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Supplementary Methods and Materials

Figure S1. Geometry used in the theoretical model. The enzyme patch (thin disc) pumps fluid 
within an enclosed chamber of height h = 0.9 mm and horizontal lengths Lx = Lz = 20 mm.
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Figure S2. Pumping behavior of acid phosphatase micropumps as a function of distance and time in 
the presence of 50 mM pNPP. The progression of the fluid flow at different distances away from the 
Au patch is shown over the course of different time periods, where 0 mm is at the edge of the Au 
patch and 5 mm is approaching the wall of the chamber. With time, the fluid flow begins to spread 
from the edge of the Au patch to the wall and then begins to diminish after some time 
(approximately 1 hr). 



S3

Figure S3. Simulated spatial and temporal variations in temperature and pumping speeds driven 
by thermal buoyancy effects. Curves are plotted at time intervals of 2 min. The perimeter of the 
pump lies at x = 3 mm. (A) Vertically averaged temperature differences relative to initial 
temperature, normalized by the pump heat generation power, P. (B) Pumping speeds normalized 
by pump power, P. The inward flow speed uin is defined as the horizontal flow speed in the direction 
toward the center of the pump at the height y = 50 µm.

Control Experiments
The pumping behavior was studied without the immobilization of acid phosphatase and 

observed in the presence of 50 mM pNPP. No directional pumping was observed and only 
Brownian diffusion of the tracer particles resulted, and is represented by the pumping speeds 
values below 0.1 m/s. The behavior of the pump with and without acid phosphatase in 50 mM 
pNPP is shown in Figure S4. Similar studies were performed with the acid phosphatase pumps in 
the presence of 0 mM pNPP. No directional pumping was observed, only Brownian diffusion 
occurred. The behavior of the acid phosphatase pumps in 50 mM and 0 mM pNPP is shown in 
Figure S5.
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Figure S4. Pumping speeds with and without acid phosphatase in the presence of 50 mM pNPP. 
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Figure S5. Pumping speeds of the acid phosphatase micropump in the presence of 50 mM and 0 
mM pNPP.

Numerical Methods
The geometry used in the theoretical model is illustrated in Figure S1. The interior of the 

chamber is described by the conditions , , and . We verified by 2/|| xLx  hy 0 2/|| zLz 
preliminary simulations that, as expected from the symmetry of the setup, the temperature, 
concentration and flow fields all satisfied reflectional symmetry in the  and  planes. 0x 0z
This allowed us to increase the spatial resolution of the simulation, maintaining an equivalent 
computational load, by solving the governing equations restricted to the subdomain 

 , . Boundary conditions imposed on the symmetry planes ,2/0 xLx  hy 0 2/0 zLz 
 and  were no heat and chemical flux, and free fluid slip, expressed mathematically as0x 0z
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where , , and  are the x-, y-, and z-components of the fluid velocity respectively. The xu yu zu
computation grid size was  with grid spacing .30027300  μm3.33x
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Temperature and concentration fields were simulated using the finite difference approach 
with the forward-time central-space (FTCS) scheme for diffusion.S1 In the case of concentration 
fields, advective transport was included using the first order upwind scheme. The time step size 
in thermal simulations was  and the thermal diffusivity was set to μs250t

. Simulations of solute transport assumed a diffusion coefficient 127 sm1043.1 
 and were performed with a time step size . 129 sm10 D ms26.9t

A lattice Boltzmann method was used to solve the equations of fluid flow, Eq. 3.S2 We 
implemented the single-relaxation-time, D3Q19 model with the standard bounce-back rule to 
enforce no-slip fluid flow conditions on the chamber walls and specular reflection on the free-
slip boundaries.S3  Flow fields due to thermal effects were obtained by computing the buoyancy 
force field from the finite difference solutions for the temperature field and executing the lattice 
Boltzmann algorithm for 5000 time steps until the flow field became steady. The time step size 

 and lattice Boltzmann relaxation parameter  were used to achieve the μs185t 1
kinematic viscosity . For solutal buoyancy simulations, the lattice 1262 sm10/)6/1(  tx
Boltzmann algorithm was performed in parallel with the finite difference method to couple the 
fluid advection and buoyancy force field with the solute transport. Hybrid lattice Boltzmann-
finite difference schemes have been employed previously for advection-diffusion problems.S4,S5

Simulations of Thermal Buoyancy Effects with Different Boundary Conditions
We considered three sets of boundary conditions for the temperature field and compared 

the results to assess the influence of thermal boundary conditions on the pumping speeds. The 
three cases of boundary conditions were

(I) no heat flux through all walls;
(II) no heat flux through top and bottom walls, fixed temperature  on side walls; and0TT 
(III) no heat flux through bottom wall, fixed temperature  on top and side walls.0TT 

These three sets of thermal boundary conditions represent idealizations of possible chamber 
constructions. In typical experimental setups, the chamber walls are not perfect insulators or 
perfect heat absorbers but lie somewhere in between, allowing heat to escape but also allowing 
variations in temperature.  A fourth candidate for boundary conditions, fixed temperature on all 
walls, was not considered. Since heat is produced in a thin patch on the bottom wall, constraining 
the temperature of this wall would immediately remove the generated heat and there would be 
negligible temperature variations in the chamber. 

The vertically averaged temperature changes (relative to the initial temperature) at 
different distances from the pump are plotted for the three boundary conditions in Figures S6-S8, 
respectively. Since heat cannot leave the system with boundary conditions I, the temperature 
rises indefinitely but the temperature gradient stabilizes within 10 min (Figure S6). With 
boundary conditions II, heat escapes through the side walls and results in a steady temperature 
profile after 10 min (Figure S7). With boundary conditions III, heat is lost more quickly through 
the top and side walls, resulting in a steady temperature field within 2 min (Figure S8).
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Figure S6. Vertically averaged temperatures in simulations as time increases using boundary 
condition I. Curves are plotted at 2 min intervals from 0 to 10 min. Since heat cannot escape, the 
temperature rises gradually with time but the temperature gradient stabilizes.

Figure S7. Vertically averaged temperatures in simulations as time increases using boundary 
condition II. Curves are plotted at 2 min intervals from 0 to 10 min. A steady temperature field is 
reached after ~10 min.



S7

Figure S8. Vertically averaged temperatures in simulations as time increases using boundary 
condition III. Curves are plotted at 2 min intervals from 0 to 10 min. A steady temperature field is 
reached in the first 2 min.

The temperature fields in the vertical cross section through the pump for the three sets of 
boundary conditions are shown in Figure S9. The corresponding flow fields are shown in Figure 
S10.  For comparison with experimental results, we plot the flow speeds at the fixed observation 
height  for the three boundary conditions in Figure S11A. We also plot the vertically μm 50y
averaged temperature changes at different distances from the pump center (Figure S11B). The 
speeds and temperature changes are normalized by the heat generation power, P.
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Figure S9. Side views of simulated temperature fields at time t = 10 min using boundary conditions 
(A) I, (B) II, and (C) III. The color map indicates temperature change  relative to the initial T
temperature using a fixed heat production rate P = 1 µW.
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Figure S10. Side views of simulated fluid flow speeds and streamlines at time t = 10 min using 
boundary conditions (A) I, (B) II, and (C) III. The color map indicates the local magnitude of flow 
using a fixed heat production rate P = 1 µW.
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Figure S11. Variations in simulated pumping speeds and temperatures with horizontal distance at 
time t = 10 min. The perimeter of the pump lies at x = 3 mm. (A) Pumping speeds, defined as the 
horizontal flow speeds in the inward (toward the center) direction at the height y = 50 µm, 
normalized by the rate of heat generation. (B) Vertically averaged temperature differences (relative 
to initial temperature) normalized by the rate of heat generation. 

Cases I and II produced similar flow speeds close to the pump. This result is reasonable 
since the boundary conditions differ only on the side walls, far from the pump. The pumping 
speed increased linearly with x from zero up to a maximum flow speed per unit power 

 at the perimeter of the pump ( ) for both cases. The flow 114
max μW s μm 105 u mm 3x

speed gradually decreased with distance beyond the pump and, as required by the no-slip 
boundary conditions, there was no fluid flow at the side walls ( ). The flow speeds far mm 10x
from the pump were much higher in case II than in case I. This is due to the larger horizontal 
temperature gradients that are maintained when heat escapes through the side walls (see Figure 
S9B). From previous studies of similar enzyme pumps,S4 we know that the horizontal fluid flow 
speed (at locations far from vertical walls) is approximately proportional to the horizontal 
gradient in fluid density. 

The flow speeds in case III were much lower than in cases I and II. The maximum flow 
speed per unit power was , again occurring at the perimeter of the pump 114

max μW s μm 10 u
. Compared with cases I and II, the flow speed was more sharply peaked, decaying to mm) 3( x

1% of the maximum value within a distance of about 2 mm on either side of the peak. This 
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localized flow is consistent with simulation results reported by Sengupta et al.,S6 who considered 
boundary conditions corresponding to case III (no heat flux through bottom and fixed 
temperature on top). Due to the shallow vertical dimension of the chamber, heat escapes rapidly 
from the system through the top boundary and is unable to spread far horizontally. The 
temperature rise is therefore much smaller than in cases I and II; density driven flows are 
correspondingly much slower.

Supplementary Calculations
To determine the maximum rate of heat production on the Au surface, the following calculations 
were done using the parameters in Table S1.

Table S1. Listed are different reactants for phosphatase and a comparison of selected 
parameters.S7,S8

Acid Phosphatase Reactants Enthalpy 
(kJ/mol)

Vmax 
(μmol min-1 mg-1)

KM 
(mM)

Reaction Rate 
(mol/s)

5’-Adenosine Triphosphate -107.9 329 0.054 2.6 × 10-10

p-Nitrophenyl Phosphate -25.9 605 0.091 4.7 × 10-10

Pyrophosphate -15.5 463 0.027 3.6 × 10-10

α-Naphthyl Phosphate -6.5 325 0.29 2.5 × 10-10

5’ Adenosine Monophosphate -6.5 49 4.1 3.8 × 10-11

Heat Production in Acid Phosphatase Pumps
Dimensions of micropumps:
Radius of Au patch: 3 × 10-3 m

Area of Au patch: 2.83 × 10-5 m2

Height of chamber: 0.9 mm

Diameter of chamber: 20 mm

For Acid Phosphatase (radius = 4.7 nm) with ATP as the reactant:S9

Cross sectional area of a single enzyme molecule =   4.7 2 nm2  69.4 nm2

Area of the gold pattern =   3 2 nm2  2.831013  nm2

Therefore, approximate number of enzyme molecule in the gold pattern: 
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=  2.831013  nm2

69.4 nm2
 4.11011  molecules  6.771013  mol

We need to determine the reaction rate or V:

 = V 
Vmax S 
KM  S 

V 
329 mol min1mg1 50 mM 

0.054 mM 50 mM 
~ 329 mol min1mg1

The reaction rate value is given in units. Multiplying the amount of enzyme (in mol min -1 mg-1

mg) with the reaction rate value for ATP (329 ) results in the desired units mol min-1 mg-1

needed to calculate the heat production.S8

Molecular weight of 69 kDaS10 = 69,000 g/mol. Thus, the amount of enzyme on the gold pattern:

 6.771013  mol   6.9107  mg/mol  4.7105  mg

Thus, the reaction rate is: 

  329 mol min1 mg1    4.7105  mg 1.5102  mol min1    mol
106  mol

   min
60 s

 2.61010  mol/s

The amount of heat generated in the system:12

 2.61010  mol/s   HAcid Phosphatase  2.61010  mol/s   107.9 kJ/mol  2.8105  J/s
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