Supporting Information

Facile fabrication of 3D network composed of N-doped carboncoated core-shell metal oxides/phosphides for highly efficient water splitting

Fig. S1 The XRD pattern of NiFe-PBAs/PVP precursor

Fig. S2 The XRD pattern of NC-NiFeO_x@NiFe-P

Fig. S3 The XRD pattern of NC-NiFe (served as control sample). The NC-NiFe was produced without phosphorization.

Fig. S4 The Raman spectrum of NC-NiFeO_x@NiFe-P

Fig. S5 The SEM images of (a) NiFe-PBAs and (b) NiFeO_x@NiFe-P. Both of NiFe-PBAs and NiFeO_x@NiFe-P were produced without addition of PVP.

Fig. S6 The TEM images of NiFeO_x@NiFe-P.

Fig. S7 XPS spectra of (a) Ni 2p, (b) Fe 2p, (c) P 2p, and (d) O 1s for NC-NiFeO_x@NiFe-P catalyst after Ar ions etching of different time (i.e. 0 s, 30 s, 60 s). The insert in (a) displayed the magnified spectrum of untreated NC-NiFeOx@NiFe-P sample

Fig. S8 Time-dependent current density curve for NC-NiFeO_x@NiFe-P catalyst at fixed potential of 1.53 V.

Fig. S9 CV curves for (a) NiFeO_x@NiFe-P, (b) NC-NiFe and (c) NC-NiFeO_x@NiFe-P at various scan rates

Fig. S10 Time-dependent current density curve for NC-NiFeO_x@NiFe-P catalyst at fixed potential of -0.23 V.

Fig. S11 (a) Steady-state HER polarization curves of NC-NiFeO_x@NiFe-P-100, (b) EIS of NC-NiFeO_x@NiFe-P and NC-NiFeO_x@NiFe-P-100

As shown in Fig. S11b, the Nyquist plots of all the two samples (i.e. NC-NiFeO_x@NiFe-P-100 and NC-NiFeO_x@NiFe-P) reveal two time-constants. As it well reported, the small constant at high frequency is belonged to series resistance, and the other big one at low frequency is related to the charge-transfer resistance (R_{ct}) during

electrocatalytic processes. The charge-transfer resistance (R_{ct}) of NC-NiFeO_x@NiFe-P (29.2 Ω) due P-100 (33.1 Ω) is found slightly larger than that of NC-NiFeO_x@NiFe-P (29.2 Ω) due to the presence of highly conductive N-doped carbon network. The result implies that the impaired electrocatalytic activity of NC-NiFeO_x@NiFe-P-100 could originate from the inefficiency of NiFeO_x shell for the combination of active hydrogen atoms.

Fig. S12 Steady-state HER polarization curves of NC-NiFe-P

Fig. S13 LSV of water electrolysis based on the NiFeO_x@NiFe-P and NC-NiFe catalyst in 1 M KOH

Table S1 Element contents of NiFeO_x@NiFe-P and NC-NiFeO_x@NiFe-P determined

Catalyst	С	Ν	Н
	(wt%)	(wt%)	(wt%)
NiFeO _x @NiFe-P	12.23	0.76	0.69
NC-NiFeO _x @NiFe-P	28.62	2.23	0.82

by element analysis

reported catalysts for OER

Catalysts	Electrolyte	Loading	η (mV) at	Reference
		(mg cm ⁻²)	10 mA/cm ²	
NC-NiFeO _x @NiFe-P	1 M KOH	0.2	285	This work
Ni ₂ P	1 M KOH	0.14	290	Energy Environ. Sci., 2015,
				8, 2347
Co ₂ P	1 M KOH	0.2	310	ACS Energy Lett., 2016, 1,
				169
CoMnP	1 M KOH	0.284	330	J. Am. Chem. Soc., 2016,
				138 , 4006.
Co@Co ₃ O ₄ /NC	0.1 M KOH	0.21	410	Angew. Chem. Int. Ed.,
				2016, 55 , 4087
Ni _x Co _{3-x} O ₄	1 M NaOH	3	370	Adv. Mater., 2010, 22 , 1926
PNG-NiCo ₂ O ₄	0.1 M KOH	N/A	310	ACS Nano 2013, 7, 10190
CoCo LDH	1 M KOH	0.07	393	Nat. Commun., 2014, 5 ,
				4477
NiCo LDH	NiCo LDH	N/A	367	Nano Lett., 2015, 15 , 1421
NC: N-doped carbon nanotube, PNG: porous N-doped graphene, LDH: layered double hydroxides				

Table S3 Comparison of the as-synthesized NC-NiFeOx@NiFe-P catalyst with other recently

reported catalysts for HER

Catalysts	Electrolyte	Loading	η (mV) at	Reference
		(mg cm ⁻²)	10 mA/cm ²	
NC-NiFeO _x @NiFe-P	1 М КОН	0.2	237	This work
Co-NRCNTs	1 M KOH	0.28	370	Angew. Chem., Int. Ed.,2014,
				53 , 4372
MnNi	0.1 M KOH	0.28	360	Adv. Funct. Mater., 2015, 25,
				393
Co@Co-N-C	0.1M KOH	0.6	314	Chem. Commun., 2015, 51 ,
				8942
Co ₃ O ₄ NCs	1 M KOH	0.35	380	Chem. Commun. 2015, 51 , 8066
MoB	1 M KOH	2.3	~210	Angew. Chem., Int. Ed., 2012,
				51 , 12703
NiO/Ni-CNT	1 M KOH	0.28	~100	Nat. Commun., 2014, 5 ,4695
Co _x @CN	1 M KOH	0.12	232	J. Am. Chem. Soc., 2015, 137 ,
				2688
FeCo@CN	1 M KOH	0.32	211	ACS Catal., 2017, 7, 469
NRCNTs: N-rich carbon nanotubes, NCs: nanocrystals, CNT: carbon nanotube, CN: N-doped carbon				

Table S4 Comparison of the as-synthesized NC-NiFeO $_x$ @NiFe-P catalyst with other recentlyreported bifunctional catalysts for overall splitting of water

Catalysts	Substrate	Loading	Voltage (V)	Reference
		(mg/cm ²)	at 10 mA/cm ²	
NC-	Ni foam	1	1.59	This work
NiFeO _x @NiFe-P				
CoO _x @CN	Ni foam	2	1.55	J. Am. Chem. Soc., 2015, 137 , 2688.
Ni ₂ P/NiO _x	Ni foam	5	1.63	Energy Environ., Sci. 2015, 8 , 2347.
Co-P	Cu foil	2.6	1.65	Angew. Chem. Int. Ed., 2015, 54,
				6251.
Ni/NiP	Ni foam	N/A	1.61	Adv. Funct. Mater., 2016, 26, 3314.
Ni ₂ P	FTO	1	1.58	ACS Catal., 2017, 7, 103
Co-Fe-P-1.7	Ni foam	1	1.60	ACS Appl. Mater. Interfaces 2017, 9,
				362
Ni-B	Ni foam	12.3	1.68	Nanotechnology., 2016, 27,
NiSe NWs	Ni foam	2.8	1.63	Angew. Chem. Int. Ed., 2015, 54 ,
				9351
Fe-Co	CFP	1.2 or 2	1.68	Nano Energy, 2017, 38 , 576
CN: N-doped carbon, NWs: nanowires				