## **Electronic supporting information to accompany:**

# The influence of phosphonic acid protonation state on the efficiency of bis(diimine)copper(I) dye-sensitized solar cells

Alexander J. Stephens, Frederik J. Malzner, Edwin C. Constable, Catherine E. Housecroft\*

#### (1) DSCs constructed from electrodes treated with H<sub>4</sub>1 + "Bu<sub>4</sub>NOH

**Table S1.** Performance parameters for duplicate DSCs containing the dye  $[Cu(H_n 1)(2)]^{n-3}$  where H<sub>4</sub>1 was treated with 0–4 equivalents of <sup>n</sup>Bu<sub>4</sub>NOH prior to electrode functionalization. Values of relative photoconversion efficiency (Rel.  $\eta$ ) are with respect to that of N719 set to 100%.

| Dye                                    | Eq.                  | $J_{\rm SC}$           | V <sub>OC</sub> | FF   | η    | Rel. η |
|----------------------------------------|----------------------|------------------------|-----------------|------|------|--------|
|                                        | "Bu <sub>4</sub> NOH | [mA cm <sup>-2</sup> ] |                 | [%0] | [%0] | [%0]   |
| On the day of sealing                  |                      |                        |                 |      |      |        |
| $[Cu(H_41)(2)]^+$                      | 0                    | 4 61                   | 521             | 72   | 1 72 | 27.5   |
| $[Cu(H_41)(2)]^+$                      | Ő                    | 4 54                   | 546             | 68   | 1.68 | 26.9   |
| $[Cu(H_{4}I)(2)]^{n-3}$                | 10                   | 5.11                   | 535             | 72   | 1.00 | 31.5   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 1.0                  | 5 20                   | 535             | 65   | 1.80 | 28.8   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 2.0                  | 4 59                   | 512             | 70   | 1.65 | 26.8   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 2.0                  | 4 62                   | 509             | 68   | 1.59 | 25.4   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 3.0                  | 1.04                   | 404             | 68   | 0.29 | 4.6    |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 3.0                  | 2.11                   | 434             | 69   | 0.63 | 10.1   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 4.0                  | 0.75                   | 404             | 70   | 0.21 | 3.4    |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 4.0                  | 0.59                   | 377             | 69   | 0.15 | 2.4    |
| N719                                   | _                    | 14 3                   | 635             | 70   | 6.25 | 100    |
| 1() 1)                                 |                      | 1 110                  | 000             | , 0  | 0.20 | 100    |
| 3 days after sealing                   |                      |                        |                 |      |      |        |
| [Cu(H <sub>4</sub> 1)(2)] <sup>+</sup> | 0                    | 3.48                   | 548             | 72   | 1.38 | 22.1   |
| $[Cu(H_41)(2)]^+$                      | 0                    | 3.30                   | 569             | 67   | 1.26 | 20.2   |
| $[Cu(H_n1)(2)]^{n-3}$                  | 1.0                  | 3.59                   | 551             | 72   | 1.43 | 22.9   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 1.0                  | 3.58                   | 543             | 69   | 1.34 | 21.4   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 2.0                  | 3.43                   | 526             | 70   | 1.25 | 20.0   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 2.0                  | 3.28                   | 524             | 67   | 1.15 | 18.4   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 3.0                  | 0.92                   | 414             | 69   | 0.26 | 4.2    |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 3.0                  | 1.79                   | 454             | 70   | 0.57 | 9.1    |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 4.0                  | 0.76                   | 410             | 71   | 0.22 | 3.5    |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 4.0                  | 0.55                   | 376             | 68   | 0.14 | 2.2    |
|                                        |                      |                        |                 |      |      |        |
| 7 days after sealing                   |                      |                        |                 |      |      |        |
| $[Cu(H_41)(2)]^+$                      | 0                    | 3.60                   | 558             | 72   | 1.44 | 23.0   |
| $[Cu(H_41)(2)]^+$                      | 0                    | 3.31                   | 579             | 68   | 1.31 | 21.0   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 1.0                  | 3.62                   | 551             | 70   | 1.39 | 22.2   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 1.0                  | 3.61                   | 544             | 57   | 1.13 | 18.1   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 2.0                  | 3.47                   | 528             | 69   | 1.26 | 20.2   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 2.0                  | 3.53                   | 530             | 65   | 1.22 | 19.5   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 3.0                  | 1.10                   | 420             | 67   | 0.31 | 5.0    |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 3.0                  | 2.11                   | 468             | 68   | 0.67 | 10.7   |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 4.0                  | 0.92                   | 411             | 70   | 0.26 | 4.2    |
| $[Cu(H_n 1)(2)]^{n-3}$                 | 4.0                  | 0.71                   | 385             | 67   | 0.19 | 3.0    |



**Fig. S1.** Solid-state absorption spectra of dye-functionalized transparent  $TiO_2$  electrodes treated with 0–4 eq of <sup>n</sup>Bu<sub>4</sub>NOH added to the anchoring ligand H<sub>4</sub>**1** solution (see Fig. 1 in the main paper).



**Fig. S2.** Absorption spectra for a DMSO solution containing H<sub>4</sub>**1** (2 equivalents) and [Cu(MeCN)<sub>4</sub>][PF<sub>6</sub>]<sub>2</sub> (1 equivalent) to which "Bu<sub>4</sub>NOH was added. (Details: H<sub>4</sub>**1** (4.96 mg, 10 µmol) and [Cu(MeCN)<sub>4</sub>][PF<sub>6</sub>]<sub>2</sub> (1.86 mg, 5 µmol) were combined in DMSO and stirred for 30 minutes. The reaction mixture was then diluted to give a final concentration of 10 µmol dm<sup>-3</sup> (assuming full conversion to the homoleptic metal complex). The solution UV spectra were measured between the additions of a 0.1M solution (EtOH) of "Bu<sub>4</sub>NOH in 10 µL aliquots.)

### (2) DSCs constructed from electrodes treated with $H_{41}$ + NaOH

**Table S2.** Performance parameters for duplicate DSCs containing the dye  $[Cu(H_n 1)(2)]^{n-3}$  where H<sub>4</sub>1 was treated with 0–4 equivalents of NaOH prior to electrode functionalization. Values of relative photoconversion efficiency (Rel.  $\eta$ ) are with respect to that of N719 set to 100%.

| Dye                    | Eq. NaOH | J <sub>SC</sub>        | Voc  | FF  | η    | Rel. ŋ |
|------------------------|----------|------------------------|------|-----|------|--------|
| ·                      |          | [mA cm <sup>-2</sup> ] | [mV] | [%] | [%]  | [%]    |
|                        |          |                        |      |     |      |        |
| On the day of sealing  |          |                        |      |     |      |        |
| $[Cu(H_41)(2)]^+$      | 0        | 4.61                   | 521  | 72  | 1.72 | 27.5   |
| $[Cu(H_41)(2)]^+$      | 0        | 4.54                   | 546  | 68  | 1.68 | 26.9   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 1.0      | 3.29                   | 538  | 73  | 1.29 | 20.6   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 1.0      | 4.80                   | 571  | 70  | 1.91 | 30.6   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 2.0      | 3.30                   | 520  | 71  | 1.22 | 19.5   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 2.0      | 4.67                   | 538  | 71  | 1.78 | 28.5   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 3.0      | 1.93                   | 433  | 70  | 0.59 | 9.4    |
| $[Cu(H_n 1)(2)]^{n-3}$ | 3.0      | 1.93                   | 441  | 71  | 0.60 | 9.6    |
| $[Cu(H_n 1)(2)]^{n-3}$ | 4.0      | 0.54                   | 397  | 69  | 0.15 | 2.4    |
| $[Cu(H_n 1)(2)]^{n-3}$ | 4.0      | 0.56                   | 394  | 70  | 0.15 | 2.4    |
| N719                   | _        | 14.3                   | 635  | 70  | 6.25 | 100    |
|                        |          |                        |      |     |      |        |
| 3 days after sealing   |          |                        |      |     |      |        |
| $[Cu(H_41)(2)]^+$      | 0        | 3.48                   | 548  | 72  | 1.38 | 22.1   |
| $[Cu(H_41)(2)]^+$      | 0        | 3.30                   | 569  | 67  | 1.26 | 20.2   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 1.0      | 2.19                   | 560  | 73  | 0.90 | 14.4   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 1.0      | 3.83                   | 606  | 72  | 1.66 | 26.6   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 2.0      | 2.28                   | 535  | 72  | 0.88 | 14.1   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 2.0      | 3.90                   | 550  | 72  | 1.54 | 24.6   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 3.0      | 1.42                   | 433  | 70  | 0.43 | 6.9    |
| $[Cu(H_n 1)(2)]^{n-3}$ | 3.0      | 1.47                   | 442  | 71  | 0.46 | 7.4    |
| $[Cu(H_n 1)(2)]^{n-3}$ | 4.0      | 0.52                   | 392  | 70  | 0.14 | 2.2    |
| $[Cu(H_n 1)(2)]^{n-3}$ | 4.0      | 0.55                   | 397  | 71  | 0.15 | 2.4    |
|                        |          |                        |      |     |      |        |
| 7 days after sealing   |          |                        |      |     |      |        |
| $[Cu(H_41)(2)]^+$      | 0        | 3.60                   | 558  | 72  | 1.44 | 23.0   |
| $[Cu(H_41)(2)]^+$      | 0        | 3.31                   | 579  | 68  | 1.31 | 21.0   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 1.0      | 2.16                   | 570  | 74  | 0.92 | 14.7   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 1.0      | 3.79                   | 604  | 73  | 1.66 | 26.6   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 2.0      | 2.27                   | 538  | 73  | 0.90 | 14.4   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 2.0      | 3.86                   | 552  | 73  | 1.55 | 24.8   |
| $[Cu(H_n 1)(2)]^{n-3}$ | 3.0      | 1.46                   | 435  | 70  | 0.44 | 7.0    |
| $[Cu(H_n 1)(2)]^{n-3}$ | 3.0      | 1.66                   | 458  | 72  | 0.55 | 8.8    |
| $[Cu(H_n 1)(2)]^{n-3}$ | 4.0      | 0.58                   | 392  | 68  | 0.16 | 2.6    |
| $[Cu(H_n 1)(2)]^{n-3}$ | 4.0      | 0.61                   | 396  | 71  | 0.17 | 2.7    |



**Fig. S3.** J-V curves for DSCs constructed with 0–4 eq of NaOH added to H<sub>4</sub>**1** (see Fig. 1 in the main paper). All spectra were measured on the day of DSC sealing (day 0).



**Fig. S4.** EQE spectra of the DSCs in Fig. S1, constructed with 0-4 eq of NaOH added to H<sub>4</sub>**1** (see Fig. 1 in the main paper). All spectra were measured on the day of DSC sealing (day 0).

### (3) DSCs constructed from electrodes treated with $H_41 + Cs_2CO_3$

**Table S3.** Performance parameters for duplicate DSCs containing the dye  $[Cu(H_n1)(2)]^{n-3}$  where H<sub>4</sub>1 is treated with 0–4 equivalents of Cs<sub>2</sub>CO<sub>3</sub> prior to electrode functionalization. Values of relative photoconversion efficiency (Rel.  $\eta$ ) are with respect to that of N719 set to 100%.

| Dye                                          | Eq. Cs <sub>2</sub> CO <sub>3</sub> | J <sub>SC</sub>        | V <sub>OC</sub> | FF       | η    | Rel. η       |
|----------------------------------------------|-------------------------------------|------------------------|-----------------|----------|------|--------------|
|                                              |                                     | [mA cm <sup>-2</sup> ] | [mV]            | [%]      | [%]  | [%]          |
| On the day of seeling                        |                                     |                        |                 |          |      |              |
| On the day of seaming $[C_{11}(H   1)(2)]^+$ | 0                                   | 4.61                   | 521             | 72       | 1 72 | 27.5         |
| $[Cu(H_4I)(2)]$<br>$[Cu(H_1)(2)]^+$          | 0                                   | 4.01                   | 546             | 68       | 1.72 | 27.5         |
| $[Cu(\Pi_4 \mathbf{I})(2)]$                  | 0                                   | 4.34                   | 561             | 08       | 1.08 | 20.9         |
| $[Cu(\Pi_n \mathbf{I})(2)]^{n-3}$            | 1.0                                 | 5.40                   | 562             | 72       | 2.17 | 34.7<br>20.2 |
| $[Cu(H_n I)(2)]^{n-3}$                       | 1.0                                 | 4.46                   | 563             | /3       | 1.83 | 29.3         |
| $[Cu(H_n I)(2)]^{n-3}$                       | 2.0                                 | 4.33                   | 545             | 69<br>72 | 1.02 | 25.9         |
| $[Cu(H_n I)(2)]^{n-3}$                       | 2.0                                 | 2.91                   | 511             | 72       | 1.07 | 1/.1         |
| $[Cu(H_n I)(2)]^{n-3}$                       | 3.0                                 | 2.68                   | 474             | 70       | 0.89 | 14.2         |
| $[Cu(H_n I)(2)]^{n-3}$                       | 3.0                                 | 3.08                   | 485             | 70       | 1.05 | 16.8         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 4.0                                 | 1.35                   | 426             | 71       | 0.41 | 6.6          |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 4.0                                 | 1.00                   | 424             | 72       | 0.30 | 4.8          |
| N719                                         | —                                   | 14.3                   | 635             | 70       | 6.25 | 100          |
|                                              |                                     |                        |                 |          |      |              |
| 3 days after sealing                         |                                     |                        |                 |          |      |              |
| $[Cu(H_41)(2)]^+$                            | 0                                   | 3.48                   | 548             | 72       | 1.38 | 22.1         |
| $[Cu(H_41)(2)]^+$                            | 0                                   | 3.30                   | 569             | 67       | 1.26 | 20.2         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 1.0                                 | 3.92                   | 568             | 73       | 1.62 | 25.9         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 1.0                                 | 2.94                   | 545             | 73       | 1.17 | 18.7         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 2.0                                 | 3.60                   | 529             | 70       | 1.34 | 21.4         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 2.0                                 | 2.71                   | 512             | 70       | 0.97 | 15.5         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 3.0                                 | 1.82                   | 459             | 71       | 0.59 | 9.4          |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 3.0                                 | 2.25                   | 478             | 71       | 0.76 | 12.2         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 4.0                                 | 1.05                   | 425             | 71       | 0.32 | 5.1          |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 4.0                                 | 0.76                   | 422             | 71       | 0.23 | 3.7          |
|                                              |                                     |                        |                 |          |      |              |
| 7 days after sealing                         |                                     |                        |                 |          |      |              |
| $[Cu(H_41)(2)]^+$                            | 0                                   | 3.60                   | 558             | 72       | 1.44 | 23.0         |
| $[Cu(H_41)(2)]^+$                            | 0                                   | 3.31                   | 579             | 68       | 1.31 | 21.0         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 1.0                                 | 3.97                   | 577             | 73       | 1.67 | 26.7         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 1.0                                 | 2.90                   | 554             | 73       | 1.17 | 18.7         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 2.0                                 | 3.64                   | 527             | 71       | 0.98 | 15.7         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 2.0                                 | 2.72                   | 507             | 69       | 0.61 | 9.8          |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 3.0                                 | 1.90                   | 466             | 71       | 0.62 | 9.9          |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 3.0                                 | 2.43                   | 486             | 70       | 0.83 | 13.3         |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 4.0                                 | 1.23                   | 431             | 71       | 0.37 | 5.9          |
| $[Cu(H_n 1)(2)]^{n-3}$                       | 4.0                                 | 0.84                   | 426             | 72       | 0.26 | 4.2          |



Fig. S5. J–V curves for DSCs constructed with 0–4 eq of  $Cs_2CO_3$  added to  $H_41$ . All spectra were measured on the day of DSC sealing (day 0).





**Fig. S6.** EQE spectra of the DSCs in Fig. S4, constructed with 0-4 eq of Cs<sub>2</sub>CO<sub>3</sub> added to H<sub>4</sub>**1**. All spectra were measured on the day of DSC sealing (day 0).



**Fig. S7.** NMR spectroscopic titration of  ${}^{n}NBu_{4}OH$  into a solution of H<sub>4</sub>**1** in DMSO-d<sub>6</sub>, focused on the 6–methyl signal. *a*) stacked  ${}^{1}H$  NMR spectra. *b*) Chemical shift of NMR signal vs. equivalents of  ${}^{n}Bu_{4}NOH$ .

#### (5) DSCs constructed from electrodes pre-treated or post-treated with "Bu<sub>4</sub>NOH.

**Table S4.** Performance parameters for duplicate DSCs containing the dye  $[Cu(H_n1)(2)]^{n-3}$  where electrodes are used with no base present in the dye baths (entries 1 and 2), or treated with <sup>n</sup>Bu<sub>4</sub>NOH before (entries 3 and 4) or after (entries 5 and 6) exposure to a H<sub>4</sub>1 solution. Values of relative photoconversion efficiency (Rel.  $\eta$ ) are with respect to that of N719 set to 100%.

| Dip 1                            | Dip 2                            | Dip 3             | J <sub>SC</sub>        | V <sub>OC</sub> | FF  | η    | Rel. ŋ |
|----------------------------------|----------------------------------|-------------------|------------------------|-----------------|-----|------|--------|
|                                  |                                  |                   | [mA cm <sup>-2</sup> ] | [mV]            | [%] | [%]  | [%]    |
|                                  |                                  |                   |                        |                 |     |      |        |
| On the day                       | of sealing                       |                   |                        |                 |     |      |        |
| H4 <b>1</b>                      | $[Cu(2)_2][PF_6]$                | _                 | 4.48                   | 522             | 70  | 1.64 | 26.2   |
| $H_4$ <b>1</b>                   | $[Cu(2)_2][PF_6]$                | _                 | 4.23                   | 531             | 72  | 1.61 | 25.8   |
| <sup>n</sup> Bu <sub>4</sub> NOH | H4 <b>1</b>                      | $[Cu(2)_2][PF_6]$ | 5.19                   | 541             | 45  | 1.26 | 20.2   |
| <sup>n</sup> Bu <sub>4</sub> NOH | H4 <b>1</b>                      | $[Cu(2)_2][PF_6]$ | 4.49                   | 534             | 56  | 1.34 | 21.4   |
| H4 <b>1</b>                      | <sup>n</sup> Bu <sub>4</sub> NOH | $[Cu(2)_2][PF_6]$ | 5.35                   | 529             | 67  | 1.91 | 30.6   |
| H4 <b>1</b>                      | <sup>n</sup> Bu <sub>4</sub> NOH | $[Cu(2)_2][PF_6]$ | 5.07                   | 521             | 68  | 1.80 | 28.8   |
| N719                             | _                                | _                 | 14.3                   | 635             | 70  | 6.25 | 100    |



**Fig. S8.** J-V curves for DSCs listed in Table S4. Untreated DSC = entries 1 and 2 (Table S4), base pre-treated DSCs = entries 3 and 4 (Table S4), and base post-treated = entries 5 and 6 (Table S4).



**Fig. S9.** Nyquist plots of EIS measurements at a light intensity of 2.2 mW cm<sup>-2</sup>. The lower plot is an expansion from the upper plot.

# <u>(7)</u> DSCs constructed using different solvents in the anchoring step with either $H_41$ or $[Bu_4N]_{4-n}[H_n1]$ .

**Table S5.** Performance parameters for duplicate DSCs containing the dye  $[Cu(H_n 1)(2)]^{n-3}$  constructed using different solvents in the initial electrode functionalization with H<sub>4</sub>1 or  $[{}^{n}Bu_{4}N]_{4-n}[H_{n}1]$ .

| Solvent               | Anchoring<br>Ligand           | Equiv.<br>Base | J <sub>SC</sub><br>[mA cm <sup>-2</sup> ] | V <sub>OC</sub><br>[mV] | FF<br>[%] | η<br>[%] | Rel. η<br>[%] |  |  |
|-----------------------|-------------------------------|----------------|-------------------------------------------|-------------------------|-----------|----------|---------------|--|--|
| On the day of sealing |                               |                |                                           |                         |           |          |               |  |  |
| EtOH                  | <b>з</b><br>Н₄ <b>1</b>       | 0              | 0.72                                      | 423                     | 71        | 0.21     | 3.4           |  |  |
| EtOH                  | $H_41$                        | 0              | 0.53                                      | 418                     | 70        | 0.15     | 2.4           |  |  |
| EtOH                  | $[^{n}Bu_{4}N]_{4-n}[H_{n}1]$ | 1              | 5.27                                      | 549                     | 62        | 1.80     | 28.8          |  |  |
| EtOH                  | $[^{n}Bu_{4}N]_{4-n}[H_{n}1]$ | 1              | 5.34                                      | 556                     | 67        | 1.98     | 31.7          |  |  |
|                       |                               |                |                                           |                         |           |          |               |  |  |
| $H_2O$                | $H_41$                        | 0              | 0.92                                      | 437                     | 71        | 0.29     | 4.6           |  |  |
| H <sub>2</sub> O      | $H_4$ <b>1</b>                | 0              | 0.23                                      | 376                     | 67        | 0.06     | 1.0           |  |  |
| $H_2O$                | $[^{n}Bu_{4}N]_{4-n}[H_{n}1]$ | 1              | 5.17                                      | 554                     | 66        | 1.90     | 30.4          |  |  |
| $H_2O$                | $[^{n}Bu_{4}N]_{4-n}[H_{n}1]$ | 1              | 5.36                                      | 560                     | 66        | 1.97     | 31.5          |  |  |
|                       |                               |                |                                           |                         |           |          |               |  |  |
| $CH_2Cl_2$            | $H_4$ <b>1</b>                | 0              | 0.12                                      | 367                     | 68        | 0.03     | 0.5           |  |  |
| $CH_2Cl_2$            | $H_41$                        | 0              | 0.14                                      | 376                     | 68        | 0.03     | 0.5           |  |  |
| $CH_2Cl_2$            | $[^{n}Bu_{4}N]_{4-n}[H_{n}1]$ | 1              | 3.91                                      | 564                     | 67        | 1.47     | 24.5          |  |  |
| $CH_2Cl_2$            | $[^{n}Bu_{4}N]_{4-n}[H_{n}1]$ | 1              | 3.65                                      | 561                     | 63        | 1.28     | 20.5          |  |  |
|                       |                               |                |                                           |                         |           |          |               |  |  |
| N719                  | -                             | —              | 14.3                                      | 635                     | 70        | 6.25     | 100           |  |  |



**Fig. S10.** J-V curves for DSCs listed in Table S5. The curves for [ ${}^{n}Bu_{4}N$ ]<sub>4-n</sub>[H<sub>n</sub>**1**] in EtOH and [ ${}^{n}Bu_{4}N$ ]<sub>4-n</sub>[H<sub>n</sub>**1**] in H<sub>2</sub>O are strongly overlapping.