- Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C.; Mitlin, D., Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes. *Acs Nano* 2013, *7*, 11004-11015.
- Hong, K. L.; Qie, L.; Zeng, R.; Yi, Z. Q.; Zhang, W.; Wang, D.; Yin, W.; Wu, C.; Fan, Q. J.; Zhang, W. X.; Huang, Y. H., Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. *J. Mater. Chem. A.* 2014, 2, 12733-12738.
- Wang, P. Z.; Qiao, B.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Dai, Z. H.; Bao, J. C., Fluorine-Doped Carbon Particles Derived from Lotus Petioles as High-Performance Anode Materials for Sodium-Ion Batteries. *J. Phys. Chem. C* 2015, *119*, 21336-21344.
- 20. Wang, H. L.; Yu, W. H.; Shi, J.; Mao, N.; Chen, S. G.; Liu, W., Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. *Electrochim Acta* **2016**, *188*, 103-110.
- Wu, L. M.; Buchholz, D.; Vaalma, C.; Giffin, G. A.; Passerini, S., Apple-Biowaste-Derived Hard Carbon as a Powerful Anode Material for Na-Ion Batteries. *Chemelectrochem* 2016, *3*, 292-298.
- Meng, X. H.; Savage, P. E.; Deng, D., Trash to Treasure: From Harmful Algal Blooms to High-Performance Electrodes for Sodium-Ion Batteries. *Environ. Sci. Technol.* 2015, 49, 12543-12550.