TiO_{2} pillaring and $\mathrm{NiO}_{\mathrm{x}}$ loading as alternatives for the photoactivity enhancement of $\mathrm{K}_{2} \mathrm{Ti}_{4} \mathrm{O}_{9}$ towards water splitting ${ }^{\dagger}$

Mauricio A. Melo Jr, ${ }^{\text {a }}$ Saulo A. Carminati, ${ }^{\text {a }}$ Jefferson Bettini, ${ }^{\mathrm{b}}$ Ana F. Nogueira ${ }^{\mathrm{a},{ }^{*}}$

alnstitute of Chemistry, University of Campinas, UNICAMP, P. O. Box 6154, 13084-971 Campinas, São Paulo, Brazil;
${ }^{\text {c }}$ National Nanotechnology Laboratory, National Centre for Energy and Materials Research, CNPEM, 13083-970, Campinas, São Paulo, Brazil.

* E-mail: anaflavia@iqm.unicamp.br

Fig. S1 X-ray diffraction patterns of the materials (a) $\mathrm{Ag} / \mathrm{TiO}_{2} / \mathrm{Ti}_{4} \mathrm{O}_{9}$, (b) $\mathrm{Au} / \mathrm{TiO}_{2} / \mathrm{Ti}_{4} \mathrm{O}_{9}$, and (c) $\mathrm{Pt} / \mathrm{TiO}_{2} / \mathrm{Ti}_{4} \mathrm{O}_{9}$.

Fig. S2 N_{2} adsorption-desorption isotherms of the mesoporous solids (a) $\mathrm{Ag} / \mathrm{TiO}_{2} / \mathrm{Ti}_{4} \mathrm{O}_{9}$, (b) $\mathrm{Au} / \mathrm{TiO}_{2} / \mathrm{Ti}_{4} \mathrm{O}_{9}$, and (c) $\mathrm{Pt} / \mathrm{TiO}_{2} / \mathrm{Ti}_{4} \mathrm{O}_{9}$; and (d) respective pore size distribution curves.

Fig. S3 High-resolution transmission electron microscopy (HR-TEM) images of (a) $\mathrm{K}_{2} \mathrm{Ti}_{4} \mathrm{O}_{9}$ and (b) $\mathrm{TiO}_{2} / \mathrm{Ti}_{4} \mathrm{O}_{9}$.

Fig. S4 TEM image and EDS spectrum of the grid used for the surface mappings of $\mathrm{NiO}_{\mathrm{x}} / \mathrm{TiO}_{2} / \mathrm{Ti}_{4} \mathrm{O}_{9}$.

Fig. S5 EDS mapping of (a) and (b) a selected region of $\mathrm{NiO}_{x} / \mathrm{TiO}_{2} / \mathrm{Ti}_{4} \mathrm{O}_{9}$ surface, detecting the elements (c) titanium, (d) oxygen and (d) nickel; and three different EDS spectra correlated to the regions 1,2 and 3 indicated in (b). The spectra show that Region 1 is rich in nickel, Region 2 has no nickel and region 3 possess nickel in lower amount compared to Region 1. The absence of the peak at 7.5 keV in the spectrum of Region 2 proves that the detected nickel belongs to the sample and not to the grid holder.

Figure S6. UV-Vis diffuse reflectance spectrum of the synthesized TiO_{2} anatase nanoparticles.

Figure S7. H_{2} evolution over 50 mg of $\mathrm{TiO}_{2} \mathrm{P} 25$ and $\mathrm{NiOx} / \mathrm{TiO}_{2}$ suspended in 50 mL of a 20% $(\mathrm{v} / \mathrm{v})$ aqueous methanol solution. The system was irradiated with a 300 W Xe arc lamp with light power of $224 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$.

Figure S8. Profilometer scan of one of the $\mathrm{TiO}_{2} / \mathrm{Ti}_{4} \mathrm{O}_{9}$ films prepared for the SPS measurements.

