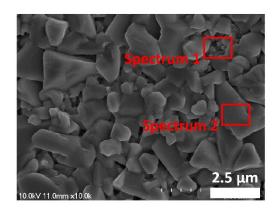
Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary information for

Quantification of effective thermal conductivity in the annealing process of Cu₂ZnSn(S,Se)₄ solar cells with 9.7% efficiency fabricated by magnetron sputtering

Woo-Lim Jeong,‡^{a,b} Jung-Hong Min,‡^{a,b}, Hae-Sun Kim,^{a,b} Ji-Hun Kim,^a Jin-Hyeok Kim^c and Dong-Seon Lee^{a,b*}

^a School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea, E-mail: <u>dslee66@gist.ac.kr</u>


^b Research Institute for Solar and Sustainable Energies, Gwangju 61005, South Korea

^c Optoelectronics Convergence Research Center, Chonnam National University, 300 Youngbong-Dong, Puk-Gu, Gwangju 61186, South Korea

[‡] These authors contributed equally to this work.

Table S1 Chemical composition and compositional ratio of the CZTSSe absorber films.

	Elemental Component					Compositional Ratio			
	Cu (at%)	Zn (at%)	Sn (at%)	Se (at%)	S (at%)	$\frac{Cu}{(Zn + Sn)}$	Zn/Sn	(Se + S)/ Metal	Se/S
CZTSSe HTC-1	22.66	13.18	12.35	38.91	12.9	0.89	1.07	1.08	3.02
CZTSSe HTC-2	22.74	14.82	12.17	36.04	14.24	0.84	1.22	1.01	2.53
CZTSSe HTC-3	21.7	15.45	12.07	36.44	14.34	0.79	1.28	1.03	2.54
CZTSSe LTC-1	23.84	12.63	12.01	34.11	17.4	0.97	1.05	1.06	1.96
CZTSSe LTC-2	22.42	15.23	11.98	32.42	17.95	0.82	1.27	1.01	1.81
CZTSSe LTC-3	22.18	16.22	11.05	32.75	17.8	0.81	1.47	1.02	1.84

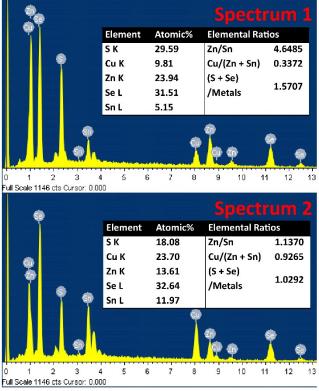


Fig. S1 EDX spectra and atomic composition of CZTSSe LTC-2 absorber film. Spectrum 1 shows that small grains were mainly formed by Zn, S, and Se, and Spectrum 2 shows that the compositional ratio of the large grains were found to be Zn/Sn = 1.14, and Cu/(Zn + Sn) = 0.93 (Cu-poor and Zn-rich).

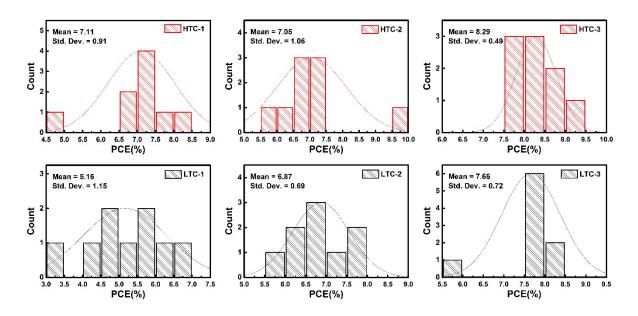


Fig. S2 Histograms showing power conversion efficiency and the normal distribution curve of the six solar cells.

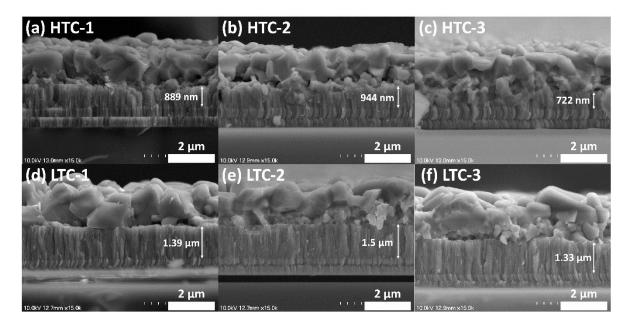
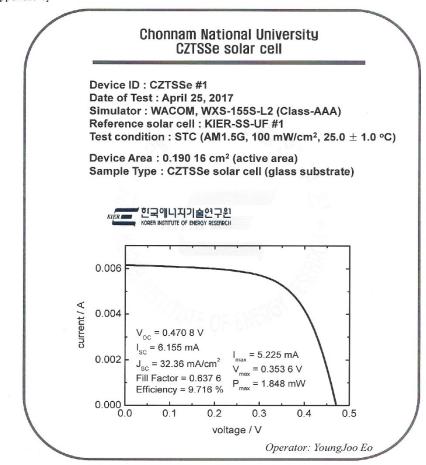


Fig. S3 Cross-sectional SEM images of the CZTSSe absorber layers fabricated by sulfo-selenization with either an HTC (a– c) or an LTC (d– f) graphite box. The thickness of $Mo(S,Se)_2$ is (a) 889 nm, (b) 944 nm, (c) 722 nm, (d) 1.39 μ m, (e) 1.5 μ m, and (f) 1.33 μ m.


(별표 제4호 나-02)

Test Results

Report No. : KIER-17-0364 Page(3) / (3)Pages

[Appendix 1]

Photovoltaic Research Center, Korea Institute of Energy Research 152, Gajeong-ro, Yuseong-gu, Daejeon, 34129, Korea Tel: +82-42-860-3182, e-mail: notask@kier.re.kr

Fig. S4 Certificated power conversion efficiency of the best performing CZTSSe solar cell (CZTSSe HTC-2).